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a b s t r a c t

In this paper the exact probability density function of a multivariate α–µ distributed
variables with exponentially correlated random variables is derived. Capitalizing on this
the joint probability density function (JPDF) is derived for the square ratios of two
multivariate exponentially correlated α–µ distributed variables. Closed form expressions
are determined for the cumulative distribution function (CDF) and probability density
function (PDF) of the maximal and minimal square ratio of two multivariate exponentially
correlated α–µ distributions. Using these new formulae, SIR (signal-to-interference) based
analysis of selection combining (SC) receiver through standard communication system
performance measures can be performed.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Random variables are of central importance, not only for the statistical but also to the deterministic modeling of mobile
radio channels. The multi-path propagation in wireless communications is modeled by several distributions including
Weibull, Nakagami-m, Hoyt, Rayleigh and Rice. By considering two important phenomena inherent to radio propagation,
namely non-linearity and clustering, the α–µ fadingmodel was recently proposed in [1]. The α–µ distribution fadingmodel
considers a signal composed of clusters ofmultipathwaves propagating in a non-homogeneous environment, with resulting
envelope obtained as a nonlinear function of the modulus of the sum of the multi-path components. This model provides a
very good fit tomeasureddata over awide range of channels conditions.α–µdistributionhas the same functional formas the
generalized gamma or Stacy distribution [2]. The main advantage of this distribution is that α–µ statistical model includes
as special cases, other important distributions such as Weibull and Nakagami-m (therefore the one-sided Gaussian and
Rayleigh are also special cases of it). Multivariate (correlated) distribution analysis is an important tool in the performance
investigation of many receiver structures for multi-path correlative fading channels. The performance analysis of receiving
systems concerning to α–µ statistical model of channels is rather scarce in the literature [3–7].

Moreover to the best author’s knowledge, no analytical study involving assumed exponentially correlated α–µ
distributed variables has been reported in the literature.

2. Joint probability density function of the multivariate exponentially correlated α–µ distributed variables

There is a need to derive the joint statistics formultiple α–µ variables.We are relaying on some results which are already
available in the literature for the exponential correlation model of Nakagami-m distribution [8].
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Suppose that
(1) RN1 , . . . , RNn be n Nakagami-m variables whose marginal statistics are respectively described by the parameters m1 =

· · · = mn = m;
(2) R1, . . . , Rn be nα–µ variables whose marginal statistics are respectively described by the parameters µ1 = · · · = µn =

µd, α1, . . . , αn;
(3) 0 ≤ ρNakagami−m ≤ 1 be a Nakagami-m correlation coefficient; and
(4) ρα−µ, 0 ≤ ρα−µ ≤ 1 be an α–µ correlation coefficient.

The joint probability density function pRN1 ,...,RNn (RN1 , . . . , RNn) of n Nakagami-m variates, RN1 , . . . , RNn with marginal
statistics just described, is given by [8, Eq. (10)]. We are considering the exponential correlation model of α–µ

distribution. The exponential correlationmodel can be obtained from [9] by settingΣij = 1 for i = j andΣij = ρ
|i−j|
Nakagami−m

for i ≠ j in Nakagami-m correlation matrix, where ρNakagami−m is the correlation coefficient. The correlation coefficient
ρNakagami−m is defined as

ρNakagami−m =
C(R2

i , R
2
j )

V (R2
i )V (R2

j )
,

where C(., .) denotes the covariance operator. We use the relation between α–µ and the Nakagami-m envelopes (Rα
α−µ =

R2
Nakagami−m) (cf. [8, Eq. (19)]), so that, Rα1

1 = R2
N1

, . . . , Rαn
n = R2

Nn
, we find that µ = m. Also, the relation between

the correlation coefficient of α–µ distribution and Nakagami-m distribution have been already derived [8, Eq. (31)]. For
two Nakagami-m and α–µ variates, it can be seen that ρα−µ = ρNakagami−m

√
µ1/µ2. Now, because in this case we have

µ1 = µ2 = µd, from (1), then the correlation coefficient of α–µ distribution is equal to the correlation coefficient of
Nakagami-m distribution, i.e., ρα−µ = ρNakagami−m. Finally, considering all proposed relations and [8, Eq. (10)], the joint
probability density pRN1 ,...,RNn (RN1 , . . . , RNn) function of nα–µ variates R1, . . . , Rn is found as in [8]

pR1,...,Rn(R1, . . . , Rn) = |J|pRN1 ,...,RNn (RN1 , . . . , RNn)

with J as the Jacobian of the transformation given by

|J| =



∂RN1

∂R1

∂RN1

∂R2
· · ·

∂RN1

∂Rn
∂RN2

∂R1

∂RN2

∂R2
· · ·

∂RN2

∂Rn
...

...
...

...
∂RNn

∂R1

∂RNn

∂R2
· · ·

∂RNn

∂Rn


=

α1α2 · · · αn

2n
R

α1
2 −1

1 R
α2
2 −1

2 · · · R
αn
2 −1

n .

After the standard statistical procedure of transformation of variates and after some mathematical manipulations and
simplifications, JPDF can be respectively expressed as

pR1,...,Rn(R1, . . . , Rn) =

∞−
k1,...,kn−1=0

α1 · · · αnρ
2(k1+···+kn−1)

2nµd+2(k1+···+kn−1)Γ (µd)Γ (µd + k1) · · · Γ (µd + kn−1)

×
Rα1(µd+k1)−1
1 Rαn(µd+kn−1)−1

n g2
(1 − ρ2)(n−1)µd+2(k1+···+kn−1)k1! · · · kn−1!

exp


−
Rα1
1 + Rαn

n

2(1 − ρ2)
− g1


, (2.1)

where

g1 =


0, n = 2
(ρ2

+ 1)
2(1 − ρ2)

n−1−
i=2

Rαi
i n > 2

 and g2 =


1, n = 2
n−1∏
i=2

Rαi(µd+ki−1+ki)−1
i , n > 2

 .

3. Joint probability density function of the square ratio of two multivariate exponentially correlated α–µ distributed
variables

Let us define the k-th square ratio of α–µ variates from the exponentially correlated multivariate distributed variables
as λk = R2

k/r
2
k , k = 1, . . . ,N . Similarly as (2.1), the JPDF for the denominator, can be presented in the form of

pr1,...,rn(r1, . . . , rn) =

∞−
ℓ1,...,ℓn−1=0

α1 · · · αnρ
2(ℓ1+···+ℓn−1)

2nµc+2(ℓ1+···+ℓn−1)Γ (µc)Γ (µc + ℓ1) · · · Γ (µc + ℓn−1)

×
rα1(µc+ℓ1)−1
1 rαn(µc+ℓn−1)−1

n g4
(1 − ρ2)(n−1)µc+2(ℓ1+···+ℓn−1)ℓ1! · · · ℓn−1!

exp


−
rα1
1 + rαn

n

2(1 − ρ2)
− g3


, (3.1)
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with

g3 =


0, n = 2
(ρ2

+ 1)
2(1 − ρ2)

n−1−
i=2

rαi
i , n > 2

 and g4 =


1, n = 2
n−1∏
i=2

rαi(µc+ℓi−1+ℓi)−1
i , n > 2

 ,

where µc is the distribution parameter.
The JPDF of the square ratios, λk, k = 1, 2, . . . , n, can be given by (cf. [8])

pλ1,...,λn(t1, . . . , tn) =
2−n

√
t1 · · · tn

∫
∞

0

∫
∞

0
· · ·

∫
∞

0
pR1,...,Rn(r1

√
t1, . . . , rn

√
tn)pr1,...,rn(r1, . . . , rn)

× r1r2 · · · rndr1dr2 · · · drn. (3.2)

Substituting (2.1) and (3.1) in (3.2), and using the fact that∫
∞

0
xpq−1 exp(−sxp)dx =

Γ (q)
psq

(p, q, s > 0),

pλ1,...,λn(t1, . . . , tn) can be expressed in the form

pλ1,...,λn(t1, . . . , tn) =

∞−
k1,...,kn−1=0

∞−
ℓ1,...,ℓn−1=0

α1 . . . αnΓ (µd + µc + k1 + ℓ1)

2nΓ (µd)Γ (µc)
n−1∏
i=1

Γ (µd + ki)Γ (µc + ℓi)ki!ℓi

× Γ (µd + µc + kn−1 + ℓn−1)ρ
2(k1+···+kn−1+ℓ1+···+ℓn−1)g5

× (1 − ρ2)(n+1)µd+(n+1)µc+2(k1+···+kn−1+ℓ1+···+ℓn−1)

×
tα1(µd+k1)/2−1
1

(1 − ρ2)(tα1/2
1 + 1)

(µc+µd+k1+ℓ1)

tαn(µd+kn−1)/2−1
n

(1 − ρ2)(tαn/2
n + 1)

(µc+µd+kn−1+ℓn−1)
g6, (3.3)

where

g5 =


1, n = 2
n−1∏
i=2

Γ (µd + µc + ki−1 + ℓi−1 + ki + ℓi), n > 2


and

g6 =


1, n = 2
n−1∏
i=2

tαi(µd+ki−1+ki)/2−1
i

(1 − ρ4)(tαi/2
i + 1)

(µc+µd+ki−1+ℓi−1+ki+ℓi)
, n > 2

 .

4. First order statistic of the maximal and minimal square ratio of two multivariate exponentially correlated α–µ
distributed variables

In this section, we derive the closed-form expressions for the first order statistics of the maximal and minimal square
ratio of two multivariate exponentially correlated distributions. First, we determine the maximal square ratio

λ = λmax = max(λ1, λ2, . . . , λn).

For this case, the cumulative distribution function can be written as (cf. [10])

Fλ(t) =

∫ t

0

∫ t

0
· · ·

∫ t

0
pλ1,λ2,...,λn(x1, x2, . . . , xn)dx1dx2 · · · dxn. (4.1)

Substituting expression (3.3) in (4.1) and after n successive integrations, the CDF becomes

Fλ(t) =

∞−
k1,...,kn−1=0

∞−
ℓ1,...,ℓn−1=0

Γ (µd + µc + k1 + ℓ1)Γ (µd + µc + kn−1 + ℓn−1)

Γ (µd)Γ (µc)
n−1∏
i=1

Γ (µd + ki)Γ (µc + ℓi)ki!ℓi!

× ρ2(k1+···+kn−1+ℓ1+···+ℓn−1)(1 − ρ2)µd+µc

× B


tα1/2

tα1/2 + 1
, µd + k1, µc + ℓ1


B


tαn/2

tαn/2 + 1
, µd + kn−1, µc + ℓn−1


g5g9
g8

, (4.2)
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Table 4.1
Values of the difference EN (t) − EN+1(t) for the case of the square ratio of two three-variate exponentially correlated α–µ distributed variables, with
parameters α1 = 1.8, α2 = 2, α3 = 2.2, µd = 1.2, µc = 3, and ρ = 0.2.

N t = 0.01 t = 0.1 t = 1 t = 10 t = 100

3 4.48(−4) 3.20(−4) 9.49(−5) 7.50(−5) 7.51(−5)
4 3.45(−5) 2.27(−5) 5.38(−6) 4.10(−6) 4.10(−6)
5 2.44(−6) 1.47(−6) 2.89(−7) 2.15(−7) 2.15(−7)
6 1.62(−7) 9.00(−8) 1.50(−8) 1.09(−8) 1.09(−8)
7 1.02(−8) 5.22(−9) 7.52(−10) 5.41(−10) 5.43(−10)
8 6.12(−10) 2.91(−10) 3.69(−11) 2.63(−11) 2.64(−12)
9 3.56(−11) 1.57(−11) 1.78(−12) 1.26(−12) 1.26(−12)

Table 4.2
Number of terms in the summation (4.2) so that |FN

λ (t) − Fλ(t)| < 10−6 , for the case of square ratio of two three-variate
exponentially correlated α–µ distributed variables with parameters α1 = 1.8, α2 = 2, α3 = 2.2, µd = 1.2, µc = 3.

ρ t = 0.1 t = 1 t = 10

0.2 4 5 5
0.3 6 7 7
0.4 8 9 10
0.5 11 13 13
0.6 16 18 18

where

g8 =


1, n = 2
(1 + ρ2)µd+µc+k1+k2+ℓ1+ℓ2 , n = 3

(1 + ρ2)
(n−2)µd+(n−2)µc+k1+ℓ1+2

n−2∑
i=2

ki+kn−1+ℓi+ℓn−1
, n > 3

 ,

g9 =


1, n = 2
n−1∏
i=2

B


tαi/2

tαi/2 + 1
, µd + ki−1 + ki, µc + ℓi−1 + ℓi


, n > 2

 ,

and B(z, a, b) is the incomplete Beta function (see [11, Eq. (8.39)]).
By FN

λ (t) we denote the corresponding finite series of (4.2), so that all indices run from zero to N , i.e.,

FN
λ (t) =

N−
k1,...,kn−1=0

N−
ℓ1,...,ℓn−1=0

· · · .

Let EN(t) denote the corresponding relative error EN(t) = (Fλ(t) − FN
λ (t))/Fλ(t). It is clear that all terms of this series are

nonnegative, so that

EN(t) ≥ EN+1(t) ≥ 0.

Numerical examples show a quite satisfactory convergence FN
λ (t) → Fλ(t) as N → ∞ for t > 0. To illustrate the

speed of convergence we consider the behavior of the difference EN(t) − EN+1(t), for sufficiently large N , supposing that
Fλ(t) ≈ FN+1

λ (t). Thus,

EN(t) − EN+1(t) =
FN+1
λ (t) − FN

λ (t)
Fλ(t)

≈
FN+1
λ (t) − FN

λ (t)

FN+1
λ (t)

.

These values, for 3 ≤ N ≤ 9 and some selected values of t , are displayed in Table 4.1. Numbers in parentheses indicate
decimal exponents.

In Table 4.2 we present the number of terms N in the finite sum FN
λ (t) in order to achieve the accuracy |FN

λ (t) − Fλ(t)| <

10−6. It is obvious that the number of terms increases as the correlation coefficient increases.
The PDF can be obtained easily from the previous expression. Namely, we get

pλ(t) =
d
dt

Fλ(t) =

∞−
k1,...,kn=0

∞−
ℓ1,...,ℓn=0

1
2t

Γ (µd + µc + k1 + ℓ1)

Γ (µd)Γ (µc)
n−1∏
i=1

Γ (µd + ki)Γ (µc + ℓi)ki!ℓi!

× Γ (µd + µc + kn−1 + ℓn−1)ρ
2(k1+···+kn−1+ℓ1+···+ℓn−1)(1 − ρ2)µd+µc

g5
g8


n−

i=1

Ai(t)


,
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Fig. 4.1. PDF of the maximal square ratio of two three-variate exponentially correlated α–µ distribution for various values of correlation coefficients and
distribution parameters.

where

A1(t) = α1
tα1/2(µd+k1)

(tα1/2 + 1)(µc+ℓ1+µd+k1)
B


tα2/2

tα2/2 + 1
, µd + k1 + k2, µc + ℓ1 + ℓ2


× · · · × B


tαn/2

tαn/2 + 1
, µd + kn−1, µc + ℓn−1


,

Ai(t) = αi
tαi/2(µd+ki−1+ki)

(tα1/2 + 1)(µc+ℓi−1+ℓi+µd+ki−1+ki)
B


tα1/2

tα1/2 + 1
, µd + k1, µc + ℓ1


B


tαn/2

tαn/2 + 1
, µd + kn−1, µc + ℓn−1


×

∏
j=2,...,n−1;j≠i

B


tαi/2

tαi/2 + 1
, µd + ki−2 + ki−1, µc + ℓi−2 + ℓi−1


for j = 2, . . . , n − 1, and

An(t) = αn
tαn/2(µd+kn−1)

(tαn/2 + 1)(µc+ℓn−1+µd+kn−1)
B


tα1/2

tα1/2 + 1
, µd + k1, µc + ℓ1


× · · · × B


tαn−1/2

tαn−1/2 + 1
, µd + kn−2 + kn−1, µc + ℓn−2 + ℓn−1


.

Fig. 4.1 shows the pdf of the maximal square ratio of two three-variate exponentially correlated α–µ distributions for some
values of correlation coefficients and distribution parameters.

Now let us determine the minimal square ratio

λ = λmin = min(λ1, λ2 . . . , λn).

For this case, the CDF can be written in the form (see [10])

Fλ(t) = 1 −

∫
∞

t

∫
∞

t
· · ·

∫
∞

t
pλ1,λ2,...,λn(x1, x2, . . . , xn)dx1dx2 · · · dxn. (4.3)

Substituting expression (3.3) in (4.3) and after n successive integrations, the CDF becomes:

Fλ(t) = 1 −

∞−
k1,...,kn−1=0

∞−
ℓ1,...,ℓn−1=0

Γ (µd + µc + k1 + ℓ1)Γ (µd + µc + kn−1 + ℓn−1)

Γ (µd)Γ (µc)
n−1∏
i=1

Γ (µd + ki)Γ (µc + ℓi)ki!ℓi!

× ρ2(k1+···+kn−1+ℓ1+···+ℓn−1)(1 − ρ2)µd+µc

×

[
B(µd + k1, µc + ℓ1) − B


tα1/2

tα1/2 + 1
, µd + k1, µc + ℓ1

]
×

[
B (µd + kn−1, µc + ℓn−1) − B


tαn/2

tαn/2 + 1
, µd + kn−1, µc + ℓn−1

]
g5g10
g8

,
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Fig. 4.2. CDF of the minimal square ratio of two three-variate exponentially correlated α–µ distribution for various values of correlation coefficients and
distribution parameters.

where

g10 =


1, n = 2
n−1∏
i=2

(g11 − g12) , n > 2

 , g11 = B(µd + ki−1 + ki, µc + ℓi−1 + ℓi),

and

g12 = B


tαi/2

tαi/2 + 1
, µd + ki−1 + ki, µc + ℓi−1 + ℓi


.

Similar conclusions about the rapid convergence of the nested infinite sum from this expression, as for the convergence
of expression (4.2) are valid.

The PDF can be obtained easily from the previous expression. Namely,

pλ(t) =
d
dt

Fλ(t) =

∞−
k1,...,kn=0

∞−
ℓ1,...,ℓn=0

1
2t

Γ (µd + µc + k1 + ℓ1)

Γ (µd)Γ (µc)
n−1∏
i=2

Γ (µd + ki)Γ (µc + ℓi)ki!ℓi!

× Γ (µd + µc + kn−1 + ℓn−1)ρ
2(k1+···+kn−1+ℓ1+···+ℓn−1)(1 − ρ2)µd+µc


n−

i=1

Ai(t)


g5
g8

,

where

A1(t) = α1
tα1/2(µd+k1)

(tα1/2 + 1)(µc+ℓ1+µd+k1)

×

[
B (µd + k1 + k2, µc + ℓ1 + ℓ2) − B


tα2/2

tα2/2 + 1
, µd + k1 + k2, µc + ℓ1 + ℓ2

]
× · · · ×

[
B (µd + kn−1, µc + ℓn−1) − B


tαn/2

tαn/2 + 1
, µd + kn−1, µc + ℓn−1

]
,

Ai(t) = αi
tαi/2(µd+ki−1+ki)

(tα1/2 + 1)(µc+ℓi−1+ℓi+µd+ki−1+ki)

[
B(µd + k1, µc + ℓ1) − B


tα1/2

tα1/2 + 1
, µd + k1, µc + ℓ1

]
×

[
B (µd + kn−1, µc + ℓn−1) − B


tαn/2

tαn/2 + 1
, µd + kn−1, µc + ℓn−1

] ∏
j=2,...,n−1;j≠i

[g10 − g11]

for i = 2, . . . , n − 1, and

An(t) = αn
tαn/2(µd+kn−1)

(tαn/2 + 1)(µc+ℓn−1+µd+kn−1)

[
B(µd + k1, µc + ℓ1) − B


tα1/2

tα1/2 + 1
, µd + k1, µc + ℓ1

]

×


B(µd + kn−2 + kn−1, µc + ℓn−2 + ℓn−1) − B


tαn−1/2

tαn−1/2 + 1
, µd + kn−2 + kn−1, µc + ℓn−2 + ℓn−1


.

Fig. 4.2 shows the CDF of the minimal square ratio of two three-variate exponentially correlated α–µ distribution for some
values of correlation coefficients and distribution parameters.
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5. Application in telecommunications: the performance analysis of the multibranch SIR based SC diversity

Performances of mobile radio systems are remarkably affected by fading phenomena [12]. In practice, fading is
not independent due to the insufficient antenna spacing. Multivariate (correlated) distribution analysis is an important
tool in the performance investigation of many receiver structures for multiple-path correlative fading channels. Hence,
characterizing the diversity system performance over correlated fading channels is important from both a theoretical and
practical viewpoint. There have been proposed several correlation models and used for the performance analysis of various
wireless systems, corresponding to specific modulation, detection, and diversity combining schemes. Though useful in
mathematics and some situations in engineering, the assumption of constant or exponential correlation generally matches
the practical environment in mobile communications. The assumption of exponential correlation is somewhat close to the
situation in a linear array, but it requires equispaced diversity antennas [13]. By considering two important phenomena
inherent to radio propagation, namely non-linearity and clustering, it was shown, that α–µ fading model provides a very
good fit to measured data over a wide range of fading conditions. The α–µ distribution is written in terms of physically-
based fading parameters, namely α and µ. Roughly speaking, α is related to the non-linearity of the environment whereas
µ is associated with the number of multi-path clusters.

Various techniques are used to combine the signals from multiple diversity branches, representing different levels of
performance [14]. As one of the classic combining methods, selection combining (SC) has been widely used in practice due
to its simplicity. In the interference-limited fading environments (where the level of the cochannel interference is sufficiently
high as compared to the thermal noise), it picks the branch with the maximum instantaneous signal-to-interference ratio
(SIR) for a symbol decision. Instantaneous values of SIR at the k-th diversity branch input can be defined as λk = R2

k/r
2
k . The

selection combiner chooses and outputs the branch with the largest SIR

λ = λout = max(λ1, λ2 . . . , λn).

This type of combining technique, in which the branch with the highest SIR is selected, can be measured in real time both in
base stations (up-link) and in mobile stations (down-link) using specific SIR estimators, as well as those for both analogue
and digital wireless systems (e.g. GSM) [15,16].

Based on the previous section, the proposed analysis is carried out assuming correlative α–µ fading for both the desired
signals and co-channel interferers, and useful closed-form of formulae for the pdf and cdf are derived. The correlation
between desired signals and correlation between interferences aremodeledwith the same correlation coefficient ρ because
the arrival angles of the contribution with the broadside directions of antennas are assumed to be the same [14]. The main
contribution of this analysis is that we observed multi-branch selection combining diversity system and it has been done
for general case of α–µ distributed fading. Capitalizing on this standard system performance measures can be determined
like the outage probability (OP).

5.1. Outage probability

The outage probability Pout is a standard measure of the communication system’s performance and is commonly used to
control the noise or cochannel interference level in wireless communication systems.

In the interference-limited environment, outage probability Pout is defined as the probability which combined-SIR falls
below a given outage threshold γ , also known as a protection ratio [17]. Protection ratio depends on modulation technique
and expected quality-of-service (QoS).

Pout = PR(λ < γ ) =

∫ γ

0
pλ(t)dt = Fλ(γ ).

Fig. 5.1. Outage probability versus 1/γ .
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In Fig. 5.1, the outage probability is plotted versus 1/γ for several values of µd and µc and the correlation coefficient ρ.
Diversity systems with two and three branches are observed. It is evident that a system with three branches has better
performance (lower values of outage probability for the same parameters). Also it is interesting to note here that for low
values of 1/γ (<2 dB) due to interference dominance, the outage probability increases (performance deteriorates) when the
fading severity of the interferers decreases (µc increases). But, for higher values of 1/γ (dominance of the desired signal),
the outage probability decreases when µc increase.

6. Conclusion

Derivation of probability density function of a multivariate α–µ distributed variables with exponentially correlated
random variables is derived. Also JPDF is derived for the square ratio of two multivariate exponentially correlated α–µ
distributed variables. Statistical properties of the maximal and minimal square ratio of two multivariate exponentially
correlated α–µ distributed variables are determined. Capitalizing on this, an approach to the performance analysis of SIR
based SC over α–µ fading channels in the presence of co-channel interference is presented.
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