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A CLASS OF ORTHOGONAL POLYNOMIALS
ON THE RADIAL RAYS

IN THE COMPLEX PLANE, II*

G. V. Milovanović, P. M. Rajković and Z. M. Marjanović

Abstract. In this paper we continue considerations on polynomials orthogonal
on the radial rays in the complex plane started in [7–9]. We study a general case
of an arbitrary number of the rays and consider the corresponding orthogonal
polynomials and join them matrix orthogonal polynomials. For both of them we
derive the recurrence relations and find a representation. In a special symmetric
case we find connection with the standard orthogonal polynomials on the real
line, locate the zeros and find differential equation. Finally, we consider some
analogues of the classical Legendre and the generalized Laguerre polynomials.

1. Introduction

For a given lengths and angles

ls ∈ R+, θs ∈ (−π, π], s = 0, 1, . . . ,m− 1,

we define the inner product,

(1.1) (f, g) =

m−1∑
s=0

ε−1s

∫
Ls

f(z)g(z)|ws(z)| dz, εs = eiθs ,

with respect to the weight functions ws(z) on the radial rays Ls which con-
nect the origin z = 0 and the points z = lsεs, 0 ≤ s ≤ m − 1. This can be
rewritten in the form

(1.2) (f, g) =

m−1∑
s=0

∫ ls

0

f(xεs)g(xεs)|ws(xεs)| dx
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or

(1.3) (f, g) =

∫ 1

0

m−1∑
s=0

lsf(lsεsx)g(lsεsx)|ws(lsεsx)| dx.

Because of

‖f‖2 = (f, f) =
m−1∑
s=0

∫ ls

0

|f(xεs)|2|ws(xεs)| dx > 0,

except for f(z) ≡ 0, the corresponding orthogonal polynomials {πN (z)}+∞N=0

exist and they can be construct using Gram-Schmidt orthogonalizing pro-
cess.

If we define the moments

µp,q = (zp, zq)

and moment-determinants

∆0 = 1, ∆N =

∣∣∣∣∣∣∣∣
µ00 µ10 . . . µN−1,0
µ01 µ11 µN−1,1

...
µ0,N−1 µ1,N−1 µN−1,N−1

∣∣∣∣∣∣∣∣ , N ≥ 1,

then these polynomials can be expressed in the form

π0(z) = 1,

πN (z) =
1

∆N

∣∣∣∣∣∣∣∣∣∣∣

µ00 µ10 . . . µN−1,0 1
µ01 µ11 µN−1,1 z

...
µ0,N−1 µ1,N−1 µN−1,N−1 zN−1

µ0,N µ1,N µN−1,N zN

∣∣∣∣∣∣∣∣∣∣∣
, N ≥ 1.

Like in [9], we can prove the following result:

Theorem 1.1. If ∆n > 0, n ∈ N, the monic polynomials {πN (z)}+∞N=0,
orthogonal with respect to the inner product (1.1) exist uniquely and the
norm is given by

‖πN‖2 =
∆N+1

∆N
.
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For m = 1 and l0 = 1, we have the standard case of polynomials orthogo-
nal on (0, 1). Also, for m = 2, l0 = l1 = 1 and a weight w(x) on (−1, 1), we

have (f, g) =
∫ 1

−1 f(x)g(x)w(x) dx, which is a standard case of polynomials

orthogonal on (−1, 1).

The case when m is an even number was considered by one of us in [4].
In this paper we study a general case. The paper is organized as follows.
In Section 2 we find the recurrence relation for orthogonal polynomials on
the radial rays and study the matrix polynomials joined them. In Section
3 we continue with an investigation of a symmetric case of equal lengths,
angles and weights. In such a case, in Sections 4–7, we find a representation
for polynomials, the joined matrix polynomials, distribution of zeros and
a differential equation, respectively. Sections 8 and 9 are devoted to some
analogues of the classical Legendre polynomials and the generalized Laguerre
polynomials.

2. Recurrence Relation and Joined Matrix Polynomials

The properties of the introduced orthogonal polynomials essentially de-
pend on lengths and angles of rays and their weights. Firstly, we prove the
following result:

Lemma 2.1. If there exists any M ∈ N such that

(2.1) ε2Ms = 1, s = 0, 1, . . . ,m− 1,

then the inner product (·, ·) has the property

(zMf, g) = (f, zMg).

Proof. From the condition εMs = −1 or εMs = 1, we have

(zMf, g) =
m−1∑
s=0

ls

∫ 1

0

(lsεsx)Mf(lsεsx)g(lsεsx)|ws(lsεsx)| dx

=

m−1∑
s=0

ls

∫ 1

0

f(lsεsx)(lsx)MεMs g(lsεsx)|ws(lsεsx)| dx

=

m−1∑
s=0

ls

∫ 1

0

f(lsεsx)(lsεsx)Mg(lsεsx)|ws(lsεsx)| dx

= (f, zMg). �
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Theorem 2.1. Let the conditions (2.1) be satisfied and let M be a minimal

such integer. Then the monic polynomials {πN (z)}+∞N=0 satisfies (2M + 1)-
recurrence relation

zMπN (z) = πN+M (z) +
N+M−1∑
j=N−M

α
(N)
j πj(z), N ≥M.

where πj(z), 0 ≤ j < M , can be determined by the Gram-Schmidt orthogo-

nalization and α
(N)
j = 0 for j < 0.

Proof. Writing

zMπN (z) = πN+M (z) +

N+M−1∑
ν=0

α(N)
ν πν(z), N ≥ 0,

for an arbitrary k, we have

(zMπN , πk) = (πN+M , πk) +

N+M−1∑
ν=0

α(N)
ν (πν , πk).

If 0 ≤ k ≤ N +M − 1, then (zMπN , πk) = α
(N)
k (πk, πk), i.e.,

α
(N)
k =

(zMπN , πk)

(πk, πk)
, 0 ≤ k ≤ N +M − 1.

If N ≥M + 1 and 0 ≤ k ≤ N −M − 1, because of Lemma 2.1 and orthogo-
nality, we have that (zMπN , πk) = (πN , z

Mπk) = 0, i.e.,

α
(N)
k = 0, k = 0, 1, . . . , N −M − 1, N ≥M + 1. �

Using a rotation, we can notice some interesting properties of our poly-
nomials.

Theorem 2.2. Let α ∈ (−π, π] be an angle and the ray Ls, after the rotation

for the angle α, becomes Lαs . Then, the sequence {παN (z)}+∞N=0 orthogonal
with respect to

(f, g)α =

m−1∑
s=0

e−iαε−1s

∫
Lαs

f(z)g(z)|ws(ze−iα)| dz
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can be expressed as
παN (z) = πN (e−iαz),

where the polynomials {πN (z)}+∞N=0 are orthogonal with respect to (1.1).

Because of

πMn+ν(z) =

Mn+ν∑
j=0

π
(j)
Mn+ν(0)

j!
zj =

M−1∑
k=0

∑
j

π
(Mj+k)
Mn+ν (0)

(Mj + k)!
zMj+k

and

πMn+ν(z) =

M−1∑
k=0

zk
∑
j

π
(Mj+k)
Mn+ν (0)

(Mj + k)!
(zM )j ,

we can define the polynomials

q(ν)n (k; z) =
∑
j

π
(Mj+k)
Mn+ν (0)

(Mj + k)!
zj .

Obviously, it is

degree q(ν)n (k; z) =

{
n, for k ≤ ν
n− 1, for k > ν.

Then, we have

πMn+ν(z) = q(ν)n (0; zM ) + zq(ν)n (1; zM ) + · · ·+ zM−1q(ν)n (M − 1; zM ).

Now, we can define the sequence of matrix polynomials {Pn(z)}+∞n=0 by

Pn(z) =

 q
(0)
n (0; z) · · · q

(0)
n (M − 1; z)

...

q
(M−1)
n (0; z) · · · q

(M−1)
n (M − 1; z)

 , N ≥ 0.

Then, by [2–3], we conclude that there exists a positive definite matrix of
measures, denote by dM(z), such that∫

Pn(z) · dM(z) · P ∗m(z) = δmnDM ,

where DM = diag(dii), for dii > 0, i = 1, 2, . . . ,M.

Thus, {Pn(z)}+∞n=0 is a sequence of matrix polynomials orthogonal on the
real line and it satisfies the matrix three-term recurrence relation

zPn(z) = Pn+1(z) +AnPn(z) +BnPn−1(z), P−1 = 0, P0 = I.
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3. Case of Equal Lengths, Angles and Weights

In this section and further we suppose that

ls = l, εs = ei2πs/M , 0 ≤ s ≤M − 1

and
|ws(xεs)| = w(x), x ∈ (0, l), s = 0, 1, . . . ,M − 1.

Then the inner product (1.1) becomes

(3.1) (f, g) =

∫ l

0

(
M−1∑
s=0

f(xεs)g(xεs)

)
w(x) dx.

Like in [9] we can prove:

Lemma 3.1. For p ∈ N let n = [p/M ] and ν = p−Mn. Then

M−1∑
s=0

εps =

M−1∑
s=0

ενs =

{
M, if ν = 0

0, if 1 ≤ ν ≤M − 1.

Lemma 3.2. The polynomials πN (z), N = 0, 1, . . . , satisfy

πN (zεs) = εNs πN (z), s = 0, 1, . . . ,M − 1.

Lemma 3.3. For 0 ≤ ν < N ≤M − 1, we have (zN , πν) = 0.

Lemma 3.4. For N = 0, 1, . . . ,M − 1 we have πN (z) = zN .

Now, we can prove

Theorem 3.5. The monic polynomials {πN (z)}+∞N=0 satisfy the recurrence
relation

(3.2) πN+M (z) =
(
zM − αN

)
πN (z)− βNπN−M (z), N ≥ 0,

πN (z) = zN , N = 0, 1, . . . ,M − 1,

where

αN =
(zMπN , πN )

(πN , πN )
, N ≥ 0, βN =


‖πN‖2

‖πN−M‖2
, N ≥M ,

0, N ≤M − 1.
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Proof. According to Theorem 2.1 we have (2M + 1)-recurrence relation
with the coefficients

α
(N)
k =

(zMπN , πk)

(πk, πk)
, N −M ≤ k ≤ N +M − 1.

Now, we yield

(zMπN , πk) =

∫ l

0

(
M−1∑
s=0

(xεs)
MπN (xεs)πk(xεs)

)
w(x) dx

=

∫ l

0

(
M−1∑
s=0

xMεNs πN (x)εksπk(x)

)
w(x) dx

=

M−1∑
s=0

εN−ks

∫ l

0

xMπN (x)πk(x)w(x) dx.

According to Lemma 3.1, the value of (zMπN , πk) will be different of zero
only for N − k = 0 and N − k = M . Thus,

πN+M (z) = zMπN (z)− α(N)
N πN (z)− α(N)

N−MπN−M (z).

Since

α
(N)
N−M =

(zMπN , πN−M )

(πN−M , πN−M )
=

(πN , z
MπN−M )

(πN−M , πN−M )
,

we get coefficients in (3.2) as αN = α
(N)
N and βN = α

(N)
N−M .

Remark 3.1. In the case of even number of rays there exist a few simpler
relations (see [9]).

4. Representation of Polynomials πN(z)

In this section we conclude that πN (z) are incomplete polynomials with
the following representation:

Lemma 4.1. The polynomials πN (z) can be expressed in the form

(4.1) πN (z) =

[N/M ]∑
j=0

γN−Mjz
N−Mj ,

where γN = 1 and γN−Mj ∈ R, j = 1, 2, . . . , [N/M ].

Proof. It is obvious from the recurrence relation (3.2) and Lemma 3.4. �
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Lemma 4.2. For the polynomials πN (z) we have the following representa-
tion

(4.2) πMn+ν(z) = zνq(ν)n (zM ), ν = 0, . . . ,M − 1; n = 0, 1, . . . ,

where q
(ν)
n (t), ν = 0, 1, . . . ,M − 1 are monic polynomials of the degree n.

Proof. ¿From Lemma 4.1, we have

πMn+ν(z) =

n∑
j=0

γMj+νz
Mj+ν ,

i.e.,

πMn+ν(z) = zν
n∑
j=0

γMj+ν

(
zM
)j
,

wherefrom we get (4.2). �

For the introduced polynomials q
(ν)
n (z) we have the following two results:

Theorem 4.3. The monic polynomials {q(ν)n (t)}+∞n=0, 0 ≤ ν ≤M−1, satisfy
the three-term recurrence relation

(4.3) q
(ν)
n+1(t) = (t− a(ν)n )q(ν)n (t)− b(ν)n q

(ν)
n−1(t), n = 0, 1, . . . ,

q
(ν)
0 (t) = 1, q

(ν)
−1 (t) = 0,

where a
(ν)
n = αN and b

(ν)
n = βN for N = Mn+ ν, n ∈ N0.

Proof. For a given N , using the recurrence relation (3.2), we have

πM(n+1)+ν(z) =
(
zM − αN

)
πMn+ν(z)− βNπM(n−1)+ν(z).

By (4.2), we yield

zνq
(ν)
n+1(zM ) = (zM − αN )zνq(ν)n (zM )− βNzνq(ν)n−1(zM ),

wherefrom, introducing t = zM , we obtain

q
(ν)
n+1(t) = (t− αN )q(ν)n (t)− βNq(ν)n−1(t), n = 0, 1, . . . . �

The three-term recurrence relation (4.3) suggests the orthogonality of the

sequences {q(ν)n (t)}+∞n=0, ν ∈ {0, 1, . . . ,M − 1} on the real line.



A Class of Orthogonal Polynomials on the Radial Rays . . . 37

Theorem 4.4. Let x 7→ w(x) be a weight function which enables the exis-

tence of the polynomials {πN (z)}+∞N=0. Then, for any ν ∈ {0, 1, . . . ,M − 1},
the sequence of polynomials {q(ν)n (t)}+∞n=0 is orthogonal on (0, lM ) with respect
to the weight function

t 7→ wν(t) = t(2ν+1)/M−1w(t1/M ).

Proof. For N = Mn+ ν and K = Mk + ν, where n, k ∈ N0, we have

(πN , πK) =

∫ l

0

(
M−1∑
s=0

πN (xεs)πK(xεs)

)
w(x) dx

=

∫ l

0

(
M−1∑
s=0

εNs πN (x)εKs πK(x)

)
w(x) dx

=

∫ l

0

(
M−1∑
s=0

ενsπN (x)ενsπK(x)

)
w(x) dx

=

∫ l

0

(
M−1∑
s=0

πN (x)πK(x)

)
w(x) dx

= M

∫ l

0

πN (x)πK(x)w(x) dx

= M

∫ l

0

xνq(ν)n (xM )xνq
(ν)
k (xM )w(x) dx.

Taking t = xM we get

(πN , πK) =

∫ lM

0

q(ν)n (t)q
(ν)
k (t)t(2ν+1)/M−1w(t1/M ) dt.

Because of (πN , πK) = δNK‖πN‖2 = δnk‖πN‖2, we conclude that

∫ l

0

q(ν)n (t)q
(ν)
k (t)t(2ν+1)/M−1w(t1/M ) dt = δnk‖πN‖2. �
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5. The Joined Orthogonal Matrix Polynomials

The results of previous sections can be rewritten in a simpler form, using
the matrices defined in Section 2.

To every polynomial πN (z), where N = Mn+ ν, 0 ≤ ν ≤M − 1, we can
join the matrix polynomial

Pn(x) = diag
(
q(0)n (x), q(1)n (x), . . . , q(M−1)n (x)

)
,

where q
(k)
n (x) = q

(k)
n (k;x), 0 ≤ k ≤ M − 1, and a matrix of the weight

functions
W (x) = diag

(
w0(x), w1(x), . . . , wM−1(x)

)
.

Then we have ∫ lM

0

Pm(x) ·W (x) · P ∗n(x) dx = δmnDn,

where
Dn = diag

(
‖q(0)n ‖2, . . . , ‖q(M−1)n ‖2

)
and P ∗n(x) denotes the conjugate and transpose matrix of Pn(x).

Therefore, {PN (z)}+∞N=0 is a sequence of the matrix polynomials orthog-
onal on (0, l) with respect to the positive definite matrix of weights W (x).
This sequence satisfies the matrix three-term recurrence relation

xPn(x) = Pn+1(x) +AnPn(x) +BnPn−1(x), P−1 = 0, P0 = I,

where

An = diag
(
a(0)n , a(1)n , . . . , a(M−1)n

)
, Bn = diag

(
b(0)n , b(1)n , . . . , b(M−1)n

)
.

6. Zeros of πN(z) and Christoffel-Darboux Identity

For zeros of πN (z) we can prove:

Theorem 6.1. All zeros of the polynomial πN (z) are simple and located on
the radial rays, with possible exception of a multiple zero in origin z = 0 of
the order ν if N ≡ ν (mod M).

Proof. The proof is very close to one in [9]. �
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Let τ
(n,ν)
k , k = 1, . . . , n, denote the zeros of q

(ν)
n (t) in an increasing order

τ
(n,ν)
1 < τ

(n,ν)
2 < · · · < τ (n,ν)n .

Each zero τ
(n,ν)
k generates M zeros

z
(n,ν)
k,s =

M

√
τ
(n,ν)
k ei2πs/M , s = 0, 1, . . . ,M − 1,

of πN (z). On every ray we have

|z(n,ν)1,s | < |z
(n,ν)
2,s | < · · · < |z(n,ν)n,s |, s = 0, 1, . . . ,M − 1.

Using the same notation, from Theorem 2.2 it follows:

Theorem 6.2. The zeros of παN (z) are the zeros of πN (z) rotated for the
angle α.

The properties of the zeros of πN (z) were completely discussed in our
paper [10]. Here we mention the main conclusion. By our computational
investigations about zeros, we can state the following conjecture:

Conjecture 6.1. All zeros of the polynomial πN (z) orthogonal with respect
to (1.1) are located in the convex hull of the endpoints of the rays.

It is easy to prove:

Theorem 6.3. The monic polynomials {πN (z)}+∞N=0 satisfy the identity of
Christoffel-Darboux type

n∑
k=0

πkM+ν(z)πkM+ν(t)

‖πkM+ν‖2
=

1

‖πnM+ν‖2
×

×
π(n+1)M+ν(z)πnM+ν(t)− π(n+1)M+ν(t)πnM+ν(z)

zM − tM

for ν = 0, 1, . . . ,M − 1 and n = 0, 1, . . . .

7. Differential Equation

Using relations from Section 4, we can prove:
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Theorem 7.1. If a monic polynomial q
(ν)
n (t), ν = 0, 1, . . . ,M − 1, where

M is a number of the rays, satisfies the differential equation

(7.1) c
(ν)
0 (t)y′′ + c

(ν)
1 (t)y′ + c

(ν)
2 (t, n)y = 0,

then the monic polynomial πMn+ν(z) satisfies the following differential equa-
tion

(7.2) d
(ν)
0 (z)Y ′′ + d

(ν)
1 (z)Y ′ + d

(ν)
2 (z, n)Y = 0,

where

d
(ν)
0 (z) = z2c

(ν)
0 (zM ),

d
(ν)
1 (z) = (1− 2ν −M)zc

(ν)
0 (zM ) +MzM+1c

(ν)
1 (zM ),

d
(ν)
2 (z, n) = ν(ν +M)c

(ν)
0 (zM )− νMzMc

(ν)
1 (zM ) +M2z2Mc

(ν)
2 (zM ).

Proof. From Lemma 4.2, we have πMn+ν(z) = zνq
(ν)
n (zM ). Introducing

using a new variable t = zM , we obtain

q(ν)n (t) = t−ν/MπMn+ν(z),

∂q
(ν)
n (t)

∂t
= − ν

M
t−(ν+M)/MπMn+ν(z) +

1

M
t(1−ν−M)/M ∂πMn+ν(z)

∂z

∂2q
(ν)
n (t)

∂t2
=
ν(ν +M)

M2
t−(ν+2M)/MπMn+ν(z) +

1− 2ν −M
M2

t(1−ν−2M)/M×

× ∂πMn+ν(z)

∂z
+

1

M2
t(2−ν−2M)/M ∂2πMn+ν(z)

∂z2
.

Putting these expressions in (7.1) we find (7.2). �

Theorem 7.2. Under conditions of Theorem 7.1 the joined matrix polyno-
mial satisfies the differential matrix equation

C0(t, n)P ′′n (t) + C1(t, n)P ′n(t) + C2(t, n)Pn(t) = 0,

where
Ck = diag(c

(0)
k , c

(1)
k , . . . , c

(M−1)
k ), k = 0, 1, 2.
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8. Polynomials Orthogonal With the Weight w(z)=1

We consider M radial rays which connect z = 0 and the points

εs = ei2πs/M , s = 0, 1, . . . ,M − 1.

The corresponding inner product is given by

(8.1) (f, g) =

∫ 1

0

M−1∑
s=0

f(xεs)g(xεs) dx.

Using the moments

µp,q = (zp, zq) =


M

p+ q + 1
, p ≡ q(modM),

0, otherwise,

i.e.,

µMi+ν,Mj+ν =
M

M(i+ j) + 2ν + 1
, 0 ≤ ν ≤M − 1, i, j ≥ 0.

we can evaluate the moment-determinants

∆0 = 1, ∆N =

∣∣∣∣∣∣∣∣
µ00 µ10 . . . µN−1,0
µ01 µ11 µN−1,1

...
µ0,N−1 µ1,N−1 µN−1,N−1

∣∣∣∣∣∣∣∣ , N ≥ 1,

in the following form

∆Mn = E(0)
n E(1)

n · · ·E(M−1)
n ,

∆Mn+ν =

ν−1∏
i=0

E
(i)
n+1

M−1∏
j=ν

E(j)
n , 0 < ν < M,

where E
(ν)
0 = 1 and

E(ν)
n =

∣∣∣∣∣∣∣∣∣
µν,ν µM+ν,ν . . . µM(n−1)+ν,ν

µν,M+ν µM+ν,M+ν µM(n−1)+ν,M+ν

...
µν,M(n−1)+ν µM+ν,M(n−1)+ν µM(n−1)+ν,M(n−1)+ν

∣∣∣∣∣∣∣∣∣ .
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The value of E
(ν)
n is

E(ν)
n = Mn2 [0!1! · · · (n− 1)!]2

n−1∏
i,j=0

[M(i+ j) + 2ν + 1]

and

‖πMn+ν‖2 =
E

(ν)
n+1

E
(ν)
n

=


M

2ν + 1
, n = 0,

M

2nM + 2ν + 1

(
2n−1∏
k=n

M(k − n+ 1)

Mk + 2ν + 1

)2

, n ≥ 1,

where 0 ≤ ν ≤M − 1.

Remark 8.1. In the case M = 2m, the monic polynomials {πN (z)}+∞N=0, sat-
isfy the recurrence relation (see [9])

(8.2) πN+m(z) = zmπN (z)− bNπN−m(z), N ≥ m,

πN (z) = zN , N = 0, 1, . . . ,M − 1,

where

bN =


‖πN‖2

‖πN−m‖2
, N ≥ m,

0, N ≤ m− 1.

Hence, we have

bN =
∆N+1

∆N

/
∆N−m+1

∆N−m

and

bMn+ν =
E

(ν)
n+1

E
(ν)
n

/
∆Mn+ν−m+1

∆Mn+ν−m
.

Now, it gives

bMn+ν =



E
(ν)
n+1

E
(ν)
n

/
E

(ν+m)
n

E
(ν+m)
n−1

0 ≤ ν ≤ m− 1,

E
(ν)
n+1

E
(ν)
n

/
E

(ν−m)
n+1

E
(ν−m)
n

m ≤ ν ≤M − 1,
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i.e.,

bMn+ν =


(Mn)2

(2nM + 2ν + 1)(2nM + 2ν + 1−M)
, 0 ≤ ν ≤ m− 1,

(Mn+ 2ν + 1−M)2

(2nM + 2ν + 1)(2nM + 2ν + 1−M)
, m ≤ ν ≤M − 1.

For every M , the monic polynomials {πN (z)}+∞N=0 satisfy the recurrence
relation

πN+M (z) = (zM − αN )πN (z)− βNπN−M (z), N ≥M,

πN (z) = zN , N = 0, 1, . . . ,M − 1,

where, for N = Mn+ ν
(
n = [N/M ], ν ∈ {0, 1, . . . ,M − 1}

)
, we have

αN =
1

2

[
1 +

q2

(2n+ q)(2n+ q + 2)

]
, βN =

n2(n+ q)2

(2n+ q)2[(2n+ q)2 − 1]
,

with q = (2ν + 1)/M − 1. In an explicit form, we have

αN =
2(Mn)2 + (2ν + 1)[(2n− 1)M + 2ν + 1]

[(2n− 1)M + 2ν + 1][(2n+ 1)M + 2ν + 1]
,

βN =
(Mn)2[(n− 1)M + 2ν + 1]2

[(2n− 2)M + 2ν + 1][(2n− 1)M + 2ν + 1]2[2nM + 2ν + 1]
.

Remark 8.2. In an even case M = 2m, using (8.2) we find

πN+M (z) = (zM − αN )πN (z)− βNπN−M (z),

where
αN = bN + bN+m, βN = bN bN−m.

Now, we denote by Gn(p, x) the monic Jacobi polynomial orthogonal with
respect to the weight wp(x) = xp−1, p > 0, on the interval (0, 1). On the
other hand, by Lemma 4.2, we conclude that is

πMn+ν(z) = zνq(ν)n (zM ), ν = 0, 1, . . . ,M − 1,

where {q(ν)n (t)}+∞n=0 are orthogonal on (0, 1) with respect to the weight func-
tion

t 7→ wν(t) = t(2ν+1)/M−1, ν = 0, 1, . . . ,M − 1.
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Theorem 8.1. The monic polynomials {πN (z)}+∞N=0 can be expressed in the
form

πMn+ν(z) =
Γ
(
n+ 2ν+1

M

)
Γ
(
2n+ 2ν+1

M

) n∑
k=0

(−1)k
(
n

k

)
Γ
(
2n− k + 2ν+1

M

)
Γ
(
n− k + 2ν+1

M

) zM(n−k)+ν .

Proof. According to [5], the monic Jacobi polynomials Gn(p, x) can be
expressed in the form

Gn(p, x) =
Γ (p+ n)

Γ (p+ 2n)

n∑
k=0

(−1)k
(
n

k

)
Γ (p+ 2n− k)

Γ (p+ n− k)
xn−k.

In order to prove our result we put p = (2ν + 1)/M . �

Theorem 8.2. The monic polynomials {πN (z)}+∞N=0 have the generating
function

+∞∑
n=0

M−1∑
ν=0

21−(2ν+1)/M Γ
(
2n+ 2ν+1

M

)
n!Γ

(
n+ 2ν+1

M

)πMn+ν(z)wMn+ν

= R−1(1 + wM +R)1/M−1
(zw)M − (1 + wM +R)2

zw − (1 + wM +R)2/M
,

where R =
√

1− 2(2zM − 1)wM + w2M .

Proof. The monic polynomials Gn(p, x) have the generating function

+∞∑
n=0

21−p
Γ(p+ 2n)

n!Γ(p+ n)
Gn(p, x)un = R−1G (1 + u+RG)1−p,

where RG =
√

1− 2(2x− 1)u+ u2. Using p = (2ν + 1)/M and two new
variables t and u, defined by t = zM and u = wM , for ν = 0, 1, . . . ,M − 1,
we yield

+∞∑
n=0

21−(2ν+1)/M Γ
(
2n+ 2ν+1

M

)
n!Γ

(
n+ 2ν+1

M

)πMn+ν(z)wMn+ν

= (zw)νR−1(1 + wM +R)1−(2ν+1)/M .

After making the sum by ν, we end the proof. �
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Theorem 8.3. The monic polynomials {πN (z)}+∞N=0 satisfy the Rodrigues
type formula

πMn+ν( M
√
x) = (−1)n

Γ( 2ν+1
M + n)

Γ( 2ν+1
M + 2n)

x1−
2ν+1
M

∂n

∂xn

[
(1− x)nxn+

2ν+1
M −1

]
,

where ν = 0, 1, . . . ,M − 1 and n = 0, 1, . . . .

Proof. This follows from the Rodrigues formula

Gn(p, x) = (−1)n
Γ(p+ n)

Γ(p+ 2n)
x1−p

∂n

∂xn
[
(1− x)nxn+p−1

]
. �

9. Orthogonal Polynomials of the Generalized Laguerre Type

In the same way like in the previous section, we consider

(9.1) (f, g) =

∫ +∞

0

M−1∑
s=0

f(xεs)g(xεs) dx, εs = ei2πs/M ,

where
w(x) = xMγe−x

M

, γM + 1 > 0.

We denote by L̂
(s)
n (x) the monic generalized Laguerre polynomials orthog-

onal with respect to the weight ws(x) = xse−x on the interval (0,+∞). On
the other hand, by Lemma 4.2, we conclude that is

πMn+ν(z) = zνL̂(αν)
n (zM ), ν = 0, 1, . . . ,M − 1,

where

αν = γ − 1 +
2ν + 1

M
.

Thus, using results from Section 4 and the previous facts, we prove:

Theorem 9.1. The monic polynomials {πN (z)}+∞N=0 can be expressed in the
form

πMn+ν(z) =

n∑
k=0

(−1)n−k
(
n

k

)
Γ (αν + n+ 1)

Γ (αν + k + 1)
zMk+ν .

Proof. According to [5], the monic generalized Laguerre polynomials can
be expressed by

L̂(s)
n (x) =

n∑
k=0

(−1)n−k
(
n

k

)
Γ (s+ n+ 1)

Γ (s+ k + 1)
xk.

Now, we use it for s = αν . �

Also, we can prove:
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Theorem 9.2. The monic polynomials {πN (z)}+∞N=0 have the generating
function

+∞∑
n=0

M−1∑
ν=0

πMn+ν(z)
wMn+ν

n!
=

(zw)M − (1 + wM )2

zw − (1 + wM )2/M
· e(zw)M/(1+wM )

(1 + wM )2+γ−1/M
.

Theorem 9.3. The monic polynomials {πN (z)}+∞N=0 satisfy the Rodrigues
type formula

πMn+ν( M
√
x) = (−1)nxν/M−ανex

∂n

∂xn
[
xn+ανe−x

]
,

where ν = 0, 1, . . . ,M − 1 and n = 0, 1, . . . .
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