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Simple Optimization Method of One-Dimensional 
M-PAM Constellations for the AWGN Channels 
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Abstract- This paper presents the simple method opti- 
mization of one-dimensional M-ary Pulse Amplitude Modu- 
lation (M-PAM) constellations for the Additive White Gaus- 
sian Noise (AWGN) channels when the error probability is 
minimized under the power constraint. This method is inde- 
pendent of the distribution information source, and adapts 
the given source M-PAM signal constellation to transmis- 
sion the AWGN channel. 
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I. INTRODUCTION 

It is proved that, for the optimization of any chosen pa- 
rameter of the communications system, there is a possibil- 
ity of dividing the problem of the optimal shaping of signals 
set, by which the information can be transmitted, into the 
two basic problems: the code choice (the vectors set above 
some alphabet), and the mapping function choice of this 
code onto the set of allowed signals. These two problems 
can be considered separately without making worse the sys- 
tem performances. In this paper, we will discuss the setting 
of the optimal mapping function of the code words set (or 
the source symbols) onto the set of allowed signals, by the 
optimization of the signals set elements, i.e. by defining 
the optimal signal set (the optimal constellation of signals) 
for the observed source of information. The problem of 
designing optimal one-dimensional M-PAM constellations 
of signals for the AWGN channel with the constraint of 
the average power is a mathematical problem of non-linear 
programming (NP-problem). In all previous papers, which 
discuss the constellation designing, the equiprobable trans- 
mit of symbols (i.e. probabilities of appearing the different 
signals are same) is discussed. 

In this paper, the generalized case, the so-called un- 
equiprobable transmit of symbols (with different proba- 
bilities of the signal points) will be discussed [l]. Even 
the papers discussing the unequiprobable transmit do not 
consider the problem of designing the signal constellations 
to the unequiprobable transmit, but on the basis of exist- 
ing constellations they determine the optimal probabilities 
of the constellation points. Also, in previous papers dis- 
cussing the designing of the signal constellations, the de- 
signing is done on the basis of the continuous approxima- 
tion 121, or on the basis of some other approximations. By 
applying these methods, the improvement is got, but the 
problem of getting the optimal constellations is not solved. 
So, in this paper, a method for getting the optimal one- 
dimensional constellations of signals is given. This method 
is more complex than the existing ones for designing the 
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Fig. 1. An example of decision regions one-dirriensional signal con- 
stellation 

constellations, but it is one of the simplest, methods for get- 
ting the optimal solving of the given non-linear problem. 

11. DESCRIPTION A N D  OPTIMIZATION 
Symmetrical M-PAM constellations (in relation to the 

coordinate beginning) are better than no-symmetrical ones, 
7 n - k  = m k ,  k = 1 ,... , L ,  7no = 0 (mk is the kth con- 
stellation point on the positive part of the real axis) for 
M = 2L + 1 and m - k  = mk, k = 1,. . . , L ,  for M = 2L.  
Therefore, in determining the optimal ,arrangement of con- 
stellation points on the real axis, there is a need for observ- 
ing only the positive part of the real axis. 

The problem of determining the optimal arrangement of 
constellation points with the constraint of average power is 
actually the problem of minimization of the average prob- 
ability of the error P, with the constraint of the average 
power of the signal Pa,. This is a problem of nonlinear 
programming and it can be presented in the following way: 

Minimize 

under constraints 

" j  2 0 ,  

where U: i s  a average power of the channel noise, mj i s  
the j t h  constellation point, Pj is a probability of the j t h  
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constellation point M = 2L or A4 = 2L + 1 is the number 
of constellation points, y j , ~  is a distance between the j t h  
constellation point and the left threshold of deciding for 
that point, y j , .  is a distance between the right threshold 
of deciding the j t h  point and the j t h  constellation point. 
The left and right threshold of deciding the j t h  point can 
be calculated on the basis of MAP principle of detection in 
the following way (see Fig. 1): 

~ 1 1  = 0, Y L r  = +m, 

where Amj = mj+l - mj and j = 1,. . . ,L .  Here, we 
suppose that 

Before we describe the minimization procedure, we prove 
the problem of minimization of the Pe(x l  I . . X L )  is a con- 
vex programming problem. This follows directly from the 
following auxiliary result: 

Lemma 1: The function P, ( X I ,  . . . , X L )  is a convex func- 
tion and constraints g ( x 1 ,  . . . , X L )  5 0 and x j  2 0 form a 
convex set. 

Proof: In order to prove that P , ( x l , .  . . , X L )  is a con- 
vex function and that the constraints g ( z 1 , .  . . , X L )  5 0 
and ?cj 2 0 form the convex set it is sufficient to prove that 
t.he Hessian matrices of P, and g are positive semi-definite 

ln(Pj/Pj-l)I << x j / 2  for each j. 

13, P. 271. 
Since 

and 

This means that Hessian matrix of P, is positive definite. 
On the other hand, for the constraint we have 

For each I C ,  we put ak = Pk + Pk+l + . . . + PL, i.e., ak - 
ak+l = Pk > 0 .  Then, the corresponding Hessian matrix 
becomes 

a1 a2 a3 . . .  a~ 

4 

aL aL U L  . . .  

and we see very easy that it is a positive definite matrix, 
because its principal minors are 

This completes the proof. ea 
Also, it should be mentioned that the local minimum 

is at  the same time the global minimum fcr this kind of 
problems [3, p. 271. In our case, variables in the objec- 
tive function P, are mutually dependent, so the solution 
in the closed form, using the Lagrange's multipliers, is riot 
possible. From that reason, we are going to consider the 
possibility of applying a method of nonlinear prograrnrning 
for convex problems. 

Also, it should be mentioned that the direct application 
of a gradient method is not possible, but the application 
of some modified gradient method is possihle. In general, 
all gradient methods have the same approach to searching 
for an optimal solution. First, choose the starting point 
X(O). A new point is obtained by moving for a step h in 
the direction of the highest decrease of the given function. 
Differences of some gradient methods depend on the way 
of calculating the gradient, and also on the value of moving 
toward the requested solution along the gradient direction. 
Generally, in a gradient approach, we start from the point 
X(O) and we are approaching, iteratively, the optimal so- 
lution x'. The new value X(a+') from x(') is defined by x('+') = x(4 + d(")h('), i.e., 

where di) (the unit vector of the moving destination) is 
got on the basis of the gradient V F ( X ( ' ) ) .  The simplest 
approach is if we take d!) = d F ( X ) / & r )  and h = const. 

It is known (see [4])) that good methods for solving the 
convex programs are those of permissible unit vectors of 
the movement, when the permissible unit vector ( d )  from 
a point is defined by solving the linear program: 

max a 

(2) 
subject 

VPe(Xc;, . . . ,2'L) d + Q: 5 0, 
Vg(2;  , . . . ,  x * t ) d + Q :  5 0. 

In order to avoid the solving of linear system in each 
iteration, the permissible unit vector of movement would 
consist only of two coordinates. This can be done by mov- 
ing one constellation point for Axj, and that should be the 
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one which gives the greatest decrease of the error probabil- 
ity, and the movement of some other point in the opposite 
direction for Axk should be done in order to enable the 
average power to  stay unchangeable. For the small step 
value of moving, the total differentials of P, and g can 
be approximated for the previously assumed unit vector of 
movement: 

In order to find the most efficient movement, the quan- 
tity lapel should be maximized. n o m  (4), we get Ak = 

Axj, and by replacing it in (3), we get 

Thus, 

because for the defined problem, dP,/dxk < 0 and 
dg/dXk > 0 and the maximum is got for 

mal-1 apelaxi and max 1-1. 
zi ag/dxi z j ~ z i  a g / a X j  

The previously explained method has the great similar- 
ity with the method of the reduced gradient which is used 
in the approximate linear programming (nonlinear prob- 
lem is approximated by the linear one for the small step 
of movement-approximation of the total increments of the 
function and constraints) [4). 

In order to avoid the search of the maximum and min- 
imum for each iteration or for solving the linear problem, 
principles which enable getting, approximately, the direc- 
tion of the fastest descent, are introduced. The first prin- 
ciple lies in the following: If JaPe/dskl > ag/dzk, then 
d, > 0, and if laPe/dxk) < dg/axk, then d, < 0. By 
applying the first principle, we should determine the coor- 
dinates directions in the permissible unit vector. According 
to the second principle, we should have in mind the influ- 

ence of the quotient value 1 !# 1 on the coordinates 

value in the permissible unit vector. For the same direc- 
tions, that coordinate, which quotient value is greater, is 
more important. The application of these principles, with- 
out any comparisons, can be realized by calculating the 
movement direction coordinate d f )  ( I C  = 1,. . . , L )  in the 
following way: 

If the medium power is changed by the fixed beforehand 
value Pa,, then positions of constellation points, after each 
iteration, can be calculated as follows: 

( i+ l )  - fim(i+') k ( k  = 1,. . . , L); = P~v/p , !~+' )  
mk,rescal - 

The determination of searching direction in the way previ- 
ously explained is used intuitively iri the papers [5], [6].  

111. THE ALGORITHM 
The algorithm for determining the optimal nonequiproh- 

able nonuniform M-PAM constellation signals for the 
AWGN channel can be expressed as follows: 

Step 1: Initialization. The arrangement of obtained 
applying quantization methods or any other constellation 
signals is used as the starting value (X(')). The determi- 
nation of h(0) is experimentally. 

Step 2: Determine the average error probability gradi- 
ent VP,, 

X =  

and k = 1,. . . , L. 
Step 4: The average power to stay unchangeable calcu- 

( i + l )  and x(i+1) 
'ate Mrescal rescal from 

where k = 1,. . , , L and X = P,,, jP;?'). 

Step 5:  If P , ( M ~ ~ ~ ~ , )  - Pe(M!iLca,) 2 0, the procedure 
is finished for I L ( ~ ) .  Otherwise, set X ( i )  = X ~ ~ ~ ~ ~ l  and go 
to  Step 2. 

Step 6: If max l d ~ ) h ( i ) l  5 E ,  where E is the required ac- 
curacy, the procedure is finished (Adopt = M~$,al). Ot,her- 
wise, set h(i) := 0 . 5 l ~ ( ~ ) ,  X ( i )  := X:2scal and go to S tep  2. 

It should be mentioned that this optimization method of 
M-PAM constellation of signals for transmitting infonna- 
tion over the AWGN channel is independent of the infor- 
mation source, and it can be applied to any distribution of 
the symbols (data) source probability. The Optimization is 
especially done for different relations signal-to-noise ratio 
(SNR). 
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M i l )  f0 .07419 f0.22258 

Mopt f0 .09472 f0.28405 

Mopt fo.09720 *0.29159 

(SNR = 28 dB) 

(SNR = 33 db)  

Example 1: For SNR 28 and 33 dB and 16 constellation 
points, it is got the optimal arrangement presented in Table 
I. The first row of table presents the arrangement of constel- 
lation points got by the quantization of the Gauss source 
and by the equal probabilities [7]. On SNR=33 dB, the er- 
ror probability for the no-optimized constellation from the 
first row of Table I is P, = 3.736 x while, for the op- 
timized constellation, SNR is the same P, = 7.218 x 10-6. 

IV. CONCLUSION 
In this paper, simple method for determining the condi- 

tional minimum of the average error probability per symbol 
under the average power constraint is presented. This opti- 
mization method is independent of the information source 
and can be applied for generating the optimal nonequiprob- 
able nonuniform M-PAM signals to transmission AWGN 
channel. The optimization is especially done for different 
relations signal-to-noise ratio (SNR). 

PI 

[31 

[41 

151 

161 

[TI 

k0.38187 f0.55242 f0.74221 f0 .97729 -f1.27027 11.73338 

k0.47531 f0 .66910 *Io36663 f1.07125 f1 .28350 f1.50839 

f0.4~3656 50.68225 *0.87908 f1 .07825 f i . 2 ~ 3 0 0 9  f i . 4 8 6 3 9  
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