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A CLASS OF ORTHOGONAL POLYNOMIALS
ON THE RADIAL RAYS
IN THE COMPLEX PLANE, IT*

G. V. Milovanovié, P. M. Rajkovi¢ and Z. M. Marjanovié

Abstract. In this paper we continue considerations on polynomials orthogonal
on the radial rays in the complex plane started in [7-9]. We study a general case
of an arbitrary number of the rays and consider the corresponding orthogonal
polynomials and join them matrix orthogonal polynomials. For both of them we
derive the recurrence relations and find a representation. In a special symmetric
case we find connection with the standard orthogonal polynomials on the real
line, locate the zeros and find differential equation. Finally, we consider some
analogues of the classical Legendre and the generalized Laguerre polynomials.

1. Introduction

For a given lengths and angles
lseRT, 0,€ (—m,7], s=0,1,...,m—1,

we define the inner product,

m—1
= -t 2)g(z)|ws(2)| dz = ¢'s
(1.1) (f.9) = 8520 £ /Lsf( )9(2)|ws(2)] dz, e :

with respect to the weight functions ws(z) on the radial rays Lg which con-
nect the origin z = 0 and the points z = l;e5, 0 < s < m — 1. This can be
rewritten in the form

m—1 ls
(1.2) =% / f(wea)g(@en)ws (xe,)] da
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or
1m—1
13 o= [ X LitealEnlees) d
0 s=0o
Because of

m—1 ls
1912 = (10 = 3 [ 15w Pluo(es)| do >0
s=0 0

except for f(z) =0, the corresponding orthogonal polynomials {WN(Z)};OZOO
exist and they can be construct using Gram-Schmidt orthogonalizing pro-
cess.

If we define the moments

pp.g = (27, 29)

and moment-determinants

Moo 1o s HN-1,0
o1 H11 HN-1,1
Ag=1, An= ) , N2>1,
Ho,N—-1 H1,N-1 HUN—-1,N—1

then these polynomials can be expressed in the form

mo(z) =1,
100 H10 .o HMN-10 1
1 Ho1 Hi1 HUN-11 z
ﬂ-N(z) = A ) N>1
An N-1
Ho,N—1 H1,N—-1 UN—-1,N—-1 Z
Mo, N H1,N UN—-1,N 2N

Like in [9], we can prove the following result:

Theorem 1.1. If A, > 0, n € N, the monic polynomials {mn(2) }o:o,

orthogonal with respect to the inner product (1.1) exist uniquely and the
norm s given by
_ AN

2
™™~
e f? = SR
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For m =1 and Iy = 1, we have the standard case of polynomials orthogo-
nal on (0, 1) Also, for m=2,lp =103 =1 and a weight w(x) on (—1,1), we
have (f,g) f flx Jw(z) dx, which is a standard case of polynomials
orthogonal on (—1, 1).

The case when m is an even number was considered by one of us in [4].
In this paper we study a general case. The paper is organized as follows.
In Section 2 we find the recurrence relation for orthogonal polynomials on
the radial rays and study the matrix polynomials joined them. In Section
3 we continue with an investigation of a symmetric case of equal lengths,
angles and weights. In such a case, in Sections 4-7, we find a representation
for polynomials, the joined matrix polynomials, distribution of zeros and
a differential equation, respectively. Sections 8 and 9 are devoted to some
analogues of the classical Legendre polynomials and the generalized Laguerre
polynomials.

2. Recurrence Relation and Joined Matrix Polynomials

The properties of the introduced orthogonal polynomials essentially de-
pend on lengths and angles of rays and their weights. Firstly, we prove the
following result:

Lemma 2.1. If there exists any M € N such that
(2.1) e2M -1, s=0,1,...,m—1,
then the inner product (-,-) has the property

(=" f.9) = (f,z"9g).

M

Proof. From the condition ¢ = —1 or ¢ = 1, we have

m—1

1
(M) =3 1, / (Laeaz)™ f(lueor)gUaead) e (laesz)| da
0

s=

H

0
m—

1
Z ls / Flsesx)(Lsx)MeMg(lie ) |ws (lsesz)| da
0

S
||

3

1
ls/ flsesz)(lsesx)Mg(lsesz)|ws(lsesx)| da

vy

Il

=)
o
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Theorem 2.1. Let the conditions (2.1) be satisfied and let M be a minimal
such integer. Then the monic polynomials {mn(2)} N>, satisfies (2M + 1)-
recurrence relation

N+M—1
Mrn(2) = tnen(2) + Z a§N)7rj(z), N> M.
j=N-M

where mj(z), 0 < j < M, can be determined by the Gram-Schmidt orthogo-
nalization and ag»N) =0 for j <0.

Proof. Writing

N+M-1
Mrn(2) = mnen(z) + Z oM, (2), N=>0,
v=0

for an arbitrary k, we have

N+M-1
(Man, ) = (Tnar ) + Z oM (m,,, ).
v=0

If0<k<N+M-—1,then (zMry,m) = a,(fN)(ﬂk,wk), ie.,

vy _ M7y, m)

al L 0<k<N4+M-1.
(T, ™)

IN>M+1and 0< k<N —M —1, because of Lemma 2.1 and orthogo-
nality, we have that (M7, m) = (7n, 2Mm) =0, e,

a™=0, k=01,...,N-M—-1, N>M+1. O

Using a rotation, we can notice some interesting properties of our poly-
nomials.

Theorem 2.2. Let o € (—m, 7] be an angle and the ray L, after the rotation
for the angle «, becomes LY. Then, the sequence {Wj‘\‘,(z)}j\_,fo orthogonal
with respect to

m—1

(frga=D e [ f(2)g(2)ws(ze™")| dz

s=0 Lg
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can be expressed as A
W?\lf(z) = WN(eiwéZ)v

where the polynomials {mn(2)} 5>, are orthogonal with respect to (1.1).

Because of
Mn+v _(j) (MJ+’€)
7rMn+u( MTLJrI/ (0) M j+k
7rMn+V(Z) = Z I
= (Mj+k)!
d
an M-1 (Mj+k) 0
T Mt Zk Mn+1/ ( ) M)j
Pt (Mj+Ek)!

Obviously, it is
n for k <v
d (]/) ]{j Y =
egree ¢,” (ki 2) = {n—l, for k > v.

Then, we have
Tatntn (2) = a80(0; 2M) + 2¢8 (1, 2M) 4 - 4+ 2M W (M — 1;2M).

Now, we can define the sequence of matrix polynomials { P, (z) :i% by

“”(o ) e O —1;2)
P.(2) = : , N>0.
an*%; 2) e gMTV(M = 152)

Then, by [2-3], we conclude that there exists a positive definite matrix of
measures, denote by dM(z), such that

[ Pal) M) - Piz) = G D,

where Dy, = diag(d;;), for dj; > 0,i=1,2,..., M.

Thus, {P,(2)}, 7 is a sequence of matrix polynomlals orthogonal on the
real line and it satisfies the matrix three-term recurrence relation

ZPn(z):Pn+1(z)—|—AnPn(z)—I—BnPn_l(z), P_1 :0, P():I
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3. Case of Equal Lengths, Angles and Weights

In this section and further we suppose that
ls =1, ES:eiQWS/M, 0<s<M-1

and
lwe(zes)| = w(z), z€(0,1), s=0,1,..., M —1.

Then the inner product (1.1) becomes

1 /M-1
(3.1) (f,9) :/0 (Z f(z:ss)g(xss)> w(x) da.
s=0

Like in [9] we can prove:

Lemma 3.1. Forp € N letn = [p/M] and v =p— Mn. Then

e, = E. =
® ® 0, if 1<v<M-1.

s=0 s=0
Lemma 3.2. The polynomials wn(2), N =0,1,..., satisfy
mn(zes) = eNan(2), s=0,1,... ,M—1.

Lemma 3.3. For0<v < N <M — 1, we have (zV,7,) = 0.
Lemma 3.4. For N =0,1,... ,M — 1 we have my(z) = 2.
Now, we can prove

Theorem 3.5. The monic polynomials {ﬂ'N(z)}Eo:OO satisfy the recurrence

relation
(32) 7TN+M(Z): (ZM—aN) 71’]\[(2)—ﬁ]\ﬂ'[']\],]\/[(?:)7 NZO,
an(z)=2N, N=0,1,...,M—1,
where
(ZMT(-NvﬂN) MHQQ’ N Z M7
ay =-——"—%, N>0, By=1 [7nv_nl
(TN, 7N

0, N<M-1.



A Class of Orthogonal Polynomials on the Radial Rays ... 35

Proof. According to Theorem 2.1 we have (2M + 1)-recurrence relation
with the coeflicients

(N) _ (MmN, )

ol ., N-M<k<N+M-1.
(T, ™)

Now, we yield

)= [ (X e
2V TN, TE) (e )My (zes)mp(ze,) | w(z) d
1 1\84701
/0 <Zm eNan(z)ekm,(z )) w(z) dx
!
Zsév k/o eMay (2)mg (x)w(z) de.

According to Lemma 3.1, the value of (2™ 7y, m;) will be different of zero
only for N—k=0and N —k = M. Thus,

e (z) = 2Man(2) — Oé%v)ﬂ'N(Z) - ag\z,v_)MﬂN,M(z).
Since
NGO (Mrn,miv-m) (s 2M N o)
N-M = (7TN M, TN— M) (7TN7M77TN7M),

we get coefficients in (3.2) as ay = a N and By = ag\],V)M

Remark 3.1. In the case of even number of rays there exist a few simpler
relations (see [9]).
4. Representation of Polynomials wn(2)

In this section we conclude that mx(z) are incomplete polynomials with
the following representation:

Lemma 4.1. The polynomials wxn(2) can be expressed in the form

[N/M]

(4.1) Z IN-mz M,

where yv =1 and yv—mj; €R, j=1,2,... ,[N/M].

Proof. 1t is obvious from the recurrence relation (3.2) and Lemma 3.4. [
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Lemma 4.2. For the polynomials wn(2z) we have the following representa-
tion

(4.2) Tatnan(z) = 22¢V M), v=0,... M —1; n=0,1,...,

where q( )( t), v=0,1,... ,M — 1 are monic polynomials of the degree n.

Proof. jFrom Lemma 4.1, we have

2 : M
7rMn+u 'YM]—‘,—VZ J+D
7=0
ie.,
Z J'
7rMn+u =z 7M1+V )

wherefrom we get (4.2). O

For the introduced polynomials q( )( ) we have the following two results:

Theorem 4.3. The monic polynomials {q ( V29, 0 < v < M—1, satisfy
the three-term recurrence relation

43)  qUh ) = (t—a)g (1) = b ¢W (1), n=0,1,...,
@) =1, ¢“t)=0,

where a( )—ozN and bﬁi’) =N for N=Mn+v, n € Ng.

Proof. For a given N, using the recurrence relation (3.2), we have

7TM(n+1)+u(Z) = (ZM - aN) 7TMn+V(Z) - BNWM(n—l)—f—u(Z)'

By (4.2), we yield

2qW) (M) = (M = an)2/ g (2M) — Brz" g™ (M),

wherefrom, introducing t = 2™, we obtain
¢ (#) = (t— an)g™ (t) — Bnag4(t), n=0,1,.... O

The three-term recurrence relation (4.3) suggests the orthogonality of the
sequences {qg,) )} 9, ve{0,1,...,M — 1} on the real line.

n=0>
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Theorem 4.4. Let x — w(z) be a weight function which enables the exis-

tence of the polynomials {mn(2) EOZOO. Then, for any v € {0,1,... , M — 1},

the sequence of polynomials {qs’) (t)}.,52% is orthogonal on (0,1*) with respect
to the weight function

TN w,,(t) _ t(2u+1)/M71w(t1/M>'

Proof. For N = Mn + v and K = Mk + v, where n,k € Ny, we have

1 /M—-1
(TN, TK) :/0 <Z WN(xes)ﬂ'K(xEs)> w(z) dx

s=0

1 /M-1 -

:/ <Z ei,VTrN(w)EfﬂK(l’)> w(z) dx
0 s=0
!

- [ (X oz wtoy

Taking t = ™ we get
M

(TN, TK) = / g ()l (1)t DMLy (1M g
0

Because of (my,7k) = Onk||7Tn||? = dnk||Tn]|?, we conclude that

l
| 0d @A) de = b .
0
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5. The Joined Orthogonal Matrix Polynomials

The results of previous sections can be rewritten in a simpler form, using
the matrices defined in Section 2.

To every polynomial 7y (z), where N = Mn+v, 0 <v < M — 1, we can
join the matrix polynomial

P, (z) = diag(¢” (), ¢V (x), ... ,¢M~V(x)),

where q%k)(:z) = qék)(k;m), 0 <k < M-—1, and a matrix of the weight
functions
W(x) = diag(wo(x),wl(x), .. ,wM_l(a:)).
Then we have
lM

/0 Po(2) - W (2) - P*(2) dz = 6,n Do,

where
D, = diag (g , g V%)

n
and Py (x) denotes the conjugate and transpose matrix of P, (z).

Therefore, { Py (2)} 4>, is a sequence of the matrix polynomials orthog-
onal on (0,7) with respect to the positive definite matrix of weights W (x).
This sequence satisfies the matrix three-term recurrence relation

xP,(x) = Pyy1(z) + ApPo(z) + By Pro1(x), P_1=0, Py=1,
where

A, =diag(al?,alM, ... ,al™V), B, =diag(b{®, bV, ... ,pM=D).

6. Zeros of wn(z) and Christoffel-Darboux Identity
For zeros of wy(z) we can prove:

Theorem 6.1. All zeros of the polynomial wn(z) are simple and located on
the radial rays, with possible exception of a multiple zero in origin z = 0 of
the order v if N = v (mod M).

Proof. The proof is very close to one in [9]. O
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Let T,gn’y), k=1,...,n, denote the zeros of qff) (t) in an increasing order

7'1("’”) < Tg(n’y) << T,S"’”).

n,v
Each zero T,g ) generates M zeros

z,E:LS"/) = M\/T,gn’y)eiQ”S/M, s=0,1,... ,M -1,

of T (z). On every ray we have

n,v)
,8

n,v)
,8

27 < S << 2], s =01, M~ 1.

Using the same notation, from Theorem 2.2 it follows:

Theorem 6.2. The zeros of 7% (z) are the zeros of wn(z) rotated for the
angle a.

The properties of the zeros of 7wy (z) were completely discussed in our
paper [10]. Here we mention the main conclusion. By our computational
investigations about zeros, we can state the following conjecture:

Conjecture 6.1. All zeros of the polynomial wx(z) orthogonal with respect
to (1.1) are located in the convex hull of the endpoints of the rays.

It is easy to prove:

Theorem 6.3. The monic polynomials {mn(z) EOZOO satisfy the identity of
Christoffel-Darboux type

n

Z TeM 40 (2)TleM+0 (1) _ 1
|7ns 0|2 (e

2
k=0

Tt 1) M4v (D)Mo () = Ty Mo (O Tnar1v(2)
X ZM _ tM

forv=0,1,... M —1andn=0,1,....

7. Differential Equation

Using relations from Section 4, we can prove:
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Theorem 7.1. If a monic polynomial qg’) (t), v=20,1,... ,M — 1, where
M is a number of the rays, satisfies the differential equation

(7.1) Sy + () + (8, )y =0,

then the monic polynomial wyrn+.(2) satisfies the following differential equa-
tion

(7.2) d¥ ()Y +d(2)Y +dY (z,n)Y =0,
where

a5’ () = 22 (=),
d(ll/)(z) =(1-2v-— M)zc((]'/)(zM) + MZM+IC(1V)(ZM),
dgu) (z,n) =v(v+ M)c(()u) (M) — VMchgu) (M) + MQZQMcéy) (zM).

Proof. From Lemma 4.2, we have 74, (2) = ) (z™). Introducing

using a new variable ¢ = 2™ we obtain
qg/)(t) = t_D/MWMn—&-V(Z)v
(9q£bu) (t) v _ | OT Mntv(2)
— M)/ M (2) + — (t—v=0) /M T M\ Z)
ot M v M Dz
g (t) _vlv+M) 12— M,
9% = Ve ¢ (”+2M)/M7TMn+y(2) + Tt(l v—2M)/M
Omutnin(2) 1 omv—anny /i O Tatnsy (2)
0z M? 022

Putting these expressions in (7.1) we find (7.2). O

Theorem 7.2. Under conditions of Theorem 7.1 the joined matrix polyno-
mial satisfies the differential matrix equation

Co(t,n) P,/ (1) + C1(t,n) P, (1) + Ca(t,n) Pu(t) = 0,

where
Cp = diag(céo), c,(:), . ,c,gM_l)), k=0,1,2.
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8. Polynomials Orthogonal With the Weight w(z)=1

We consider M radial rays which connect z = 0 and the points
gy =e2™/M g —0,1,..., M —1.

The corresponding inner product is given by

1 M—-1

(8.1) (f.9) = / > fleeaaler

Using the moments

M

Ppg = (29,29 =¢ p+q+1’
0, otherwise,

p = q(mod M),

ie.,

M
M@GE+j)+2v+1

WMitv,Mj+v = 0<v<M-1, 1,57=>0.

we can evaluate the moment-determinants

Hoo 10 HN-1,0
Ho1 M1 UN-11
AU = 1’ AN == . 9 N Z 17
HON—-1 HM1,N-1 HUN—-1,N—1

in the following form

Anin = EOEWD ... pM-1),

v—1 M-1
Annse = [[ B T BY, 0<v< M,
i=0 j=v
where E(()V) =1 and
Ho,v MM +v,v cee M (n—1)4v,v

E(V) My, M+v MM v, M+v HM(n—1)4v,M+v

Ry, M(n—1)+v HM+v,M(n—1)+v KM (n—1)+v,M(n—1)+v

41
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The value of Eff) is

> 01l (n— 1)1

EﬁLy):Mn
IT [M@G+7)+2v+1]
i,j=0
and
M
2 E7(1121 w+1 neb
e B R
2nM +2v+1 \ 4, MEk+2v+1) 7 -

where 0 <v < M — 1.

Remark 8.1. In the case M = 2m, the monic polynomials {ﬂN(z)}j\}fo, sat-
isfy the recurrence relation (see [9])

(8.2) TN4m(2) = 2" 7N (2) = bNTN—m(2), N >m,

n(z)=2z", N=0,1,... , M —1,
where )
l® s
bnv =9 lImv—mll
0, N <m-—1.

Hence, we have

b _ANt1 /AN-—mi1
N AN AN_m

and

(v)
bM _ Enljrl/AMnererl
n+v E’I(LV) AMn—I—u—m

Now, it gives

(v) (v+m)
E
Y
Ey E._ 4
an+V =

() (v—m)
En+l / En+l m<v< M — 17
ES/) E7(l1/fm)



A Class of Orthogonal Polynomials on the Radial Rays ... 43

i.e.,
(Mn)®
2nM +2v+1)2nM +2v+1— M)’

(Mn+2v +1— M)?
@2nM +2v+1)(2nM +2v+1— M)’

0<v<m-—1,

an+u =

m<v<M-—1.

For every M, the monic polynomials {my ()}, satisfy the recurrence
relation
M _an)rn(2) — Bumn-m(2), N> M,

an(z)=2N, N=0,1,...,M—1,
where, for N = Mn+v (n=[N/M], v €{0,1,... ,M — 1}), we have

TN4+m(2) = (2

’ n*(n +q)

_ 1 q —
AN =3 1+(2n+Q)(2n+q+2) ’ /BN_(2H+Q)2[(271+Q)2—1]’

with ¢ = (2v + 1)/M — 1. In an explicit form, we have

2(Mn)? 4+ (2v+1)[(2n — 1)M + 20 + 1]
(@n—1)M +2v +1][2n + 1)M +2v + 1]’

(Mn)?[(n — 1)M + 2v + 1)?
[(2n —2)M + 2v +1][(2n — )M + 2v + 1]2[2nM + 2v + 1]

Remark 8.2. In an even case M = 2m, using (8.2) we find

Bn =

venm(z) = M —an)mn(2) — Byrn i (2),
where

any =bn +bNfm, BN =bNbN_m-

Now, we denote by G,,(p, z) the monic Jacobi polynomial orthogonal with
respect to the weight wy(z) = 2=, p > 0, on the interval (0,1). On the
other hand, by Lemma 4.2, we conclude that is

Tatnav(2) = 27¢V (M), v=0,1,... , M —1,

where {qr(f') (t)},72% are orthogonal on (0, 1) with respect to the weight func-
tion
tw, (t) = tPFD/M=L 0 — 01, M —1.
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Theorem 8.1. The monic polynomials {TFN(Z)};O:OO can be expressed in the
form

_ r (n + %) Zn:(_l)k <n> r ((Qn —k+ 27\;’1_1) SM(n—k)+v

e () = g ety 2OV )T T

Proof. According to [5], the monic Jacobi polynomials G, (p,x) can be
expressed in the form

_To+m) s (MY T2 k)

In order to prove our result we put p = 2v+1)/M. O

Theorem 8.2. The monic polynomials {mn(2) ;0:00 have the generating

function

+oo M—1 (2n+ 2u+1)

Z Z 21” (2V+1)/Mn|r (7’L+ 2u+1)7rMn+u(Z)’an+V
n=0 v=0

— (1+w" 4+ R)?
— (1 +wM 4+ R)2/M

:Rfl( +w +R>1/M 1( )

where R = /1 —2(22M — 1)wM + w2M,

Proof. The monic polynomials G, (p, x) have the generating function

ol— I'(p +2n) n_ p-1 1—
Z pn|rp+n)Gn(p,x)u =R, (1+u+Rg) 7,

where Rg = /1 —2(2z — 1)u+u2. Using p = (2v + 1)/M and two new
variables t and u, defined by ¢t = 2™ and u = wM, for v =10,1,... ,M — 1,

we yield
+oo — 1% F (2n + 2V+1) n—+v

_ (Z’U})VRil(l +wM +R)17(2V+1)/M.

After making the sum by v, we end the proof. [
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Theorem 8.3. The monic polynomials {WN(Z)}-;\_,O:OO satisfy the Rodrigues

type formula
F(2V+1 + TL) 2041 O™
ety M — _1 n M 1—7 [

where v =0,1,... , M —1 andn=20,1,....

Proof. This follows from the Rodrigues formula

Galp ) = (1) TP g1 O

1—z)"2" . O
I‘(p+2n)$ oxn [( z)"e }

9. Orthogonal Polynomials of the Generalized Laguerre Type

In the same way like in the previous section, we consider

400 M—1 - '
(91) (f7 g) = /0 Z f(x{;‘s)g(xgs) d$7 £y = el27rs/M’
s=0

where o
w(z) =2Me™™ | AM+1>0.

We denote by IAM({S) (z) the monic generalized Laguerre polynomials orthog-
onal with respect to the weight ws(z) = x°e™* on the interval (0,4+00). On
the other hand, by Lemma 4.2, we conclude that is

Tatngw(2) = 2V L (M), v =0,1,... , M -1,

where
14 2v+1
Qay =y — )
U M

Thus, using results from Section 4 and the previous facts, we prove:

Theorem 9.1. The monic polynomials {mn(2)} 4=, can be expressed in the
form

- _ I'(a, +n+1)
(2) = _1yn—k (" v Mk+v

Proof. According to [5], the monic generalized Laguerre polynomials can
be expressed by

F(9) () — - k(T F(s+n+1)x
L )_kz::o( 2 k(k)r(s+k+1) .

Now, we use it for s = o,. [
Also, we can prove:
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Theorem 9.2. The monic polynomials {mn(2)} N2, have the generating
function

io Mi atman(z) e ()Y = (4wt (=)™ /(4w
n=0 v=0 " n! ZW — (]_ -+ wM)2/M (1 + ’wM)2+”Y*1/M'

Theorem 9.3. The monic polynomials {mn(2)} 5>, satisfy the Rodrigues
type formula

an

77Mn+u( %) = (_1)nxV/M—al,ea:7 [xn—i-oz,,e—w] )
ozx™
wherev =0,1,... M —1andn=20,1,....
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