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GAUSSIAN-TYPE QUADRATURE RULES FOR MÜNTZ SYSTEMS∗

GRADIMIR V. MILOVANOVIĆ† AND ALEKSANDAR S. CVETKOVIĆ

Abstract. A method for constructing the generalized Gaussian quadrature rules for Müntz
polynomials on (0, 1) is given. Such quadratures possess several properties of the classical Gaussian
formulae (for polynomial systems), such as positivity of the weights, rapid convergence, etc. They
can be applied to the wide class of functions, including smooth functions, as well as functions with
end-point singularities, such as those in boundary-contact value problems, integral equations with
singular kernels, complex analysis, potential theory, etc. The constructive method is based on an
application of orthogonal Müntz polynomials introduced by Badalyan [Akad. Nauk Armyan. SSR.
Izv. Fiz.-Mat. Estest. Tehn. Nauk, 8 (1955), pp. 1–28; 9 (1956), pp. 3–22 (Russian; Armenian
summary)] and studied intensively by Borwein, Erdélyi, and Zhang [Trans. Amer. Math. Soc., 342
(1994), pp. 523–542], as well as by Milovanović on a numerical procedure for evaluation of such
polynomials with high precision [Müntz orthogonal polynomials and their numerical evaluation, in
Applications and Computation of Orthogonal Polynomials, Internat. Ser. Numer. Math. 131, W.
Gautschi, G. H. Golub, and G. Opfer, eds., Birkhäuser, Basel, 1999, pp. 179–194]. The method is
numerically stable. Some numerical examples are included.
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1. Introduction. Gauss’s famous method of approximate integration from 1814
can be extended in a natural way to nonpolynomial functions, taking a system of
linearly independent functions

{P0(x), P1(x), P2(x), . . .} (x ∈ [a, b]),(1.1)

usually chosen to be complete in some suitable space of functions (cf. Gautschi [6],
Karlin and Studden [12], Harris and Evans [11], Ma, Rokhlin, and Wandzura [13]). If
dσ(x) is a given nonnegative measure on [a, b] and the quadrature rule

∫ b

a

f(x)dσ(x) =

n∑
k=1

Akf(xk) + Rn(f)(1.2)

is such that it integrates exactly the first 2n functions in (1.1), we call rule (1.2)
Gaussian with respect to the system (1.1). The existence and uniqueness of a Gaus-
sian quadrature rule (1.2) with respect to the system (1.1), or, for brevity, a generalized
Gaussian formula, is always guaranteed if the first 2n functions of this system con-
stitute a Chebyshev system on [a, b]. Then, all the weights A1, . . . , An in (1.2) are
positive. In terms of moment spaces, the Gaussian rule corresponds to the unique
lower principal representation of the measure dσ(x) (see Karlin and Studden [12]).
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The generalized Gaussian quadratures for Müntz systems goes back to Stieltjes’s
paper [22] of 1884. Taking Pk(x) = xλk on [a, b] = [0, 1], where 0 ≤ λ0 < λ1 < · · · ,
he showed the existence of Gaussian formulae. In his short note he considered also
Gauss–Radau formulae.

A numerical algorithm for constructing the generalized Gaussian quadratures was
recently investigated by Ma, Rokhlin, and Wandzura [13]. They take a Chebyshev
system of functions {P0, P1, . . . , P2n−1} on [a, b] with the following properties:

(1) Pk ∈ C1[a, b] (k = 0, 1, . . . , 2n− 1);

(2) the determinants∣∣∣∣∣∣∣∣∣

P0(x1) · · · P0(xn) P ′
0(x1) · · · P ′

0(xn)
P1(x1) P1(xn) P ′

1(x1) P ′
1(xn)

...
P2n−1(x1) P2n−1(xn) P ′

2n−1(x1) P ′
2n−1(xn)

∣∣∣∣∣∣∣∣∣
are nonzero for any set of n points x1, . . . , xn ∈ [a, b] (xi �= xj for i �= j).

Such a system will be referred to as an extended Hermite (EH) system.
The procedure given in [13] requires the construction of the functions

ξi(x) =

2n∑
j=1

αijPj−1(x), ηi(x) =

2n∑
j=1

βijPj−1(x) (i = 1, . . . , n)(1.3)

such that {
ξi(xk) = 0,

ξ′i(xk) = δik,

{
ηi(xk) = δik,

η′i(xk) = 0,
(1.4)

for all i = 1, . . . , n and all k = 1, . . . , n. The algorithm is ill conditioned (see [13,
Remark 6.2]). In order to obtain the double precision results (REAL*8), the authors
performed the computations in extended precision (Q-arithmetic, i.e., REAL*16) for
generating Gaussian quadratures up to order 20, and in Mathematica (120-digit op-
erations) for generating Gaussian quadratures of higher orders (n ≤ 40). In particular,
they considered the following important cases of EH systems:{

1, log x, x, x log x, . . . , xn−1, xn−1 log x
}

(1.5)

and {
1, xs, x, xs+1, . . . , xn−1, xs+n−1

}
(1.6)

for s = 1/3, s = −1/3, s = −2/3. The case (1.5) was also considered by Andronov
[1] in order to solve certain boundary-contact value problems.

For a given sequence of real numbers Λ = {λ0, λ1, λ2, . . .} given in nondecreasing
order, i.e., λk ≤ λk+1, k ∈ N0, in this paper we consider Müntz polynomials as linear
combinations of the Müntz system{

xλ0 , xλ1 , . . . , xλn
}
.

By Mn(Λ) we denote the set of all such polynomials, i.e.,

Mn(Λ) = span
{
xλ0 , xλ1 , . . . , xλn

}
,

where the linear span is over the real numbers.
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Here, we present an alternatively numerical method for constructing the general-
ized Gaussian quadratures for Müntz polynomials

∫ 1

0

f(x)dσ(x) =

n∑
k=1

Akf(xk) + Rn(f),(1.7)

which are exact for each f ∈ M2n−1(Λ). Our method is rather stable and simpler
than the previous one. It performs calculations in double precision arithmetic to get
double precision results.

As is well known (see [14], [28]), the Gaussian quadrature rule is unique, pro-
vided the measure σ has a nonnegative absolutely continuous part and has finitely
many atoms on [0, 1]. Such quadratures possess several properties of the classical
Gaussian formulae (for polynomial systems), such as positivity of the weights, rapid
convergence, etc. They can be applied to the wide class of functions, including smooth
functions, as well as functions with end-point singularities, such as those in boundary-
contact value problems (see [1]), integral equations, complex analysis, potential theory,
and several other fields (see [13]).

This paper is organized as follows. Section 2 is devoted to some properties of
orthogonal Müntz polynomials on (0, 1) and their connection with orthogonal ra-
tional functions, including numerical evaluation of such generalized polynomials. A
numerical method for constructing the quadrature rules (1.7) is presented in section
3. Finally, in section 4 we give numerical results.

2. Orthogonal Müntz–Legendre polynomials. We are interested in the class
of Müntz polynomials introduced by Badalyan [2], and we refer to it as Müntz–
Legendre polynomials.

Let a complex sequence Λ = {λ0, λ1, λ2, . . .} be such that Re (λk) > −1/2 for
every k ∈ N0 and let Λn = {λ0, λ1, . . . , λn}. If Γ is a simple contour surrounding all
the zeros of the denominator in the rational function

Wn(s) =

n−1∏
k=0

s + λ̄k + 1

s− λk
· 1

s− λn
(n ∈ N0),(2.1)

then the Müntz–Legendre polynomials are defined by (see [2], [3], [4], [15], [25])

Pn(x) = Pn(x; Λn) =
1

2πi

∮
Γ

Wn(s)xs ds.(2.2)

In the case n = 0, an empty product in (2.1) should be taken to be equal to 1.
If λk �= λj (k �= j), by the Cauchy residue theorem, these generalized polynomials

can be expressed in a power form as

Pn(x) =

n∑
k=0

Cnkx
λk .(2.3)

If there exists a pair with the property λk = λj , k �= j, an application of Cauchy
residue theorem produces terms with log function included. For example, we consider
the important special case, where

λ2k = λ2k+1 = k (k = 0, 1, . . .).
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Namely, we take λ2k = k and λ2k+1 = k + ε (k = 0, 1, . . .), where ε decreases to
zero. The corresponding limit process leads to orthogonal Müntz polynomials with
logarithmic terms. Then, (2.1) becomes

Wn(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m−1∏
ν=0

(s + ν + 1

s− ν

)2 1

s−m
when n = 2m,

m∏
ν=0

(s + ν + 1

s− ν

)2 1

s + m + 1
when n = 2m + 1.

Applying the Cauchy residue theorem to the integral in (2.2), with this rational func-
tion, we obtain the following representation for the corresponding Müntz polynomials:

Pn(x) = Rn(x) + Sn(x) log x (n = 0, 1, . . .),(2.4)

where Rn(x) and Sn(x) are algebraic polynomials of degree [n/2] and [(n − 1)/2],
respectively, i.e.,

Rn(x) =

[n/2]∑
ν=0

a(n)
ν xν , Sn(x) =

[(n−1)/2]∑
ν=0

b(n)
ν xν .

Notice that Pn(1) = Rn(1) = 1. A general expression for the polynomial Pn, n ∈
N0, was given in [17]. These Müntz polynomials can be used in the proof of the
irrationality of ζ(3) and of other familiar numbers (see [4, pp. 372–381] and [27]).

In the special case when λ0 = λ1 = · · · = λ, (2.2) gives

Pn(x; Λn) = xλLn(−(λ + λ̄ + 1) log x),(2.5)

where Ln(x) is the Laguerre polynomial orthogonal with respect to e−x on [0,∞) and
such that Ln(0) = 1 (cf. [5, p. 145]).

Theorem 2.1. For the Müntz–Legendre polynomials (2.2) the following orthogo-
nality relation holds:

(Pn, Pm) =

∫ 1

0

Pn(x)Pm(x) dx =
δnm

λn + λ̄n + 1
.(2.6)

According to this theorem we can construct orthonormal sequence of Müntz–
Legendre polynomials, denoted by pn(x) := pn(x; Λ) = (λn+ λ̄n+1)1/2Pn(x), n ∈ N0.

For a general nondecreasing sequence Λ, the case when some of λk, k ∈ N0, are the
same, it is complicated to express the basis functions in a closed form. For example,
if all λk, k ∈ N0, are different, we have that the system of basis functions is given
by {xλ0 , xλ1 , . . .}. In the case λk = λk+1 = k, k ∈ N0, we have that the system of
basis functions is given by {1, log x, x, x log x, . . .}. To make notation simple, we use
the notation xΛ to denote the set of basis functions for the general nondecreasing
sequence Λ. Also, we introduce the notation xΛn for the first n functions in the
system xΛ.

Putting λk + β/2 instead of λk, k = 0, 1, . . ., in the sequence Λ, we can define a

kind of Müntz–Jacobi polynomials P
(β)
n (x) by

P (β)
n (x) =

x−β/2

2πi

∮
Γ

W (β)
n (s)xs ds,(2.7)
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where

W (β)
n (s) =

n−1∏
k=0

s + λ̄k + β/2 + 1

s− λk − β/2
· 1

s− λn − β/2
.

Then the following result holds.
Theorem 2.2. Let β ∈ R and Reλk > −(β + 1)/2 for each k ∈ N0. Then

(P (β)
n , P (β)

m ) =

∫ 1

0

P (β)
n (x)P

(β)
m (x)xβ dx =

δnm
λn + λ̄n + β + 1

.

Let Pn(·; Λ), n ∈ N0, denote the Müntz–Legendre polynomials for a nondecreas-

ing sequence Λ = {λ0, λ1, λ2, . . .}. Then it is very easy to verify that P
(β)
n (x) =

x−β/2Pn(x; Λ + β/2), where Pn(·; Λ + β/2) are really Müntz–Legendre polynomials
orthogonal with respect to the Legendre measure. This means that an orthogonality
with respect to xβ is obtained straightforwardly from Theorem 2.1.

Also, some recurrence relations exist for Müntz–Legendre polynomials, e.g.,

xP ′
n(x) − xP ′

n−1(x) = λnPn(x) + (1 + λ̄n−1)Pn−1(x)(2.8)

and

Pn(x) = Pn−1(x) − (λn + λ̄n−1 + 1)xλn

∫ 1

x

t−λn−1Pn−1(t) dt (x ∈ (0, 1]).

It is easy to prove that

Pn(1) = 1 and P ′
n(1) = λn +

n−1∑
k=0

(λk + λ̄k + 1).

Taking x = e−t, the Müntz–Legendre polynomials can be expressed in terms of a
Laplace transform. Namely, we can prove the following (cf. [17]).

Theorem 2.3. If Wn(s) is given by (2.1) and

Gn(s) = −Wn(−s) =

n−1∏
k=0

s− (λ̄k + 1)

s + λk
· 1

s + λn
,

then Pn(e−t) is the inverse Laplace transform of Gn(s), i.e.,

Pn(e−t) = L−1[Gn(s)].

In the proof of this result we can take, for example, α > 1/2, and then prove that

Pn(e−t) =
1

2πi

∫ α+i∞

α−i∞
Gn(s)est ds.

An interesting question is connected with the zero distribution of the Müntz–
Legendre polynomials for a real sequence Λ. A nice proof of the following result was
given in [3].

Theorem 2.4. For real numbers λν > −1/2 (ν = 0, 1, . . .) the Müntz–Legendre
polynomial Pn(x; Λn) has exactly n distinct zeros in (0, 1), and it changes sign at each
of these zeros. Furthermore, the zeros of the polynomials

Pn−1(x; Λn−1) and Pn(x; Λn)

in (0, 1) strictly interlace.



898 GRADIMIR V. MILOVANOVIĆ AND ALEKSANDAR S. CVETKOVIĆ

3. Numerical construction of the generalized Gaussian quadrature rule.
Applying the theory of orthogonality for Müntz systems and using a method for
evaluating orthogonal Müntz polynomials, in this section we present the method for
the numerical construction of the generalized Gaussian quadrature rule for Müntz
systems given by (1.7), i.e.,∫ 1

0

f(x)dσ(x) =

n∑
k=1

Akf(xk) + Rn(f),(3.1)

being exact for each f ∈ M2n−1(Λ). The presented method is rather stable and
performs calculations in double precision arithmetic to obtain double precision results.

Let Λ = {λ0, λ1, λ2, . . .} be nondecreasing real sequence such that λν > −1/2 for
every ν ∈ N0. The orthogonal Müntz–Legendre system {P0, P1, . . . , P2n−1}, defined
by (2.2), is an EH system. It can be recognized as a linear span of the system of basis
functions xΛ, which is an EH system.

In what follows, by Pn(x) := Pn(x; Λ) we denote Müntz–Legendre polynomials
given by (2.2), constructed for the nondecreasing real sequence Λ = {λ0, λ1, . . .}. By
σ we denote a positive measure supported on the interval [0, 1]. The use of orthogonal
Müntz–Legendre polynomials in our procedure is very important. Our construction is
quite different not only from the procedure for the classical Gaussian integration for-
mulae with an algebraic degree of precision but also from the corresponding algorithm
given in [13].

In the polynomial case the well-known Golub and Welsch procedure [9] is applied
when the quadrature nodes xk are eigenvalues of the three-diagonal Jacobi matrix, i.e.,
the zeros of the (algebraic) polynomial Pn(x) orthogonal with respect to the measure
dσ(x), and weights Ak are expressed in terms of first component of the normalized
eigenvectors corresponding to the eigenvalues xk, respectively (cf. the routine GAUSS
in the package ORTHPOL given by Gautschi [7]).

The algorithm in [13] for finding nodes and weights in (3.1) needs the construction
of the functions ξi and ηi, i = 1, . . . , n, defined by (1.3) and (1.4). The nodes x1, . . . , xn

are Gaussian if and only if (see [13, Theorem 4.1])∫ 1

0

ξi(x) dσ(x) =

2n∑
j=1

αij

∫ 1

0

Pj−1(x) dσ(x) = 0, i = 1, . . . , n.

In this case, the Gaussian weights are given by

Ai =

∫ 1

0

ηi(x) dσ(x) =

2n∑
j=1

βij

∫ 1

0

Pj−1(x) dσ(x), i = 1, . . . , n.

Our algorithm can be summarized in the following steps.
We start with the initial system of nonlinear equations given by

n∑
k=1

AkPν(xk) = μν =

∫ 1

0

Pν(x) dσ, ν = 0, 1, . . . , 2n− 1.(3.2)

Note that the vector of moments μν becomes quite simple, provided dσ(x) = xλ0dx.
In this special case, according to the orthogonality condition of the Müntz–Legendre
polynomials (see (2.6)), we have

μν =
δν,0

2λ0 + 1
, ν ∈ N0.
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We rewrite the system of equations (3.2) in the form

UnA − c = 0, VnA − d = 0,

where A = [A1 A2 · · · An]T , c = [μ0 μ1 · · · μn−1]
T , and d = [μn μn+1 · · · μ2n−1]

T ,
and we apply the Newton–Kantorovich method in order to solve it.

Let ΔA = A−Â and Δx = x− x̂, where Â and x̂ are the unique solutions of the
starting nonlinear system. Then we can formulate the Newton–Kantorovich method
as

UnΔA + YnΔx = UnA − c,

VnΔA + ZnΔx = VnA − d,

or, equivalently,

Wn

[
ΔA

Δx

]
=

[
UnA − c

VnA − d

]
,(3.3)

where

Wn =

[
Un Yn

Vn Zn

]
, x =

[
x1 x2 · · · xn

]T
,(3.4)

Un = Un(x) =

⎡
⎢⎢⎢⎣

P0(x1) P0(x2) · · · P0(xn)
P1(x1) P1(x2) P1(xn)

...
Pn−1(x1) Pn−1(x2) Pn−1(xn)

⎤
⎥⎥⎥⎦ ,

Vn = Vn(x) =

⎡
⎢⎢⎢⎣

Pn(x1) Pn(x2) · · · Pn(xn)
Pn+1(x1) Pn+1(x2) Pn+1(xn)

...
P2n−1(x1) P2n−1(x2) P2n−1(xn)

⎤
⎥⎥⎥⎦ ,

Yn = Yn(x) =

⎡
⎢⎢⎢⎣

A1P
′
0(x1) A2P

′
0(x2) · · · AnP

′
0(xn)

A1P
′
1(x1) A2P

′
1(x2) AnP

′
1(xn)

...
A1P

′
n−1(x1) A2P

′
n−1(x2) AnP

′
n−1(xn)

⎤
⎥⎥⎥⎦ ,

Zn = Zn(x) =

⎡
⎢⎢⎢⎣

A1P
′
n(x1) A2P

′
n(x2) . . . AnP

′
n(xn)

A1P
′
n+1(x1) A2P

′
n+1(x2) AnP

′
n+1(xn)

...
A1P

′
2n−1(x1) A2P

′
2n−1(x2) AnP

′
2n−1(xn)

⎤
⎥⎥⎥⎦ .

Now, our iterative process becomes

x̂ = x −
[
VnU

−1
n Yn − Zn

]−1
(d − VnU

−1
n c),(3.5)

Â = U−1
n

[
Yn(x − x̂) + c

]
.
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We can prove that our method for this construction is convergent. The basic
theorem on the convergence of the Newton–Kantorovich method can be summarized
as follows: Suppose we are given some differentiable function f : R

m �→ R
m, m ∈ N,

with the property that at the solution of f(x) = 0, we have that |J(x)| �= 0, i.e., the
Jacobian of f at the solution is not singular. Then, there exists some ε > 0, such that
for any y0, with the property ||y0 − x|| < ε, we have that the sequence yk, k ∈ N,
defined by

yk+1 = yk − (J(yk))
−1f(yk), k ∈ N0,

tends to x with a quadratic speed.
Lemma 3.1. Provided that the starting values are sufficiently good, the presented

form of the Newton–Kantorovich method (3.5) is convergent.
Proof. The Jacobian for the starting nonlinear system can be easily calculated in

the form

J(x̂, Â) = Wn.

It is easy to see that the determinant |Wn| can be written as

|Wn| =

(
n∏

k=1

Ak

)∣∣∣∣∣∣∣∣∣

P0(x1) · · · P0(xn) P ′
0(x1) · · · P ′

0(xn)
P1(x1) P1(xn) P ′

1(x1) P ′
1(xn)

...
P2n−1(x1) P2n−1(xn) P ′

2n−1(x1) P ′
2n−1(xn)

∣∣∣∣∣∣∣∣∣
.

Since our system of functions is EH and the weights Ak, k = 1, . . . , n, are positive,
this determinant cannot be zero, and thus the Jacobian has full rank. Also, since
the system of functions xΛ is Chebyshev, the matrix Un is invertible. It is enough to
apply the theorem on the matrix inversion in the block form presented in [18, p. 205]
(see also [10, p. 13] and [26, p. 201]) to finish the proof.

The standard problem with the Newton–Kantorovich method is a problem of
determining starting values. One way to ensure the convergence, for dσ(x) = xλ0dx,
is based on the continuation of the classical Gaussian quadrature rule.

Lemma 3.2. Suppose we are given a nondecreasing system of real numbers Λ =
{λk | k ∈ N0}, λk > −1/2, k ∈ N0. The maps Ak := Ak(α), xk := xk(α), α ∈ [0, 1],
defined by the nonlinear system of equations

n∑
k=1

AkP
α
ν (xk) =

δν,0
2αλ0 + 1

, ν = 0, 1, . . . , 2n− 1,

where

Pα
ν (x) := Pν(x; (1 − α)N0 + αΛ) =

1

2πi

∮
Γ

Gν(s, α,Λ)xs ds

and

Gν(s, α,Λ) =

ν−1∏
k=0

s + (1 − α)k + αλk + 1

s− (1 − α)k − αλk

1

s− (1 − α)ν − αλν
,

are continuous.
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Proof. It is easy to verify that the function

F (x,A, α) =

⎡
⎢⎢⎢⎢⎢⎣

n∑
k=1

AkP
α
0 (xk)

...
n∑

k=1

AkP
α
2n−1(xk)

⎤
⎥⎥⎥⎥⎥⎦

has derivatives in xk, Ak, k = 1, . . . , n, and α for 0 < x1 < x2 < · · · < xn < 1,
Ak > 0, k = 1, . . . , n, and α ∈ (0, 1). We have

∂xj

(
n∑

k=1

AkP
α
ν (xk)

)
= Aj(P

α
ν )′(xj), ν = 0, 1, . . . , 2n− 1, j = 1, . . . , n,

∂Aj

(
n∑

k=1

AkP
α
ν (xk)

)
= Pα

ν (xj), ν = 0, 1, . . . , 2n− 1, j = 1, . . . , n,

∂α

(
n∑

k=1

AkP
α
ν (xk)

)
=

1

2πi

∮
Γ

∂α

{(
Gν(s, α,Λ)

)( n∑
k=1

Akx
s
k

)}
ds.

Since for every α ∈ [0, 1], there exists the unique solution of

F (A,x, α) =
e0

2αλ0 + 1
(3.6)

in A and x, we can define the functions Ak := Ak(α), xk := xk(α), k = 1, . . . , n.
Here, e0 is the fist coordinate vector, i.e., e0 = [1 0 · · · 0]T .

Using the system of equations (3.6), we can calculate derivatives with respect to
α in the form

∂αF +

n∑
k=1

(
∂xk

F
dxk

dα
+ ∂Ak

F
dAk

dα

)
= − 2λ0

(2αλ0 + 1)2
e0.

Now, from here we get

Wn

⎡
⎢⎢⎢⎢⎣

dA1

dα
...

dxn

dα

⎤
⎥⎥⎥⎥⎦ = − 2λ0

(2αλ0 + 1)2
e0 − ∂αF ,

where the matrix Wn is the same as in (3.4), formed with Pν replaced by Pα
ν . Since

the matrix Wn is invertible, it is easy to conclude that the functions Ak := Ak(α),
xk := xk(α), k = 1, . . . , n, are differentiable.

Since the functions Ak(α) and xk(α), k = 1, . . . , n, are continuous in α ∈ [0, 1], we
start with α = 0 and construct the classical Gaussian quadrature rule with parameters
Ak(0) and xk(0). Now, if we increase α by a small amount, we can use the obtained
values for Ak(0) and xk(0) as starting values for Ak(α) and xk(α) in the Newton–
Kantorovich method. Again, we can increase α by a small amount and try to solve the
system with starting values obtained from the previous step. We repeat the procedure
until α = 1 is reached.
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There is still another possibility of continuation. Namely, we have the following
lemma.

Lemma 3.3. Let μ = [μ0 μ1 · · · μ2n−1]
T be a vector of moments defined by (3.2).

The functions Ak := Ak(μ) and xk := xk(μ), k = 1, . . . , n, given by the nonlinear
system of equations (3.2) are continuous.

Proof. Note that by the fact that there exists a unique solution to the system of
equations (3.2), we have that Ak and xk are single valued functions. Since the Jacobi
matrix Wn is invertible at any solution, according to the inverse function theorem,
we have that xk and Ak, k = 1, . . . , n, are continuous in μ.

Using this lemma and the following idea we can construct the generalized Gaussian
quadrature rule for some measure σ. Denote moments for the measure xλ0dx by
δν,0/(2λ0 + 1), ν = 0, 1, . . . , 2n − 1. By μ integrals as in (3.2), we can introduce the
moments

μ̂ν = (1 − α)
δν,0

2λ0 + 1
+ αμν , ν = 0, 1, . . . , 2n− 1, α ∈ [0, 1].(3.7)

Then xk and Ak, k = 1, . . . , n, are continuous functions of α ∈ [0, 1]. Thus, we
increase α by a small amount and solve the systems of nonlinear equations (3.2) in
order to achieve α = 1 starting with α = 0.

According to the previous two lemmas, we can construct the solution using the
following steps:

• First, using Lemma 3.2, starting from the classical Gauss–Legendre quadra-
ture rule, we construct the generalized quadrature rule for the xλ0dx measure
and any given system Λ.

• Once the generalized quadrature rule is constructed for the xλ0dx measure,
we introduce the moments, as given in (3.7), to construct the generalized
quadrature rule for the targeting measure σ, with the moment vector μ.

We next address numerical properties of the nonlinear system of equations (3.2).
For example, we have to give the algorithm to calculate the values of the polynomials
Pν , ν = 0, 1, . . . , 2n−1, at the points xk, k = 1, . . . , n. This is already solved (see [17]),
and we address it in subsection 3.3. For derivatives P ′

k(x) we can use the recurrence
relation (2.8), i.e.,

xP ′
n(x) − xP ′

n−1(x) = λnPn(x) + (1 + λ̄n−1)Pn−1(x).

It is easy to verify that our method depends strongly on the condition number of
the matrix Un. In fact, assuming the Newton–Kantorovich method is converging, it
is easy to verify that the weights A are the solution of the system of linear equations

UnA =
e0

2λ0 + 1
,

where the matrix Un = [Pν(xk)]
n
ν,k=1 is calculated at the solution for the nodes xk,

k = 1, . . . , n. Hence, the precision in constructed weights Ak, k = 1, . . . , n, can
be determined according to the condition number of the matrix Un. Note that the
precision in the constructed nodes xk, k = 1, . . . , n, is also determined by the precision
in the constructed weights Ak. To present this simple fact, we consider our system of
equations for the Newton–Kantorovich method (3.5). We have

x̂ = x− (VnU
−1
n Yn − Zn)−1(d − VnU

−1
n c)

= x− (VnU
−1
n Yn − Zn)−1(d − VnĀ) = x− (VnU

−1
n Yn − Zn)−1(d − d̄),
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where

d̄ = VnĀ

is a vector of the calculated moments [μ̄n · · · μ̄2n−1]
T with weights Ā. Obviously we

have d �= d̄, which has as a consequence that nodes x are constructed with an error
originating from the fact that weights cannot be constructed without an error.

3.1. Condition number of Un. The algorithm strongly depends on the con-
dition number of the matrix Un. Assuming all nodes x are known, it is obvious that
we can calculate the weights A as U−1

n c. Although it is hard to give precise results
about the condition number of Un, for some special cases linked with polynomials, we
can give some theoretical results concerning the condition number of this matrix.

We define the condition number of a matrix B to be ||B||||B−1||, where, as it is
known, any matrix norm will do. Following [8, p. 64], we restrict our attention to the
Frobenius norm, i.e., || [bi,j ]ni,j=1 || = (

∑
i

∑
j b

2
i,j)

1/2. We consider the slightly mod-
ified matrix Un, i.e., we put the normalized version of Müntz–Legendre polynomials
into the system of nonlinear equations (3.2) so that we have

n∑
k=1

Akpν(xk) =
μν

||Pν ||
=

∫ 1

0

pν(x)dσ(x), ν = 0, 1, . . . , 2n− 1.

This has as a consequence that in matrices Un, Vn, Yn, and Zn, Pν is replaced with
pν , ν = 0, 1, . . . , 2n− 1, and vectors d and c are filled with the sequence of moments
μν/||Pν ||, ν ∈ N0. This renormalization of the system does not change anything, as
is explained in [8, pp. 65–66].

In this case, we can express

||Un||2 =

n∑
k=1

n−1∑
ν=0

pν(xk)
2.

In order to get the inverse matrix, we define Müntz–Lagrange polynomials as

�k(x) =

n−1∑
ν=0

αν
kpν(x), k = 1, . . . , n,

with the property

�k(xν) = δk,ν , k, ν = 1, . . . , n.

The Müntz–Lagrange polynomials �k, k = 1, . . . , n, are defined correctly since pν , ν =
0, 1, . . . , n−1, makes a Chebyshev system. Also, it is easy to prove that span{�k | k =
1, . . . , n} is exactly the same as span{pν | ν = 0, 1, . . . , n− 1}.

Now, we can identify the matrix U−1
n as the matrix [αν

k]ν=0,1,...,n−1,k=1,...,n, and

then we can calculate the norm of the matrix U−1
n in the form

||U−1
n ||2 =

n−1∑
ν=0

n∑
k=1

(αν
k)

2.

Using the simple identity∫ 1

0

�k(x)2dx =

∫ 1

0

{
n−1∑
ν=0

αν
kpν(x)

n−1∑
μ=0

αμ
kpμ(x)

}
dx =

n−1∑
ν=0

(αν
k)

2,
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we get

||U−1
n ||2 =

∫ 1

0

(
n∑

k=1

�k(x)2

)
dx.

In total we express the condition number of the matrix Un as

||Un||||U−1
n || =

(
n∑

k=1

n−1∑
ν=0

pν(xk)
2

)1/2(∫ 1

0

(
n∑

k=1

�k(x)2

)
dx

)1/2

.

It is not easy to give some estimates of this number; hence, we are going to discuss
two cases connected to the orthogonal polynomials. The first is for Λ = {k | k ∈ N0},
where our Müntz–Legendre polynomials are really Legendre polynomials. The second
case is for Λ = {0 | k ∈ N0}, where our Müntz–Legendre polynomials are Laguerre
polynomials in − log x, as given in (2.5). As experiments show, the behavior for the
general nondecreasing sequence Λ can be understood using these two special cases.
Hence, we discuss these two cases.

According to the fact that in these cases Müntz–Lagrange polynomials can be
expressed in the form

�ν(x) =
pn(x)

(x− xν)p′n(xν)
, ν = 1, . . . , n,

for the Legendre case, and as

�ν(x) =
pn(x)

(− log x− xν)p′n(xν)
, ν = 1, . . . , n,

in the Laguerre case, we have an orthogonality of the Müntz–Lagrange polynomials,
i.e., ∫ 1

0

�ν(x)�k(x)dx = ||�k||2δν,k, ν, k = 1, . . . , n.

Then, according to the fact that 1 =
∑

ν �ν(x), and using the mentioned orthogonality,
we find∫ 1

0

(
n∑

ν=1

�ν(x)2

)
dx =

∫ 1

0

(
n∑

ν=1

�ν(x)

n∑
k=1

�k(x)

)
dx =

∫ 1

0

(
n∑

ν=1

�ν(x)

)2

dx = 1,

so that ||U−1
n || = 1.

Using the Shohat formula (see [19], [23]), we can express the norm ||Un|| in the
form

||Un||2 =

n∑
k=1

1

wk
,

where we denoted by wk, k = 1, . . . , n, the weights in the classical Gaussian quadrature
rule associated with the sequence of polynomials pν , ν ∈ N0. Using the Markov
inequality (see [24, p. 50])

n∑
k=ν+1

wk ≤
∫ +∞

xν

dμ(x), ν = 1, . . . , n− 1,
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we have, for the Laguerre measure, exp(xn−1) ≤ (wn)−1, which means that in the
Laguerre case we have ||Un|| ≥ exp(

√
n/2), where we have used an estimate for zeros of

Laguerre polynomials given in [24, p. 129]. Hence, for the sequence Λ = {0 | k ∈ N0},
the condition number of the matrix Un grows exponentially with n.

In what follows, for two sequences An and Bn we write An ∼ Bn if and only if
there exist two positive constants C1 and C2 such that C1 ≤ |An/Bn| ≤ C2.

Now, for the Legendre measure we use the following asymptotic estimate wk ∼

π(1 − x2
k)

1/2/n, k = 1, . . . , n, given in [21, p. 85] (see also Szegő [24, p. 253]), to get

||Un||2 =

n∑
k=1

1

wk
∼

n

π

n∑
k=1

(1 − x2
k)

−1/2.

Using the estimate for the zeros xk = − cos θk, k = 1, . . . , n, of the Legendre polyno-
mials (see [24, p. 125])

k − 1/2

n + 1/2
< θk <

k

n + 1/2
, k = 1, . . . , n,

and Jordan inequality 2θ/π < sin θ < θ, θ ∈ (0, π/2), we have simply

||Un||2 ∼
n

π

n∑
k=1

1

sin θk
∼

2n

π

[n/2]∑
k=1

1

sin θk
∼ n

[n/2]∑
k=1

1

θk
∼ n

(
n +

1

2

) [n/2]∑
k=1

1

k
∼ n2 log n,

so that, for the Legendre case, i.e., Λ = {k | k ∈ N0}, we have that the condition

number of the matrix Un grows like n log1/2 n.

Lemma 3.4. If Λ = {k | k ∈ N0}, we have ||Un||||U−1
n || ∼ n log1/2 n. If Λ =

{0 | k ∈ N0}, we have ||Un||||U−1
n || ∼ exp(

√
n/2).

This lemma shows that in the cases when a nondecreasing sequence Λ is close to
the Legendre case, we should expect the condition number of Un to grow relatively
slowly with respect to n. In the opposite case for the almost constant sequence Λ, we
should expect the condition number to grow rather rapidly with respect to n. This
behavior is going to be illustrated in the last section.

3.2. Construction for the nonintegrable basis. In what follows we discuss
the construction of the generalized Gaussian quadrature rule in the case when a non-
decreasing sequence Λ is such that for some λk we have 2λk ≤ −1. It is easy to verify
that in this case we cannot construct the sequence of Müntz–Legendre polynomials
orthogonal with respect to the Legendre measure since the functions xλkxλk , for which
2λk ≤ −1, are not integrable with respect to the Legendre measure.

What we can do is use Müntz polynomials given by (2.7), which are orthogonal
with respect to the measure xβdx, where β is chosen such that we have 2λk +β > −1,
k ∈ N0. If we introduce a new nondecreasing sequence Λ + β/2, we can construct
the sequence of Müntz polynomials Pn(·; Λ + β/2), n ∈ N0, generated by Λ + β/2,
orthogonal with respect to Legendre measure, and then, using the previously described
method, we are able to solve the system of equations

n∑
k=1

AkPν

(
xk; Λ +

β

2

)
=

δν,0
2λ0 + β + 1

=

∫ 1

0

xλ0+β/2Pν

(
x; Λ +

β

2

)
dx, 0 ≤ ν ≤ 2n−1.
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Then, if we rewrite the system in the form

n∑
k=1

(
Akx

β/2
k

)(
x
−β/2
k Pν

(
xk; Λ +

β

2

))

=
1

2λ0 + β + 1
δν,0 =

∫ 1

0

xλ0+β

(
x−β/2Pν

(
x; Λ +

β

2

))
dx, ν = 0, 1, . . . , 2n− 1,

and if we choose

A∗
k = Akx

β/2
k , x∗

k = xk, k = 1, . . . , n,

it can be verified that the quadrature rule

n∑
k=1

A∗
kf(x∗

k)

is exact in the linear span of xΛ2n−1 with respect to the measure xλ0+βdx. Thus, we
have the following result.

Lemma 3.5. Let a nondecreasing sequence Λ + β/2, β ∈ R, of the real numbers
be given and let xk and Ak, k = 1, . . . , n, be nodes and weights in the generalized
quadrature rule (3.2) with respect to the measure xλ0+β/2dx. The generalized Gaussian
quadrature rule (3.2) for the measure xλ0+βdx, which is exact in xΛ2n−1 , has nodes
and weights given by

x∗
k = xk, A∗

k = Akx
β/2
k , k = 1, . . . , n.

A consequence of this simple observation is the possibility of using the described
algorithm for the construction of the generalized Gaussian quadrature rule, for exam-
ple, for the set of functions

xk−2/3, xk, k = 0, 1, . . . , 2n− 1.

Some numerical values for this case are presented in the last section.

3.3. Numerical computation of Müntz–Legendre polynomials. A direct
evaluation of Müntz polynomials Pn(x) in the power form (2.3) can be a big problem
in finite arithmetic, especially when n is a large number and x is close to 1. These
problems have been addressed in [17].

In this subsection we give a stable numerical method for evaluating the values of
the Müntz–Legendre polynomials defined by (2.1) and (2.2), i.e.,

Pn(x) =
1

2πi

∮
Γ

Wn(s)xs ds, Wn(s) =

n−1∏
ν=0

s + λ̄ν + 1

s− λν
· 1

s− λn
.(3.8)

For a detailed discussion, see [17].
Our method is based on a direct evaluation of the contour integral in (3.8). At

first we take the contour Γ = ΓR = CR ∪ LR (see Figure 3.1 (left)). As we can see,
CR is a semicircle with the center at σ < −1/2, its radius R is such that all poles
of Wn(s) are inside the contour ΓR, and LR is a part of the straight line s = σ + it,
−R ≤ t ≤ R. (Notice that the function Wn(s) in Figure 3.1 has only real poles.)
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Fig. 3.1. The contour of integration for the integral in (3.1) (left) and for the integral
L2(fn(·;ω)) (right).

We have a simple lemma.
Lemma 3.6.

∫
CR

Wn(s)xs ds → 0 when R → +∞.
Thus, when R → +∞, an integration along the contour ΓR reduces to the inte-

gration over the line LR, so that

Pn(x) =
xσ

2πi

∫ +∞

−∞
fn(t;ω)eit dt,

where ω = log(1/x) > 0 and

fn(t;ω) =

n−1∏
ν=0

t + i(σ + λ̄ν + 1)ω

t + i(σ − λν)ω
· 1

t + i(σ − λn)ω
.(3.9)

This gives the following result.
Theorem 3.7. Let σ < −1/2, ω = log(1/x), fn(t;ω) be defined by (3.9), and

ϕn(t;ω) =
1

2i

(
fn(t;ω)eit + fn(−t;ω)e−it

)
.(3.10)

The Müntz–Legendre polynomials can be represented in the one-side integral form

Pn(x) =
xσ

π

∫ +∞

0

ϕn(t;ω) dt.(3.11)

In what follows we consider the case when the sequence Λ is real. An important
corollary of Theorem 3.7 is the following result.

Theorem 3.8. Let Λ = {λ0, λ1, λ2, . . .} be a real sequence such that λν > −1/2
for every k ∈ N0, fn(t;ω) is defined by (3.9), ω = log(1/x), and σ < −1/2. Then the
Müntz–Legendre polynomials have the integral representation

Pn(x) =
xσ

π
Im

{∫ +∞

0

fn(t;ω)eit dt

}
.(3.12)

In this case we have fn(−t;ω) = fn(t;ω), then (3.10) becomes ϕn(t;ω) =
Im
{
fn(t;ω)eit

}
, and (3.11) gives (3.12). The poles of fn(t;ω) are then purely imag-

inary, i(λν − σ)ω, ν = 0, 1, . . . , n, and located on the positive part of the imaginary
axes, because of λν > σ and ω = log(1/x) > 0.
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In order to calculate the integral in (3.12) (or in (3.11)) we use an idea from
complex integration (see [16, Thm. 2.2]). We select a positive number a = mπ (m ∈ N)
and put ∫ +∞

0

fn(t;ω)eit dt =

∫ a

0

fn(t;ω)eit dt +

∫ +∞

a

fn(t;ω)eit dt

= L1(fn(·;ω)) + L2(fn(·;ω)).

Here,

L1(fn(·;ω)) =

∫ a=mπ

0

fn(t;ω)eit dt =

m∑
k=1

∫ kπ

(k−1)π

fn(t;ω)eit dt,

i.e.,

L1(fn(·;ω)) = π

∫ 1

0

[
m∑

k=1

fn
(
π(ξ + k − 1);ω

)
eiπ(ξ+k−1)

]
dξ,(3.13)

and L2(fn(·;ω)) =
∫ +∞
a

fn(t;ω)eit dt.

Since fn(z;ω) is a holomorphic function in the region D =
{
z ∈ C | Re z ≥ a >

0, Im z ≥ 0
}

and |fn(z;ω)| ≤ A/|z| when |z| → +∞, for some positive constant A,
we can prove

L2(fn(·;ω)) = ieia
∫ +∞

0

fn(a + iy;ω)e−y dy.(3.14)

For a = mπ, (3.14) becomes

L2(fn(·;ω)) = (−1)m
∫ +∞

0

ψn(y;ω)e−y dy,(3.15)

where

ψn(y;ω) = ifn(a + iy;ω) =

n−1∏
ν=0

y + (σ + λν + 1)ω − ia

y + (σ − λν)ω − ia
· 1

y + (σ − λn)ω − ia
.

Theorem 3.9. Under conditions from Theorem 3.8, the Müntz–Legendre poly-
nomials have a computable representation

Pn(x) =
xσ

π
Im
{
L1(fn(·;ω)) + L2(fn(·;ω))

}
,

where L1(fn(·;ω)) and L2(fn(·;ω)) are given by (3.13) and (3.15), respectively.
In the numerical implementation we use the Gauss–Legendre rule on (0, 1) and

the Gauss–Laguerre rule for calculating L1(fn(·;ω)) and L2(fn(·;ω)), respectively. A
convenient choice for the parameter σ is λmin − π/ω, where λmin = min{λ0, λ1, . . .}.

4. Numerical examples. In this section we present some numerical examples.
Here we want to emphasize that in all examples, as starting values for the Newton–
Kantorovich method (3.2), we used the zeros of the Müntz–Legendre polynomial Pn.
According to Theorem 2.4 there are exactly n different zeros of Pn in the interval
(0, 1).
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Table 4.1

Nodes and weights in the generalized Gaussian quadrature rule for λ2k = k and λ2k+1 = k+1/3,
k ∈ N0 (left) and λ2k = λ2k+1 = k, k ∈ N0 (right) for 30 points.

Nodes Weights Nodes Weights
.11890626221894(−4) .41297515794865(−4) .73237974427261(−5) .27989215430955(−4)
.14403587843195(−3) .26627367672116(−3) .11004470045777(−3) .21736552650254(−3)
.65503119332169(−3) .82242421680232(−3) .54691832618397(−3) .72070358653439(−3)
.19430375893262(−2) .18402261193412(−2) .17018575191016(−2) .16744609650550(−2)
.45251469339122(−2) .34260127408358(−2) .40838636097144(−2) .31912824064115(−2)
.90102163603464(−2) .56560992521664(−2) .83000411768823(−2) .53537883135293(−2)
.16066432118835(−1) .85721821462782(−2) .15022978156080(−1) .82096213680820(−2)
.26385011600158(−1) .12178245807910(−1) .24953923615755(−1) .11768029213085(−1)
.40641627763273(−1) .16439118767071(−1) .38783386171063(−1) .15998143504891(−1)
.59457247937461(−1) .21280752356760(−1) .57150898481176(−1) .20829041093624(−1)
.83360115784155(−1) .26592222426836(−1) .80605741472655(−1) .26151597661309(−1)
.11275056965256(−1) .32229382586004(−1) .10957039423452 .31822068269456(−1)
.14787028400295 .38020028095164(−1) .14430837300150 .37667255999807(−1)
.18877734727908 .43770365881357(−1) .18489794942753 .43491062263223(−1)
.23532835662211 .49272530816407(−1) .23121300154826 .49082153228403(−1)
.28716842664143 .54312843701643(−1) .28291196019721 .54222428661263(−1)
.34372968768336 .58680474177812(−1) .33943548119085 .58695944290977(−1)
.40423850186626 .62176153382847(−1) .40001311310945 .62297918114936(−1)
.46773126684306 .64620577387348(−1) .46367885693931 .64843445707233(−1)
.53307832255314 .65862153426135(−1) .52929514274104 .66175559851254(−1)
.59901513975232 .65783766285597(−1) .59558439532565 .66172295277200(−1)
.66417966475440 .64308280886562(−1) .66116704039692 .64752458922921(−1)
.72715443518779 .61402547573361(−1) .72460452817603 .61879858349955(−1)
.78651187749469 .57079736900636(−1) .78444573473494 .57565803663442(−1)
.84086105709630 .51399898611490(−1) .83927495147866 .51869769192466(−1)
.88889408329736 .44468713374991(−1) .88775959761734 .44898178495567(−1)
.92943037965232 .36434488347266(−1) .92869579596323 .36801362500369(−1)
.96145713651391 .27483573132827(−1) .96105005918741 .27768870377414(−1)
.98416462586884 .17834924980349(−1) .98399570352129 .18023873784161(−1)
.99697836948100 .77447054256862(−2) .99694595867976 .78276701954968(−2)

The first example is concerned with λ2k = k and λ2k+1 = k + 1/3, k ∈ N. Us-
ing the demonstrated algorithm we are able to safely construct generalized Gaussian
quadrature rules with 30 points. The corresponding results are presented in Table 4.1
(left). Numbers in parentheses indicate decimal exponents. The presented precision
is achieved in six iterations. Figure 4.1 (left) presents the condition number of the
matrix Un as a function of the number of nodes n in the generalized Gaussian quadra-
ture rule (1.7). As we can see, the condition number grows as n2, which makes the
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Fig. 4.1. The condition number of the matrices Un (left) and VnU−1
n Yn − Zn (right) for

n = 2(1)30 and λ2k = k, λ2k+1 = k + 1/3, k ∈ N0.
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Table 4.2

Nodes and weights in the generalized Gaussian quadrature rule for λ3k = λ3k+1 = λ3k+2 = k,
k ∈ N0, and 25 points (left) and for λ2k = k − 2/3, λ2k+1 = k, k ∈ N0, and 30 points (right).

Nodes Weights Nodes Weights
.19071312857447(−6) .89820559783363(−6) .13087228815024(−5) .83137155735974(−5)
.62344778034991(−5) .16484108838767(−4) .54198486279011(−4) .13031036416570(−3)
.55318345803585(−4) .10072125141830(−3) .35417216474237(−3) .52866204357169(−3)
.26885580904675(−3) .37100307224423(−3) .12534406542994(−2) .13520067889260(−2)
.92211316431026(−3) .10179277384384(−2) .32421307701854(−2) .27261843607855(−2)
.25153686640161(−2) .22982801041688(−2) .69217972803109(−2) .47471314476665(−2)
.58293105313034(−2) .45106638074320(−2) .12972528592304(−1) .74751509252983(−2)
.11948207244089(−1) .79560124465681(−2) .22115108819058(−1) .10930789003913(−1)
.22237933600721(−1) .12887776775257(−1) .35069941343596(−1) .15092506726768(−1)
.38271779896341(−1) .19458551169345(−1) .52514592060155(−1) .19896260127508(−1)
.61704355074579(−1) .27670975632577(−1) .75041883938197(−1) .25237021047441(−1)
.94101825972594(−1) .37340754197965(−1) .10312046455617 .30972186656745(−1)
.13674411641697 .48078533727343(−1) .13705967503275 .36926743841072(−1)
.19042046600597 .59295303951325(−1) .17698037618878 .42899978314872(−1)
.25524304731076 .70233159794501(−1) .22279314304338 .48673450869232(−1)
.33050359479737 .80020063322645(−1) .27418493220982 .54019907442052(−1)
.41459502770349 .87744065586239(−1) .33061497138402 .58712748099728(−1)
.50501408859338 .92539713525291(−1) .39132023098003 .62535654329125(−1)
.59845270059371 .93677440023386(−1) .45533043158372 .65291965366787(−1)
.69097602175889 .90645885312278(−1) .52149213454311 .66813403026136(−1)
.77827520264508 .83217463141567(−1) .58850107398115 .66967770271901(−1)
.85597385719824 .71489061053272(−1) .65494153338288 .65665290563282(−1)
.91996040353326 .55892462615736(−1) .71933126384264 .62863311010376(−1)
.96671495434044 .37173422115917(−1) .78017019720500 .58569160378130(−1)
.99360559333526 .16363377320650(−1) .83599103637665 .52841030340611(−1)

.88540971524184 .45786833033451(−1)

.92717371952416 .37561082160968(−1)

.96020636853232 .28359983739178(−1)

.98364554126283 .18415501918852(−1)

.99687876726025 .79996620858817(−2)

construction possible. The condition number of the matrix VnU
−1
n Yn −Zn is given in

Figure 4.1 (right). The presented condition number of the matrix Un suggests that
we should be ready to lose certain digits of precision with which we are working. Ac-
tually, experiments show that the presented algorithm, in double precision arithmetic
(REAL*8), gives exact results with 14 significant digits. Thus, the results presented
in Table 4.1 (left) have all digits exact.

Another example is presented in Table 4.1 (right) that is the generalized Gaussian
quadrature rule for the sequence λ2k = λ2k+1 = k, k ∈ N0, or for the system of
functions xk, xk log x, k ∈ N0. In this case, the condition numbers of Un, as well as of
VnU

−1
n Yn−Zn (see Figure 4.2), are growing faster than in the previous example. The

same behavior we encounter in the example for λ3k = λ3k+1 = λ3k+2 = k, k ∈ N0,
given in Table 4.2, with condition numbers presented in Figure 4.3. In the latter case,
the condition numbers are bigger. This behavior can be understand according to
Lemma 3.4. In these two cases the Λ sequence is quite different from the Λ sequence
in the Legendre case. It turns out that, using the presented algorithm in double
precision arithmetic (REAL*8), we can safely calculate 14 digits.

In the final example we present an application of our algorithm to a computa-
tion of the generalized Gaussian quadrature formula (1.7) in the case when the basis
functions are nonintegrable. Consider the system of functions xk−2/3 xk, k ∈ N0. For
this system of functions our algorithm cannot be applied directly, since the sequence
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Fig. 4.2. The condition number of the matrices Un and VnU−1
n Yn − Zn for n = 2(1)30 and

λ2k = λ2k+1 = k, k ∈ N0.

5 10 15 20 25

200

400

600

800

1000

1200

1400

5 10 15 20 25

10000

20000

30000

40000

50000

60000

Fig. 4.3. The condition number of the matrices Un and VnU−1
n Yn − Zn for n = 2(1)30 and

λ3k = λ3k+1 = λ3k+2 = k, k ∈ N0.
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Fig. 4.4. The condition number of the matrices Un and VnU−1
n Yn − Zn for n = 2(1)30 and

λ2k = k − 2/3, λ2k+1 = k, k ∈ N0.

λ2k = k− 2/3, λ2k+1 = k, k ∈ N0, does not satisfy the condition Re (λk) > −1/2 and
orthogonal Müntz–Legendre polynomials do not exist. However, we can apply Lemma
3.5. For example, we can choose β = 2/3 and apply our algorithm for construct-
ing the generalized Gaussian quadrature rule (1.7) for the sequence λ2k = k − 1/3,
λ2k+1 = k + 1/3, k ∈ N0. Using Lemma 3.5, once our algorithm is applied, we can
construct the generalized Gaussian quadrature rule for the system of functions xk−2/3,
xk, k ∈ N0, with respect to the Legendre measure. The results for n = 30 nodes in
the generalized Gaussian quadrature rule (1.7) are presented in Table 4.2 (right). The
corresponding condition numbers are given in Figure 4.4.
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Table 4.3

Relative errors for the classical Gauss–Legendre quadrature, with n = 100(100)600 points, in
evaluation of (4.1).

n 100 200 300 400 500 600
r. err 1.2(−3) 3.0(−4) 1.3(−4) 7.4(−5) 4.7(−5) 3.3(−5)

Table 4.4

Relative errors for the generalized Gaussian quadrature rule, with n = 5, 10, and 15 nodes, in
evaluation of (4.1), for the sequence λ2k = λ2k+1 = k, k ∈ N0.

n 5 10 15
r. err 9.0(−7) 1.3(−15) m.p.

At the end of this section we present an application of the derived quadrature
formulae. We consider the integral∫ 1

0

J0(x)(1 + log x)dx = −0.0531080375895118730468486186978172 . . . ,(4.1)

where J0(x) is the Bessel function. Table 4.3 lists relative errors for the classical
Gauss–Legendre quadrature rule, shifted to the interval (0, 1), applied to the previous
integral. This is an example of the well-known saturation phenomenon (see [20]).
However, using the generalized Gaussian quadrature rule derived for the sequence
λ2k = λ2k+1 = k, k ∈ N0, the machine precision (m.p. ≈ 2.26(−16)) can be achieved
with 15 nodes, as presented in Table 4.4.
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Serbo-Croatian).
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