3. Now we shall show how to get the conditions for the inclusion \(\overline{L}_p(r, \mu) \subseteq \overline{L}_p(r, \mu) \).

Theorem 4. Let \(0 < p, q \leq \infty \). The inclusion \(\overline{L}_p(r, \mu) \subseteq \overline{L}_q(r, \mu) \) holds if and only if for each \(m \) there exists a \(k \) such that \(r_{m, p} \) holds if and only if for each \(m \) there exists a \(k \) such that \(r_{m, p} \mu \leq r_{k, q}(\mu) \).

Proof. The sufficiency of the condition is obvious. We shall prove the necessity. Let \(\overline{L}_p(r, \mu) \subseteq \overline{L}_q(r, \mu) \).

Let \(0 < s < \min(p, q) \) and we set \(p^* = p^*(s), q^* = q^*(s) \). According to property 1) of the operation of taking the dual and (2)

\[
\overline{L}_p^*(1/r, \mu) = \left(\overline{L}_p(r, \mu) \right)^{1/q} \subseteq \overline{L}_q(r, \mu) \overline{L}_p(\mu) = \overline{L}_p^*(1/r, \mu).
\]

Now using Theorem 2, we get that for each \(m \) there exists a \(k \) such that

\[
\overline{L}_p^*(1/r, \mu) \subseteq \overline{L}_q^*(r, \mu).
\]

According to property 1) of the operation of taking the dual with respect to \(L_\infty(\mu) \), we arrive at the inclusion \(r_{k, q}(\mu) \mu \subseteq r_{m, p}(\mu) \). But \(p^* = p \) and \(q^* = q \). Thus the theorem is proved.

Literature Cited

Inequalities with Convex Sequences

G. V. Milovanovich and I. Zh. Milovanovich

In this paper we prove some inequalities with mean powers for convex sequences of order \(k \) and one inequality of Hölder type.

We give some definitions and theorems, which will be used later in the paper.

Definition. For a positive sequence \(a = (a_1, \ldots, a_n) \) the mean power of order \(r, r \in \mathbb{R}, r = \pm \infty \), is defined by the formula

\[
M^{\mu r}_p(a, p) = \left(\frac{\sum_{i=1}^{n} p_i a_i^r}{\sum_{i=1}^{n} p_i} \right)^{1/r}, \quad r \neq 0, \quad |r| < +\infty,
\]

where \(p = (p_1, \ldots, p_n) \) is a weight sequence, \(p = \sum_{i=1}^{n} p_i \).

Let us assume that \(S_k \) is the set of all real convex sequences \(a = (a_1, \ldots, a_n) \) of order \(k, 1 < k < n, \)

\[
S_k = \left\{ a \mid \Delta^k a_m = \sum_{i=1}^{k} (-1)^{i} \binom{k}{i} a_{m+k-i} \geq 0, \quad 1 \leq m \leq n-k \right\}.
\]

We define a sequence \(a^{(r)} = (a_1^{(r)}, \ldots, a_n^{(r)}) \) (r is a natural number) as follows:

\[
a_{m+i}^{(r)} = m^{-i} a_{m+i}^{(r-1)}, \quad a_{m}^{(r)} = a_{m}, \quad a_{m}^{(r)} = a_{m}/m^{r-1}.
\]

Let \(S_k^{(r)} = \{ a \mid a \in S_k \land (\Delta^{k-r} a_i^{(r)} \geq 0, 1 \leq i \leq \ldots, p) \} \), where \(p < k \).

In [1] theorems are proved according to which, for each \(k \in \{2, 3, \ldots\} \) one has the implications

\[
a \in S_k^{(r)} \Rightarrow a^{(r)} \in S_{k-1} \quad \text{and} \quad a \in S_k^{(k-1)} \Rightarrow a^{(k)} \in S_k.
\]
Using theorems from [1] we shall prove the following theorem.

THEOREM 1. If \(p_i > 0, i = 1, \ldots, n \), and \(x = (x_1, \ldots, x_n) \) is a positive sequence from \(S_k^{(k-1)}, n > k \), then for \(r \geq s \)

\[
M^{(r)}_n(x; p) \geq \alpha_k M^{(s)}_n(x; p) \tag{2}
\]

where \(\alpha_k \) is a constant, calculated according to the formula

\[
\alpha_k = \frac{M^{(r)}_n(a; p)}{M^{(s)}_n(a; p)} \geq 1, \quad a = (1^{k-1}, \ldots, n^{k-1}).
\]

The equality in (2) is achieved for \(x = a \).

Proof. To prove (2) we first set \(p_i = p_i^{(k-1)} \), \(x_i = x_i^{1/k-1} \), \(i = 1, \ldots, n \) in the inequality [2]

\[
M^{(r)}_n(x; p) \geq M^{(s)}_n(x; p), \quad r \geq s.
\]

Then, defining for any sequences \(a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \) the sequence \(ab = (a_1b_1, \ldots, a_nb_n) \), we get

\[
M^{(r)}_n(xa; pa) \geq M^{(s)}_n(xa; pa), \quad a = (1^{k-1}, \ldots, n^{k-1}).
\]

To complete the proof we shall show that one has

\[
\sum_{i=1}^n p_i x_i^{1/k-1} \geq \sum_{i=1}^n p_i x_i^{1/(k-1)} \sum_{i=1}^n p_i x_i^{(k-1)/r}.
\]

It is obtained from Chebyshev's inequality [3]

\[
\sum_{i=1}^n p_i x_i \geq \sum_{i=1}^n q_i u_i \geq \sum_{i=1}^n q_i v_i
\]

for \(q_i = p_i^{(k-1)}, u_i = i^{(r-1)/(k-1)}, v_i = x_i^{1/r} \), \(i = 1, \ldots, n \).

Since the sequence \(x = (x_1, \ldots, x_n) \) belongs to \(S_k^{(k-1)}, k \geq 2 \), according to a theorem from [1] the sequence \((x_1^{1/k-1}, \ldots, x_n^{1/k-1}) \) is nondecreasing.

If in (3) one sets \(x_i = i^{k-1} \), then \(\alpha_k \geq 1 \).

COROLLARY 1. Since \(\alpha_k \geq 1 \), (2) is more precise than (3).

COROLLARY 2. For \(k = 2 \), from Theorem 1 we get the theorem connected with Theorem 3 of [4].

We note that this theorem is proved in [4], and later also proved in [5].

COROLLARY 3. We introduce \(x_i = i^k, i = 1, \ldots, n \) in (2). Then \(\alpha_{k+1} \geq \alpha_k \), so (2) becomes more precise with increasing \(k \).

COROLLARY 4. If \(p_i = 1, i = 1, \ldots, n \), then (2) assumes the form

\[
\left(\sum_{i=1}^n x_i \right)^{1/r} \geq M(k) \left(\sum_{i=1}^n x_i \right)^{1/s},
\]

where

\[
M(k) = \left(\sum_{i=1}^n i^{(k-1)/r} \right)^{1/r} \left(\sum_{i=1}^n i^{(k-1)/s} \right)^{1/s}.
\]

Since \(\lim_{n \to +\infty} (x^{r-1/s} M(k)) = (s(k-1) + 1)^{1/r} (r(k-1) + 1)^{1/s} \), as \(n \to +\infty \) from (4) one can get the inequalities for convex functions of order \(k \) proved in [6].

Remark. On an integral analog of Theorem 1 cf. [7].

Analogously to Theorem 1, one can prove the following theorem.

THEOREM 2. Let the sequence \(p = (p_1, \ldots, p_n), x = (x_1, \ldots, x_n), b = (b_1, \ldots, b_n) \) be such that \(p_i > 0, \ldots, p_n > 0; x_1 > 0, \ldots, x_n > 0; b_1 > 0, \ldots, b_n > 0; b_1 \leq b_2 \leq \ldots \leq b_n \) and \((x_1/b_1, \ldots, x_n/b_n), n > k \) be a sequence from \(S_k^{(k-1)}, k \geq 2 \). Then for \(r \geq s \) one has

Numbered as in Russian original - Publisher.
where \(H_k = M^{(k)}(a; p)/M^{(k)}(b; p) = H_k M^{(k)}(x; p)/M^{(k)}(b; p) \).

Theorem 3. Let the sequence \(p = (p_1, \ldots, p_n) \) be positive. Let the \(r \) sequences \(a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n), \ldots, l = (l_1, \ldots, l_n) \) be positive and belong to the set \(S^{(k-1)}_k, n > k \). Then for \(0 \leq m_i \leq 1, i = 1, \ldots, r \) one has

\[
\sum_{i=1}^{n} p_i a_i p_i \ldots l_i \leq \left(\sum_{i=1}^{n} p_i a_i^{m_i} \right)^{1/m_i} \ldots \left(\sum_{i=1}^{n} p_i l_i^{m_i} \right)^{1/m_i} \geq Q_r,
\]

where

\[
Q_r = \left(\sum_{i=1}^{n} p_i l_i^{m_i} \right)^{1/m_i} \ldots \left(\sum_{i=1}^{n} p_i l_i^{m_i} \right)^{1/m_i}.
\]

The equality in (6) is achieved for \(a_i = b_i = \ldots = l_i = 1^{k-1}, i = 1, \ldots, n \).

Proof. In [8] for sequences from the set \(S^{(k-1)}_k, k \geq 2 \) there is proved Chebyshev's inequality

\[
\sum_{i=1}^{n} p_i a_i p_i \ldots l_i \leq \frac{\sum_{i=1}^{n} p_i l_i^{m_i}}{\sum_{i=1}^{n} p_i^{m_i}} \left(\sum_{i=1}^{n} p_i a_i \right) \ldots \left(\sum_{i=1}^{n} p_i l_i \right).
\]

From (7) we get

\[
\frac{\sum_{i=1}^{n} p_i a_i p_i \ldots l_i}{\left(\sum_{i=1}^{n} p_i a_i^{m_i} \right)^{1/m_i} \ldots \left(\sum_{i=1}^{n} p_i l_i^{m_i} \right)^{1/m_i}} \leq \frac{\sum_{i=1}^{n} p_i l_i^{m_i}}{\left(\sum_{i=1}^{n} p_i l_i^{m_i} \right)^{1/m_i}} \left(\sum_{i=1}^{n} p_i a_i \right) \ldots \left(\sum_{i=1}^{n} p_i l_i \right).
\]

Using Theorem 1 we get

\[
\sum_{i=1}^{n} p_i a_i \left(\sum_{i=1}^{n} p_i x_i \right)^{m_i} \leq \sum_{i=1}^{n} p_i l_i^{m_i} \left(\sum_{i=1}^{n} p_i l_i \right)^{1/m_i}.
\]

From (8) and (9) follows (6).

Corollary 7. For \(k = 2, r = 2, p_1 = 1, i = 1, \ldots, n \), from Theorem 3 we get a theorem similar to Theorem 3 of [5].

Literature Cited

The effect of a random disturbance on mechanical systems can be properly studied by the method of Fokker-Planck-Kolmogorov (FPK) equations, especially when the latter is combined with the asymptotic method of nonlinear mechanics [1]. In the nonautonomous case, however, it was noted in [1] that the corresponding FPK equation will be complicated. In this paper we shall solve the FPK equation for an important class of nonautonomous systems. On the basis of [2] we shall seek the solution in the form of a series for the amplitude. We obtain a system of separable differential equations that makes it possible to successively find the series coefficients of any order.

1. Let us consider a nonautonomous mechanical system with one degree of freedom whose equation of motion has the form

\[\ddot{x} + \omega^2 x = \epsilon f(x, \dot{x}) + \epsilon P \cos \omega t + \sqrt{\epsilon} \xi(t) \]
\[\omega^2 = \omega^2 + \epsilon \Delta, \] (2)

where \(\xi(t) \) is white noise of unit intensity, and

\[f(x, \dot{x}) = \sum_{i=1}^{m} a_i \left(\sum_{j=0}^{m} \gamma_{ij} x^i \dot{x}^j \right), \quad a_i, \gamma_{ij} = \text{const} \] (3)

is a polynomial in \(x \) and \(\dot{x} \).

With the use of (2) let us rewrite (1) in the form

\[\ddot{x} + \omega^2 x = \epsilon f_1(x, \dot{x}, \omega t) + \sqrt{\epsilon} \xi(t), \] (4)

where

\[f_1(x, \dot{x}, \omega t) = f(x, \dot{x}) - \Delta x + P \cos \omega t. \] (5)

By a change of variables [1]

\[x = a \cos \psi, \quad \dot{x} = -av \sin \psi, \quad \psi = \omega t + \theta \] (6)

we can transform Eq. (4) with the aid of Ito's formula to standard form

\[da = \left[-\frac{\epsilon}{v} f_1(x, \dot{x}, \omega t) \sin \psi + \frac{\epsilon \sigma}{2v^2 a} \cos^2 \psi \right] dt - \frac{\epsilon \sigma}{v} \sin \psi d\xi(t), \] (7a)

\[d\theta = \left[-\frac{\epsilon}{av} f_1(x, \dot{x}, \omega t) \cos \psi - \frac{\epsilon \sigma^2}{a^2 v^2} \sin \psi \cos \psi \right] dt - \frac{\epsilon \sigma^2}{av} \cos \psi d\xi(t). \] (7b)