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Abstract: In order to improve the interpretation of measurement results and to achieve the optimal
performance of microfluidic biosensors, advanced mathematical models of their time response and
noise are needed. The random nature of adsorption–desorption and mass transfer (MT) processes
that generate the sensor response makes the sensor output signal inherently stochastic and necessi-
tates the use of a stochastic approach in sensor response analysis. We present a stochastic model of
the sensor time response, which takes into account the coupling of adsorption–desorption and MT
processes. It is used for the analysis of response kinetics and ultimate noise performance of protein
biosensors. We show that slow MT not only decelerates the response kinetics, but also increases the
noise and decreases the sensor’s maximal achievable signal-to-noise ratio, thus degrading the ulti-
mate sensor performance, including the minimal detectable/quantifiable analyte concentration. The
results illustrate the significance of the presented model for the correct interpretation of measurement
data, for the estimation of sensors’ noise performance metrics important for reliable analyte detec-
tion/quantification, as well as for sensor optimization in terms of the lower detection/quantification
limit. They are also incentives for the further investigation of the MT influence in nanoscale sensors,
as a possible cause of false-negative results in analyte detection experiments.

Keywords: microfluidic adsorption-based sensor; stochastic model; adsorption; mass transfer; ulti-
mate noise performance; detection limit; quantification limit

1. Introduction

Microfluidic sensors are promising tools for chemical and biological detection [1–4].
The operation of a large class of such devices, known as adsorption-based sensors, relies on
the adsorption–desorption (AD) process of a target substance on the surface of a sensing
element. These include SPR (Surface Plasmon Resonance), CNT (Carbon NanoTube) or
NWFET (NanoWire Field Effect Transistor), resistive graphene-based, potentiometric, SAW
(Surface Acoustic Wave), FBAR (thin Film Bulk Acoustic wave Resonator), microcantilever
sensors, etc. [5–13]. The sensing element of microfluidic sensors is typically located in a
flow-through reaction chamber, where the sample to be analyzed is introduced (Figure 1).
The AD process is coupled with mass transfer (MT) processes of target particles in the
microfluidic chamber. Via MT processes (convection and diffusion), particles are trans-
ported to specific sites on a sensing surface where adsorption occurs, and away from the
adsorption sites after desorption. A coupled effect of AD and MT processes determines
the temporal change in the number of particles adsorbed on the sensing surface, N(t),
which causes a change in a measurable sensor parameter, yielding the sensor response.
Hence, the sensor time response can be considered as determined by the time evolution
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of the number of adsorbed target particles, N(t). As it contains information on the tar-
get substance presence and its concentration in the analyzed sample, the time response
analysis enables both detection and quantification of chemical substances or biological
specimens, thus having important applications in environmental protection, public and
personal healthcare and security, the food industry, agriculture, and defense. Analysis of
response kinetics can provide information as early as in the transient regime, i.e., before
the binding process of target particles reaches the steady state, which significantly shortens
the time needed to obtain the data. The response kinetics also contains information on the
parameters that characterize the interaction process of target particles and surface binding
sites [14], thus enabling the characterization of bimolecular binding reactions, important
for the fundamental understanding of vital biochemical processes and pharmacology.
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Figure 1. Adsorption-based microfluidic sensor: schematic representation of the typical system
geometry with designations of dimensions and coordinate axes. The magnified partial cross-section
of the microfluidic reaction chamber in the sensing surface zone is given as an illustration of the
two-compartment model approximation of the spatially and time-dependent target substance con-
centration, affected by coupled adsorption–desorption and mass transfer processes of target ana-
lyte particles.

The random nature of the AD process coupled with MT causes fluctuations in the
number of adsorbed particles, which result in sensor signal stochastic fluctuations known
as AD noise, binding/unbinding noise, biological or chemical noise [15–19]. The total
fluctuations in the sensor signal also depend on other kinds of noise originating from
the sensor transduction mechanism and the read-out circuitry, but the unavoidable AD
noise determines the sensor’s ultimate noise performance and poses fundamental detection
and quantification limits inherent to all adsorption-based sensors. The contribution of
AD noise to the total sensor noise can even be dominant [16,17,20,21]. Thus, the analysis
of AD noise and related parameters of stochastic sensor response becomes an important
tool for the optimization of adsorption-based chemical and biological microfluidic sensors
in terms of reliable analyte detection and quantification, and also in terms of improved
sensing performance (i.e., higher signal-to-noise ratio and lower minimal detectable and
quantifiable concentrations). This is especially true because miniaturization is a general
trend in the field of chemical and biological sensors, focusing on adsorption-based micro-
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and nanodevices, where achieving a sufficiently high signal-to-noise ratio (SNR) can
be a challenge [20]. As AD noise also contains information about the quantity of the
target substance in the sample, about binding process parameters, and about substance
parameters useful for its recognition [15,22–25], mathematical modeling and more profound
knowledge of AD fluctuations characteristics, both in the transient regime and in the steady
state of sensor response, can enable the development of new measurement methods based
on stochastic (i.e., noise) analysis in micro/nanosensors, as an addition to the existing
conventional methods.

Stochastic mathematical models of sensor response consider the time-dependent
number of adsorbed particles as a random process, N(t), whose expected value reveals the
binding (i.e., the sensor response) kinetics, and the variance is a measure of the sensor’s AD
noise. As stochastic models take into account the influence of individual events of particle
binding and unbinding to the surface adsorption sites on the sensor response, as well as the
inherent random nature of these events, they are more accurate in describing the binding
kinetics than deterministic models. They describe response fluctuations, which are always
present. For the analysis of stochastic sensor response, stochastic simulations are often
used. However, analytical approximations of stochastic models are very useful, because
they offer a good insight into the dependences of the response statistics on various sensor
system parameters, while being more efficient than simulations in which high accuracy
requires large computing resources and a long computation time. Stochastic models for the
analysis of sensor response should take into account MT effects, as the randomness of the
number of adsorbed particles originates from the coupling of the inherently stochastic AD
process and MT.

Approximate mathematical models that enable the analysis of statistical parameters
(expected value, standard deviation, and variance) of the stochastic time response of
adsorption-based (both chemical and biological) sensors and their noise performance
metrics (AD noise power spectral density and signal-to-noise ratio) have been developed
for some practically significant cases [15,16,18,20,21,24–30]. Based on these references, it can
be concluded that the closed-form solutions for the mentioned quantities are only devised
for simplified cases, during the transient regime of the binding process on the sensing
surface, or after the steady state of the binding process is reached. For example, in the
analysis given in [26], analytical solutions were used for the time-varying expected value
and relative fluctuations in the response of an adsorption-based plasmonic sensor, which
fluctuate only due to the stochastic nature of the AD process. Analyte transport processes
to and from adsorption sites, and the depletion of analyte particles from the sample during
adsorption were not taken into account in the closed-form expressions. That corresponds
to the idealized situation when MT is fast enough compared to the AD process, and when
the number of analyte particles available for adsorption in the sensor’s reaction chamber
is much greater than the number of adsorbed particles at any given time, so the particle
concentration in the chamber is considered as constant in time and uniform in space. The
authors of [20] considered the scaling effects of biosensor systems through the stochastic
analysis that takes into account the probabilistic capturing (i.e., adsorption) process. The
MT effects were neglected in the derived mathematical model. The time evolutions of
the expected value and standard deviation of the number of adsorbed particles were
numerically calculated for the regime of constant analyte concentration in the reaction
chamber volume, and for the regime of analyte depletion. In the former case, the sensor
signal-to-noise ratio (SNR) for one fixed moment in time was analyzed, considering the
effects of the sensing area reduction. However, it is well known that MT can significantly
alter the sensor response kinetics [31–33], so it is important to consider this effect in the
analysis of stochastic response. It was also experimentally shown that a suppression of
MT influence leads to a great improvement of the biosensor limit of detection [34], which
implies that MT affects detection limits. Therefore, fluctuations and noise models used for
the estimation of the ultimate sensing performance should also include the MT influence.
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In reference [27], a stochastic model of analyte diffusion within the biosensor chamber
was presented, which incorporates the probabilistic model for the specific binding of
analyte particles to immobilized probes at a sensing surface, as one of the boundary
conditions. The model was used for the analysis of two idealized situations: (1) when there
is an infinite adsorption capacity of the sensing surface, and (2) when the number of probes
is finite, but a very small fraction of analyte particles present in the system is captured by
the probes (i.e., no sample depletion by the binding events; thus, the number of free analyte
particles in the chamber, available for adsorption, is considered constant). The closed-
form solutions for the statistical parameters of biosensor response and for noise figures of
merit were derived only for the biochemical equilibrium for these two cases. By using the
stochastic modeling of the analyte capturing, considering the binding kinetics and the mass
transfer by diffusion, the expressions for the equilibrium statistical response parameters
and settling time approximation were obtained in [16]. In references [15,24,25,28], a theory
was presented with closed-form expressions, as well as an analysis of the sensor AD noise
power spectral density in the steady state, when the fluctuations are caused by coupled
stochastic AD process and MT.

In [18,29,30], a stochastic simulation was used for the analysis of the change in the
expected value and variance of the number of adsorbed particles, and the sensor signal-
to-noise ratio in time, considering the transport of analyte particles by diffusion. The
emphasis was on the influence of the target substance concentration and probe density on
the mentioned time dependences, while MT influence was not analyzed in particular.

None of the mentioned works provided a stochastic model of sensor time response that
takes into account both the diffusion and convection of analyte particles as processes that
constitute MT in microfluidic sensors. In addition, none of them analyzed the MT influence
neither on the stochastic temporal response, including its time-dependent expected value
and variance (i.e., AD noise), nor on the SNR that determines the ultimate detection and
quantification limit.

In this paper, we aim to investigate the temporal change in the statistical parameters
of the biosensor stochastic response from the beginning of the adsorption process on the
sensing surface until the steady state is reached, taking into account the mass transfer
of analyte particles by both convection and diffusion, which corresponds to the realistic
operating conditions in microfluidic biosensors. We first present the theoretical model for
the expected value and variance of the number of adsorbed particles. The model is devised
by applying the approach based on the master equation for the random processes known
as birth–death processes in probability theory, to which the considered random process
N belongs, and by introducing the effective probabilities of the increase and decrease in
the number of adsorbed particles. The effective probabilities combine the influences of
the inherently random AD and MT processes on the change in the number of adsorbed
particles. By using the obtained analytical model, we investigate the response kinetics
and AD noise of a protein biosensor, through the analysis of the expected value and the
variance of the number of adsorbed particles, both in the transient regime and in the steady
state of the binding process, for practically relevant analyte concentrations, mass transfer
coefficients, and sensing surface areas. We also analyze the sensor signal-to-noise ratio,
which sets the fundamental detection and quantification limits. One of the goals of our
analysis is to investigate both the qualitative and the quantitative influence of MT on the
kinetics of sensor stochastic response, on sensor AD noise, and on the maximal achievable
SNR value, affecting both the reliable analyte detection and determination of analyte
concentration. Although such an analysis can reveal new guidelines for the optimization of
sensor design and operating conditions, to the best of the authors’ knowledge, it does not
exist in the published literature. Another goal is to determine the applicability boundaries
of the simple stochastic model of sensor response (i.e., the one that neglects the mass
transfer influence), and thus the conditions under which it becomes necessary to use the
more comprehensive stochastic model (that takes into account the AD process coupled
with the MT of analyte particles) in order to improve the interpretation of the measurement
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results and the estimation of sensor performance metrics such as noise, SNR, and analyte
detection and quantification limits.

2. Method—Mathematical Modeling of Biosensor Stochastic Time Response

The change in the number of target analyte particles adsorbed on a sensing surface
in unit time, assuming reversible adsorption, is determined by the difference between
the instantaneous rates of the increase and decrease in N(t), denoted by a(t) and d(t),
respectively. These rates include the combined effects of adsorption–desorption and mass
transfer processes. Namely, both AD and MT (convection and diffusion) processes change
the target analyte concentration in a microfluidic sensor chamber, affecting the temporal
change in N. The use of the two-compartment model (TCM) for the approximation of
the spatial- and time-dependent analyte concentration in a flow-through chamber, when
modeling the sensor response kinetics influenced by mass transfer, is experimentally
verified for various adsorption-based biosensors [31–33,35]. It covers the case of surface
reaction (i.e., AD process) coupled with convection and diffusion, when a thin zone (the
inner compartment), depleted of analyte particles, is formed adjacent to the sensing surface,
while the remaining part of the sensor chamber (the outer compartment) approximately
retains the spatially uniform and time-constant analyte concentration C, equal to the analyte
concentration in the sample introduced in the sensor chamber [31–33,35], as illustrated in
Figure 1. By assuming the 1:1 binding of analyte molecules to the surface binding sites, the
uniformity of all binding sites, and no interaction between analyte molecules, TCM yields
Equation (1), which defines the temporal change in N [15,31,36]:

dN
dt

= kaCS(Nm−N)− kdN = ka
C + kd

km A N

1 + ka
km A (Nm − N)

(Nm−N)− kdN = a(N)− d(N), (1)

where ka and kd are the adsorption and desorption rate constants, respectively, CS is the
analyte concentration in the immediate vicinity of the binding sites on the sensing surface
of area A, Nm is the number of binding sites on the surface, and km is the mass transfer
coefficient, introduced in TCM as km = 1.467(D2vm/(Lshc))1/3 [31] in order to characterize
the transport of analyte particles by both convection and diffusion between the bulk
solution and the surface binding sites (D is the diffusion coefficient of analyte particles,
vm is the mean convection velocity, Ls is the adsorption zone length, and hc is the sensor
chamber height). According to TCM, all quantities are averaged across the sensing surface.
The effective rates of the increase and decrease in the number of adsorbed particles, a(t)
and d(t), respectively, do not depend explicitly on t, but on the instantaneous value of N,
thus a(N) and d(N) in Equation (1).

Equation (1) is derived for the diffusion-limited regime. The equation for the case of the
adsorption-limited regime (i.e., the “rapid mixing” regime, when the analyte concentration
in the whole flow-through reaction chamber is considered uniform in space and constant
in time, due to fast MT compared to adsorption) neglects MT effects, and it is given as:

dN
dt

= kaC(Nm − N)− kdN = aRM(N)− dRM(N), (2)

where aRM(N) and dRM(N) are actual adsorption and desorption rates.
The time evolution of the number of adsorbed particles N(t) is obtained from the

deterministic kinetic Equations (1) or (2) (with or without taking MT into account, respec-
tively) for given initial conditions. It enables the analysis of the deterministic time response
of a sensor, as a function of the number of adsorbed particles, which is assumed to be a
deterministic quantity.

The number of adsorbed particles at any given time is a result of a sequence of random
bindings and unbindings of target particles to and from the surface adsorption sites.
Therefore, the number of adsorbed particles on the sensor’s active surface, N, is actually a
stochastic quantity, determined by the stochastic nature of the AD process coupled with
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transport processes of analyte particles. Hence, N randomly fluctuates around its expected
value <N>, and consequently, the sensor response is also a fluctuating quantity.

Observed in time, the stochastic number of adsorbed analyte particles at the sensor’s
surface, N(t), is a random birth–death process [37]. By assuming that in a time interval
dt→0, N can be either changed by one, or unchanged (i.e., there can be an adsorption of one
particle, a desorption of one particle, or a lack of AD events), the probability distribution
of the random variable N in an arbitrary moment of time t (t ≥ 0), PN(n, t), for the given
initial state N(0) = n0 (here, n0 = 0 as t = 0 is assumed as the moment when the AD process
starts on the sensing surface), is given by the master equation:

d
dt

PN(n, t) = PN(n− 1, t) · A(n− 1) + PN(n + 1, t) · D(n + 1)− PN(n, t) · (A(n) + D(n)) (3)

where n is the actual value of the random variable N at the given moment, and it denotes
the state of the process (n∈{0,1,2...Nm}, where Nm is the total number of adsorption sites on
the sensing surface), while A(n)dt and D(n)dt are the probabilities of transition from the
state n to the state n + 1, and from the state n to the state n − 1 during the time interval
dt→0, respectively. A(n) and D(n) are the probability of the increase in the number of
adsorbed particles by 1 in unit time, and the probability of the decrease in N by 1 in unit
time, respectively, when the current state is N = n. Equation (3) is valid for n = 0 if we
define PN(−1,t) = 0 and A(−1) = 0, and it is also valid for n = Nm assuming PN(Nm + 1,t) = 0
and D(Nm + 1) = 0 (D(0) = 0 due to the nature of the desorption process, and A(Nm) = 0
because the sensing surface adsorption capacity is limited to Nm).

As mentioned in the introduction, we are interested in the expected value of N, which
reveals the response kinetics, and in the variance of N, as it is a measure of the AD noise.
Starting from the definitions for the first and the second moment of the random variable:

〈N〉 =
Nm

∑
n=0

nPN(n, t), σ2 = 〈(∆N)2〉 =
Nm

∑
n=0

(n− 〈N〉)2PN(n, t) (4)

and using the master equation (Equation (3)), the exact equations for the expected value,
<N>, and the variance, σ2, of the random number of adsorbed particles are obtained [37]:

d
dt
〈N〉 = 〈NA(N)− D(N)〉 (5)

dσ2

dt
= 〈A(N) + D(N)〉+ 2

〈
(N − 〈N〉)[A(N)− D(N)]

〉
(6)

The transition rate A(N) depends on the adsorption rate constant, on the fraction of
adsorption sites available for adsorption, and on the amount of particles that are available
to participate in adsorption, when the number of adsorbed particles is N = n, while D(N)
depends on the desorption rate constant and on the fraction of occupied sites on the
surface N = n. Thus, when the combined effect of AD and MT processes determines the
probabilities of the change in the random variable N, the use of TCM for the approximation
of the amount of particles that are available to participate in adsorption (those located in
the immediate vicinity of the surface binding sites, as explained for Equation (1)) yields
A(n) = kaCs(Nm − n) = ka(C + kdn/(kmA))(Nm − n)/(1 + ka(Nm − n)/(kmA)) and D(n) = kdn.
In this way, the expressions are obtained for the effective probabilities of the increase and
decrease in the number of adsorbed particles per unit time, which combine the influences
of the AD and MT processes. A(n) and D(n) depend on the current state N = n (which is
a feature of birth–death processes). After representing the nonlinear transition rate as a
Taylor series centered at the expected value, Equations (5) and (6) take the approximate
form, which includes the first and the second moments:

d〈N〉
dt

= A(〈N〉)− D(〈N〉) + (A′′ − D′′ ) · σ2

2
, (7)
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dσ2

dt
= A(〈N〉) + D(〈N〉) +

[
2
(

A′ − D′
)
+

1
2
(A′′ + D′′ )

]
· σ2, (8)

(A′, D′, A”, and D” are the first and second derivatives of A and D with respect to n,
calculated for n = <N>) [38]. After substituting the functions A and D and their derivatives
in Equations (7) and (8), a system of equations is obtained:

d〈N〉
dt

=
kaC(Nm − 〈N〉)− kd〈N〉

1 + ka
km A (Nm − 〈N〉)

− ka

km A

kakd
km A Nm + kaC + kd[

1 + ka
km A (Nm − 〈N〉)

]3 · σ
2, (9)

dσ2

dt
=

ka(C + 2 kd
km A 〈N〉)(Nm − 〈N〉) + kd〈N〉
1 + ka

km A (Nm − 〈N〉)
−

kakd
km A Nm + kaC + kd[

1 + ka
km A (Nm − 〈N〉)

]3

{
2
[

1 +
ka

km A
(Nm − 〈N〉)

]
+

ka

km A

}
· σ2, (10)

which is solved for <N> and σ2 (with the conditions <N> = 0 and σ2 = 0 at the moment
t = 0).

The time-dependent SNR is defined as:

SNR(t) =
〈N〉

σ
. (11)

As σ is a measure of fluctuations resulting from the stochastic nature of the processes
(AD coupled with MT) upon which the sensor operation is based, these fluctuations
constitute the fundamental, i.e., unavoidable noise. Thus, the SNR defined in this way is
the best possible SNR (also known as the quantum-limited SNR in the literature [16,20])
for a given adsorption-based sensor design and parameter set.

The steady-state expected value and variance of the number of adsorbed particles
according to the presented model are obtained from Equations (9) and (10), respectively,
for d<N>/dt = 0 and dσ2/dt = 0:

〈N〉e =
NmkaC

kaC + kd

(
1 + ka

km A

) , (12)

σ2
e = kd〈N〉e

[
1 + ka

km A (Nm − 〈N〉e)
]2

kaC + kd +
kakd Nm

km A

, (13)

σ2
e = kdkaCNm ·

[
kaC + kd

(
1 + ka

km A

)(
1 + ka

km A Nm

)]2

[
kaC + kd

(
1 + ka

km A

)]3[
kaC + kd

(
1 + ka

km A Nm

)] , (14)

and the steady-state SNR is:

SNRe =
〈N〉e

σe
. (15)

For the rapid mixing regime (i.e., adsorption-limited binding), the mass transfer influ-
ence is neglected, and the transition probabilities per unit time are ARM(n) = kaC(Nm − n)
and DRM(n) = kdn. In that case, Equations (5) and (6) yield the system of exact equations:

d〈N〉
dt

= ARM(〈N〉)− DRM(〈N〉), (16)

dσ2

dt
= ARM(〈N〉) + DRM(〈N〉)− 2(kd + kaC) · σ2, (17)
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well-known in the literature [39], and whose solutions for the time evolution of both the
expected value and the variance of N are:

〈N〉RM = 〈N〉RM,e(1− e−t/τRM ), (18)

σ2
RM = σ2

RM,e(1− e−t/τRM )

(
1 +

kaC
kd

e−t/τRM

)
. (19)

Here:
〈N〉RM,e =

kaCNm

kd + kaC
, (20)

σ2
RM,e = kdτRM〈N〉RM,e =

kdkaCNm

(kd + kaC)2 (21)

are the expected value and the variance in the steady state, respectively, and τRM = 1/(kd
+ kaC). The time-dependent SNR and its steady-state value in the case of neglected MT
influence are obtained from Equations (11) and (15), respectively, by using <N>RM, σRM,
<N>RM,e, and σRM,e instead of the corresponding parameters of the model that includes the
MT effect.

Equations (9)–(15) constitute a theoretical model that enables the investigation of the
microfluidic sensor stochastic response, and also of the sensor AD noise and SNR, in the
case of adsorption–desorption coupled with analyte convection and diffusion. The same
quantities, but in the case of neglected MT influence, can be investigated by using the
theoretical model given by Equations (11), (15), (18)–(21).

3. Results and Discussion

The theoretical models presented in Section 2 are used here for the investigation of
statistical parameters of the stochastic response and noise performance of a biosensor for the
detection of proteins in a liquid sample (the model is applicable to various receptor–ligand
pairs, i.e., various biological analytes (not only proteins), whose binding to the adsorption
sites can be described by Equation (1); the parameter values used in our analysis are
very close to those in [31], which are within the ranges found in BIACORE experiments
with proteins). As the time response of adsorption-based sensors is a function (preferably
linear) of the number of adsorbed target particles, we perform the stochastic analysis
of the random process N(t). That enabled us to obtain some general conclusions that
are valid for the various types of adsorption sensors, regardless of their measurement
parameter (optical, electrical, or mechanical, such as the refractive index, conductance, or
mechanical resonance frequency), whose adsorption-induced time change constitutes the
sensor response.

We first analyze and discuss the temporal change in both the expected value and
the variance of the number of adsorbed particles, and of the sensor maximal achievable
SNR (Section 3.1). Subsequently, we present the analysis of the same quantities after the
established steady state of all the influencing transient processes (Section 3.2). Various
practically relevant analyte concentrations, mass transfer coefficients, and sensing surface
areas are considered.

3.1. Analysis of Time Evolution of the Expected Value and Variance of the Number of Adsorbed
Particles and Sensor Signal-to-Noise Ratio, Considering MT Influence

Figure 2a,b show the time-dependent expected value of the number of adsorbed
particles, <N>, for different concentrations of the target protein in the sample (ranging
from 6·1016 to 6·1018 m−3). The curves shown as solid lines in the presented diagrams are
obtained by using the stochastic model given by Equations (9) and (10), which is numeri-
cally solved. The diagrams enable the investigation of the kinetics of the stochastic sensor
response, considering MT effects. The AD process parameters are ka = 1.33·10−19 m3s−1

and kd = 0.08 s−1, there are Nm = 3·106 adsorption sites on the sensing surface of area
A = 10−9 m2, and the mass transfer coefficients are km1 = 2·10−2 ms−1 for Figure 2a and
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km2 = 2·10−5 ms−1 for Figure 2b. All the parameter values are very close to those used
in [31], for which the TCM applicability has been demonstrated in the same work.
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Figure 2. The expected value of the number of adsorbed particles in time, reflecting the kinetics of a biosensor stochastic
response for different concentrations of the target protein in the analyzed sample: (a) The case of negligible MT influence—
the curves <N> (shown by solid lines) according to the model that considers MT for km1 = 2·10−2 ms−1 show the overlapping
with the curves predicted by the model that neglects MT, <N>RM (dashed lines, entirely covered by solid lines). (b) The case
of MT influenced kinetics (km2 = 2·10−5 ms−1).

As it can be seen in Figure 2a,b, the expected response is a monotonically increasing
function of time for all concentrations, for both values of km. The slower mass transfer
process (low km) prolongs the transient period of the time response at all concentrations,
while the influence on the equilibrium expected value is not noticeable for the given set of
parameter values. These conclusions are in accordance with those corresponding to the
response kinetics described by the deterministic model (Equation (1)) [28,31].

The curves corresponding to the values km > km1 match those shown in Figure 2a,
which means that for km = km1, mass transfer is already sufficiently fast to be of a negligible
influence on the response kinetics. This explains the matching of curves (solid lines in
Figure 2a), obtained by using the stochastic model that takes into account the coupling of
stochastic AD and MT processes characterized by the coefficient km1, with those obtained
by using the stochastic model that neglects the influence of MT (dashed lines in Figure 2a,
entirely covered by solid lines). Indeed, the expressions given in Section 2 show that, for a
sufficiently high km, transition rates according to the model that takes into account MT, A(n)
and D(n), become equal to kaC(Nm − n) and kdn, respectively, which are the well-known
expressions for transition rates ARM(n) and DRM(n), respectively, valid when MT effects are
negligible. This means that, for a sufficiently high km, the derived stochastic model, given
by Equations (9) and (10), reduces to the model presented by Equations (18) and (19), i.e.,
the former model is a superset of the latter. Therefore, the model that takes into account the
coupling of AD and MT processes covers the cases of both the pronounced and negligible
MT effects on the stochastic response, and it is in this example applied for the research of
microfluidic sensor kinetics both in the case when the MT influence is significant, i.e., in
the mass transfer-limited regime (as shown in Figure 2b), and in the case when the MT
influence is negligible, i.e., in the regime of rapid mixing or the adsorption-limited kinetics
(as shown in Figure 2a).

The variance, which is a measure of AD noise, is another statistical parameter of the
sensor stochastic response that we analyze. Figure 3a,b show the time-dependent variance
of the protein biosensor for which the expected value of the number of adsorbed particles
is shown in Figure 2a,b for the same seven concentrations. The diagram in Figure 3a is
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obtained for km1 = 2·10−2 ms−1, and it corresponds to the expected value given in Figure 2a,
while the diagram in Figure 3b is for km2 = 2·10−5 ms−1, and it constitutes a pair with
the diagram in Figure 2b. The solid line curves in Figure 3a,b are obtained by using the
theoretical model that takes into account AD and MT processes (Equations (9) and (10)),
while the dashed lines in Figure 3a represent the variances determined according to the
model that neglects the MT influence (Equations (18) and (19)).
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The analysis of the solid line curves in Figure 3a shows that at the concentration of
6·1017 m−3 and lower, σ2(t) is a monotonically increasing function. As the concentration
increases to 6·1017 m−3, the transient regime duration decreases, and the equilibrium
variance value increases. With the further increase in the concentration, the dependence
σ2(t) has an increasingly prominent peak, the duration of the transient regime continues to
decrease, while the steady-state variance value decreases.

Figure 3b shows that slower MT causes the appearance of a peak in the dependence
σ2(t) at lower concentrations (noticeable even at C = 4.2·1017 m−3). As the concentration
increases, the transient regime duration decreases, and the steady-state variance value first
increases and then decreases with the concentration, in the same way as in the case of high
km (Figure 3a). The peak becomes increasingly pronounced with the concentration beyond
4.2·1017 m−3, and the maximal variance (corresponding to the peak) noticeably decreases.
These conclusions stemming from our model, regarding the time-dependent variance
when the MT influence is pronounced, are in accordance with the results of the stochastic
computer simulation, which is based on the model that takes into account coupled AD and
diffusion (called “coupled hybridization-diffusion process” in the mentioned reference) in
nanowire biosensors and presented in [18].

By comparing the diagrams shown in Figure 3a,b, it can be concluded that slow MT
causes the increase in the variance at all the concentrations from the analyzed range. It also
prolongs the time needed for the variance to reach the equilibrium value.
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In Figure 3a a small difference is noticeable between the solid and dashed curves
for the same concentration value. That means that km1 is very close to the specific value
above which the MT influence on the variance becomes negligible. For every km value
greater than that specific value, the model that takes into account MT yields the same
curve σ2(t) as σRM

2(t) for a given C. When the MT influence is negligible, the analysis of
Equation (19) shows that the function σRM

2(t) has a maximum (peak) at concentrations
C > kd/ka = 6·1017 m−3, and that this maximum does not change as the concentration
increases further (the peak height is independent of C and equal to Nm/4), as can be seen
in Figure 3a. At the moment when the variance is at its peak value, the expected value
<N>RM equals Nm/2 (which is obtained from Equation (18)). σRM

2(t) is a monotonically
increasing function for C < kd/ka (then <N>RM <Nm/2), and σRM

2(t) ≈ <N>RM(t) is valid
for C << kd/ka. If the measurement of the signal fluctuation is used as an analytical tool in
biosensing, the position and the value of the variance maximum can provide information
in addition to those obtained by the noise analysis in the steady state. For example, in
the case of negligible mass transfer influence, the value of the variance maximum can be
used for the estimation of the number of surface binding sites Nm, which is a parameter
important for the estimation and optimization of the sensor performance. In addition, the
existence of the variance overshoot indicates that C > kd/ka.

Figure 4a,b show the time dependence of the best possible SNR (as defined in Equa-
tion (11)) of the biosensor in the case of the nearly negligible mass transfer influence (km1),
and in the case when the mass transfer influence is pronounced (km2), respectively, for
different analyte concentrations (the values of all parameters are given at the beginning of
Section 3.1, and they are the same as for Figure 2a,b and Figure 3a,b). The curves corre-
sponding to the cases when the MT influence is negligible (obtained according to the model
that neglects MT, given by Equations (18) and (19)) are so close to those shown in Figure 4a
(for km1 = 2·10−2 ms−1) that the difference between them is not noticeable in the diagram
of that scale. The diagrams show that the SNR decreases with the decrease in C, for every t,
both for rapid and slow mass transfer. Mass transfer increases the time needed for SNR to
achieve its maximum value (corresponding to the steady state) at a given concentration.
In addition, slow MT decreases the SNR for the given analyte concentration. Therefore,
it depends on the value of km whether or not it is possible to reach the required SNR for
reliable detection and quantification of an analyte by using a given sensor with a given set
of parameter values.
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Figure 4. Time dependence of the sensor signal-to-noise ratio according to the model that considers the combined AD and
MT effects (solid lines), for two different values of the MT coefficient: (a) km1 = 2·10−2 ms−1; (b) km2 = 2·10−5 ms−1. The
curves obtained according to the model that neglects MT (dashed lines) match those predicted by the model that takes into
account the coupling of AD and MT processes for km1 (solid lines), as shown in (a).



Biosensors 2021, 11, 194 12 of 19

3.2. Analysis of MT Influence on the Sensor Stochastic Response and Noise Performance in
Steady State

Here, we show the analysis of the expected value and variance of the number of
adsorbed particles after the steady state of all relevant transient processes has been reached.
We also present the steady-state analysis of the maximal achievable SNR. In the following
diagrams, denoted with solid lines are the curves obtained by using the model (given
by Equations (12) and (13)) that considers fluctuations in the number of adsorbed par-
ticles as a consequence of the coupling of stochastic AD process and the mass transfer
of analyte particles. The curves corresponding to the stochastic model that neglects MT
(Equations (20) and (21)) are denoted with dashed lines. When MT is sufficiently fast, its
effects become negligible, as shown by the matching of the corresponding expressions for
the steady-state statistical parameters determined by using the two mentioned stochastic
models, for the high enough values of km. The difference between the corresponding
quantities determined by using the two models can thus be used as a measure of MT
influence. The MT with the coefficient km = 2·10−5 ms−1 is assumed, the adsorption sites
surface density is nm = Nm/A = 3·1015 m−2 for all analyzed sensors, and the remaining
parameter values are those given at the beginning of Section 3.1, unless otherwise noted.

Figure 5a shows the expected value of the number of adsorbed particles in the steady
state, as a function of the sensing surface area ranging from 10−12 to 10−9 m2, for different
concentrations of the target protein. The curves obtained according to the two stochastic
models match, which means that the influence of MT on the steady-state expected value
is negligible for the given set of parameter values. The expressions for the steady-state
expected value according to the two models, given by Equations (12) and (20), yield
the ratio:

〈N〉RM,e

〈N〉e
= 1 +

ka/(km A)

1 + kaC/kd
(22)

and, thus, the condition at which MT does not influence the expected number of adsorbed
particles (when <N>RM,e/<N>e ≈ 1 is valid):

km �
ka/A

1 + kaC/kd
= km,ev. (23)

This is also the condition for the applicability of the simpler stochastic model that
does not take MT into account. The most stringent condition for a given km corresponds to
the case when km,ev has the highest value, i.e., at the lowest analyte concentration, and in
sensors of the smallest sensing surface area from the considered range. For the sets of pa-
rameter values used in our analysis (Figure 5a), the maximal km,ev equals 1.2·10−7 ms−1, so
the most stringent condition for the expected values obtained according to the two models
to be approximately equal is km >> 1.2·10−7 ms−1, which is fulfilled for km = 2·10−5 ms−1.
This explains the matching of the curves obtained by using the two models (Figure 5a).
The condition (23) is satisfied in a wide range of parameter values. However, in sensors
with extremely small sensing surfaces (such as nanowire or carbon nanotube mechanical
or electrical sensors), as well as in detection of particles present in ultra-low concentrations,
the value of km,ev can be such that the condition given by Equation (23) is not satisfied,
which implies that MT could influence the expected value of the sensor stochastic re-
sponse by decreasing it. This conclusion is in accordance with the result of a computer
simulation performed for a nanowire biosensor in [29], which showed the decrease in the
expected value of the number of adsorbed particles in the case of binding influenced by
diffusion. This deserves further investigation by using a model particularly considering
nanoscale sensors.
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Figure 5. Expected value (a) and variance (b) of the number of adsorbed particles in the steady state, and the steady-state
signal-to-noise ratio (c), as a function of the sensing surface area, for different concentrations of the target protein, according
to the stochastic model that takes into account the combined effect of AD and mass transfer processes (solid lines), and
according to the stochastic model that neglects mass transfer (dashed lines).

The dependence of the steady-state variance of the number of adsorbed particles on
the sensing surface area, determined according to the two stochastic models, is shown in
Figure 5b. The target protein concentration is used as the parameter for the shown curves.

Although the curves in Figure 5a for the same sets of parameter values show a
negligible difference between the steady-state expected values obtained by using the two
models, the corresponding steady-state variances differ significantly, which can be seen
in Figure 5b. The diagram shows that MT with the coefficient km = 2·10−5 ms−1 causes
a significant increase in the steady-state variance at a given concentration and sensing
surface area. The condition for MT to be of negligible influence on the variance is obtained
from σ2

e ≈ σ2
RM,e. It can be formulated through the ratio:

σ2
e

σ2
RM,e

=
(kaC + kd)

2
[
kaC + kd

(
1 + ka

km A

)(
1 + kanm

km

)]2

[
kaC + kd

(
1 + ka

km A

)]3[
kaC + kd

(
1 + kanm

km

)] ≈ 1, (24)

which is obtained from Equations (12), (13), (20) and (21). The condition (24) is more
complex than the condition for approximately equal expected values (Equation (23)). By
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analyzing the ratio of the steady-state variances, the following ultimate condition for km is
obtained, under which the ratio approximately equals 1:

ka
km A + kanm

km
+ k2

anm
k2

m A

1 + kaC
kd

� 1. (25)

When the condition given by Equation (25) is not satisfied, it is necessary to use the
stochastic model that takes into account MT in order to perform the steady-state variance
(i.e., AD noise) analysis. None of the combinations of C and A values from the considered
range can satisfy the condition (25).

Figure 5b shows that the variance increases with a greater sensing surface area in cases
when the MT influence is significant (solid lines), as well as in cases when MT is sufficiently
fast and is thus of negligible influence (dashed lines). It can be seen from the diagram that
solid and dashed lines that correspond to the same C value are parallel, which means that
the ratio of variances determined according to the two models at the same concentration
is independent of A in the whole considered range of A. In other words, the amount of
MT influence on the change in steady-state variance (expressed as σ2

e/σ2
RM,e) does not

depend on A. Indeed, the analysis of the expression σ2
e/σ2

RM,e shows that for A >> ka/km =
6.65·10−15 m2 (satisfied for all A values within the considered range), the following is valid:

σ2
e

σ2
RM,e

≈ 1 +
kanm/km

1 + kaC/kd
, (26)

yielding the condition for the value of km at which the MT influence on the variance is
insignificant, i.e., the applicability condition for the simpler stochastic model:

km �
kanm

1 + kaC/kd
= km,var. (27)

The condition given by Equation (27) can be easiest to satisfy at the greatest C value
from the considered range, i.e., C = 6·1018 m−3, but even then, km,var ≈ 3.6·10−5 ms−1. Due
to that, the variances determined according to the two models differ significantly when the
MT coefficient equals 2·10−5 ms−1, for every C value from the considered range.

Figure 5c shows the biosensor steady-state SNR obtained by using the two stochastic
models, as a function of the sensing surface area, where the target analyze concentration is a
parameter. The SNR decreases as the sensing surface area decreases (the standard deviation
also decreases, but the decrease in the expected value is more pronounced, as it can be
seen in Figure 5a,b), and also when the target protein concentration is lower, according to
both models. A significant difference between the SNRs determined by the two models
can be seen in the diagram. The decrease in the steady-state SNR, caused by MT, exists
at all considered values of C and A. The condition under which the MT influence on the
SNR is negligible is given by Equation (27) for the cases analyzed here (as A >> ka/km =
6.65·10−15 m2 is valid). By using the model that takes into account the MT influence, and
for km that satisfies the condition (27), the curves are obtained that match those shown as
dashed lines in Figure 5c.

The value of km influences the maximal achievable SNR value of a sensor with a given
sensing surface area. The diagram shown in Figure 5c can be used to determine whether
or not it is possible to achieve an SNR value required to reliably detect and quantify
the target substance concentration using a sensor of a given surface area. It can be seen
that the steady-state SNR of a sensor with the sensing surface area of 10−12 m2, protein
concentration of 6·1016 m−3, and MT coefficient of 2·10−5 ms−1 approximately equals 3,
which is the minimal value needed for protein detection [40,41]. The same sensor in the
case of negligible MT influence has an SNR of almost 20, so it satisfies the more stringent
condition (SNR ≥ 10 [40]) for reliable quantification of the concentration. A sensor with
a sensing surface area of 10−11 m2 in the case of km = 2·10−5 ms−1 has an SNR higher
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than 10, so it satisfies the conditions for both analyte detection and quantification of the
concentration even when the MT influence is pronounced. The same diagram enables
the determination of the minimal detectable and measurable concentrations (i.e., the
fundamental detection and quantification limits, as they are determined by the fundamental
noise) of the given sensor, for the required SNR value (e.g., in [42], SNR = 1 was used for
the estimation of the minimum detectable change in the measured quantity in a graphene
ISFET, as the theoretical limit of performance determined by intrinsic noise; in [43], SNR = 1
was also used for the determination of the detection threshold in silicon nanowire sensors).
These results show that the fundamental detection and quantification limits depend on the
MT rate.

A diagram that enables the steady-state analysis of the dependences of both the
sensor’s time response variance and SNR on the target substance concentration, in the cases
of pronounced and negligible MT influence, is given in Figure 6a. Figure 6b shows the ratio
of variances when the MT influence exists, and when it is negligible, and the ratio of SNRs
for the same two cases. The curves in Figure 6a,b are for a sensor with A = 10−9 m2, and
they correspond to the steady-state values of time-dependent variances and SNRs shown
in Figures 3 and 4, respectively. For the remaining surface areas considered in Section 3.2
(from 10−12 to 10−10 m2), the conclusions will be the same as those obtained based on
Figure 6b about the MT-influenced change in the variance and SNR (expressed through
the ratios σ2

e/σ2
RM,e and SNRe/SNRRM,e) in the considered concentration range. This is

because the analysis given in the comment for Figure 5b,c showed that the magnitude of
the MT influence on these two quantities does not depend on the active surface area when
A >> ka/km = 6.65·10−15 m2 (then, the ratios σ2

e/σ2
RM,e (Equation (26)) and SNRe/SNRRM,e

do not depend on A). In addition, as σ2
RM,e is proportional to A, and it can be shown that

for surface areas A >> ka/km = 6.65·10−15 m2, σ2
e is also proportional to A, all conclusions

about the dependences of σ2
e and σ2

RM,e on C, based on Figure 6a, will be valid for all
sensing surface areas in the range from 10−12 to 10−9 m2. For a similar reason (SNRe and
SNRRM,e are proportional to A1/2), conclusions based on Figure 6a about the influence of
both MT and target substance concentration on the change in SNR of a sensor with the
sensing surface area of 10−9 m2 are valid for other sensors of different sensing surface areas
from the mentioned range.
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Figure 6a shows that the steady-state variance obtained by using the model that
takes into account the AD process, diffusion, and convection has a maximum at a certain
concentration. This result for the MT-influenced binding of target particles is in accordance
with the computer simulation results obtained for the variance of silicon nanowire field-
effect biosensors whose response fluctuates due to the coupling of the AD process and
mass transfer by diffusion [29,30].

In Figure 6a, it can be seen that MT influences the concentration value at which AD
noise (i.e., variance) has its maximum. When MT is negligible (dashed line in Figure 6a),
the variance reaches its maximum at Cmax,RM = kd/ka = 6·1017 m−3. Starting from the
expression for σ2

e (Equation (13)), which is simplified under the condition A >> ka/km, it
can be analytically shown that the variance influenced by MT has the maximum at the
concentration Cmax ≥ Cmax,RM. Thus, due to the influence of MT, the AD noise maximum
moves toward lower concentrations of the target substance.

Figure 6b shows that, for a given sensor, the influence of MT on the increase in variance
becomes more pronounced at lower analyte concentrations. As the concentration decreases,
the ratio σ2

e/σ2
RM,e, given by Equation (26), asymptotically approaches the maximum

value 1 + kanm/km≈21, while, when C increases, the ratio of variances approaches 1 (i.e.,
for given km, the variances according to the two models are approximately equal at a
sufficiently high concentration).

The dependences SNRe(C) and SNRRM,e(C), shown in Figure 6a, increase monotoni-
cally as the concentration increases. The influence of MT on the decrease in the sensor’s
steady-state SNR is concentration-dependent. This can be quantitatively analyzed based on
the diagram shown in Figure 6b. MT causes the greatest decrease in the sensor’s SNR at low
concentrations. With the decrease in concentration, the ratio SNRe/SNRRM,e asymptotically
approaches its minimum.

The dependence SNRe(C) obtained by using the derived analytical expression and
shown in Figure 6a is in accordance with that obtained in [30] by computer simulation
for the case of diffusion-influenced binding. Diagrams of this kind (Figure 6a) enable the
determination of the concentration detection and quantification limits for a given sensor
and given experimental conditions, as the values of C at which the SNR has the minimal
required values for reliable analyte detection and quantification, respectively.

4. Conclusions

A theoretical model was presented that enables efficient analysis of the stochastic time
response and ultimate noise performance of adsorption-based microfluidic chemical and
biological sensors, taking into account the influence of mass transfer (MT) of the analyte
particles. It was shown that for sufficiently fast MT, the model we devised match the
commonly used model that neglects mass transfer, so it is applicable in a wider parameter
range, covering the cases of both pronounced and negligible MT influence.

Two models (one that neglects, and the other that takes into account MT effects)
were used for the analysis of statistical parameters of the protein biosensor stochastic
response, for various analyte concentrations, mass transfer coefficients, and sensing surface
areas. The sensor signal-to-noise ratio (SNR), which sets the fundamental detection and
quantification limit, was also investigated. The comparison of results obtained according to
the two stochastic models has led to the conclusions about the qualitative and quantitative
influence of MT on the sensor response kinetics and noise performance metrics, both in the
transient regime and in steady state.

The analysis showed that MT can significantly alter the time dependence of the
expected value and variance of the number of adsorbed particles, and thus the response
kinetics, adsorption–desorption (AD) noise, and SNR of the sensor.

Slow mass transfer decelerates the response kinetics. The analysis indicated that MT
can also influence the steady-state response value by decreasing it, in sensors of extremely
small sensing surface areas, or when particles present in ultra-low concentrations need
to be detected. This secondary effect of MT, which degrades the sensor’s sensitivity and
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may cause false negative/positive results when interpreting measurement data, should be
further investigated by using a model considering nanoscale sensors.

According to the analysis results, MT prolongs the time needed for the variance
to achieve the steady-state value. Both stochastic models predict a peak in the time
dependence of the variance, at concentrations greater than a certain critical value. However,
MT influences the appearance of the peak in the variance transient regime at lower analyte
concentrations. In the case of pronounced MT, the height of the peak decreases with the
concentration. When MT is negligible, the peak height remains constant for different
concentrations. The condition was formulated under which MT influences the variance in
the steady state. MT can significantly increase the steady-state variance, i.e., the sensor AD
noise. This effect is not limited to extremely small sensing surface areas, and it is especially
pronounced at low analyte concentrations. MT also shifts the maximum of the steady-state
AD noise toward the lower analyte concentrations.

An important conclusion of the analysis is that MT influences the sensor’s maximal
achievable SNR value. Slow MT decreases the SNR, and therefore, for the given sensor
and target substance, it depends on MT parameters whether or not it it possible to reach
the required SNR value for reliable detection and quantification of an analyte in the
concentration range of interest. Another effect of MT is that the maximum SNR value
(i.e., the steady-state value) is reached more slowly at slower MT. The MT influence on
the SNR is more pronounced at lower analyte concentrations. The results have shown
that even when mass transfer does not influence the expected value, it can significantly
influence both the variance of the response (which is a measure of the inevitable adsorption–
desorption noise) and the signal-to-noise ratio (which sets the fundamental detection and
quantification limits of adsorption-based sensors). Therefore, mass transfer can exhibit a
significant influence on the ultimate sensor performance, including the minimal detectable
and quantifiable analyte concentrations.

The steady-state analysis of the difference between the corresponding quantities de-
termined by using the two stochastic models also enables the obtaining of the applicability
conditions for the simpler stochastic model that does not take into account MT. At the same
time, these conditions reveal the criteria that can be used to establish when it becomes nec-
essary to apply the model that takes into account the coupling between the AD process and
mass transfer. It is shown that when the sensor’s noise performance analysis is intended,
the application of the stochastic model that takes MT into account may be necessary for the
set of parameter values at which the simpler stochastic model is applicable for the analysis
of the response kinetics.

To the best of the authors’ knowledge, these are the first results regarding the influence
of MT on the sensor stochastic response and its noise characteristics. The results have
illustrated the significance of the presented theoretical model for the correct interpretation
of measurement results, for the estimation of sensors’ noise performance metrics important
for reliable analyte detection and quantification, as well as for sensor optimization in terms
of the lower detection and quantification limits. The presented model is also a useful tool
for the development of new methods for the detection and quantification of substances,
based on the analysis of sensor signal fluctuations. In general, the use of the stochastic
model that takes into account MT becomes necessary as the sensing surface area and
analyte concentration decrease. Due to the ongoing efforts toward the miniaturization of
sensing devices, and the lower detectable concentrations in the latest sensor generation, it
is expected for this theoretical model to be increasingly useful.
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