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Abstract. It is well-known that a standard numerical construction of Gaussian
quadrature rule is based on determining the eigenvalues and the first components
of the eigenvectors of a symmetric tridiagonal matrix using QR-algorithm. In
this note we analyze the accuracy of this procedure and give examples when such
a construction gives inaccurate results for constructed weights. Also, a modified
algorithm is proposed for construction of weights in Gaussian quadrature rule.

1. Introduction

Let dλ(x) be a given nonnegative measure on the real line R, with
compact or unbounded support, for which all moments µk =

∫
R xkdλ(x)

k = 0, 1, . . ., exist and are finite, and µ0 > 0. Then, there exists a unique set
of orthonormal polynomials {pk(x)}k∈N0 with respect to the inner product

(f, g) =
∫

R
f(x)g(x) dλ(x),(1.1)

such that

pk(x) = akx
k + lower degree terms (ak > 0),

(pk, pm) = δkm,

where δkm is Kronecker’s delta. These polynomials satisfy the recurrence
relation

xpk(x) =
√

βk+1 pk+1(x) + αkpk(x) +
√

βk pk−1(x), k ≥ 0,(1.2)
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with p−1(x) = 0 and p0(x) = 1/
√

µ0. With Pn we denote the set of all
algebraic polynomials of degree at most n (∈ N0).

It is well-known that the n-point Gaussian quadrature rule

∫

R
f(x) dλ(x) =

n∑

k=1

A
(n)
k f(x(n)

k ) + Rn(f)(1.3)

is exact for each f ∈ P2n−1. The nodes x
(n)
k , k = 1, . . . , n, are zeros of pn(x)

and the Christoffel numbers

A
(n)
k =

1

p′n(x(n)
k )

∫

R

pn(x)

x− x
(n)
k

dλ(x), k = 1, . . . , n,

using the Christoffel-Darboux identity (cf. [1, p. xx]) can be expressed in
the form

A
(n)
k =

1√
βn

· 1

p′n(x(n)
k )pn−1(x

(n)
k )

, k = 1, . . . , n,(1.4)

or
A

(n)
k =

1
n−1∑
ν=0

(
pν(x

(n)
k

)2
, k = 1, . . . , n.(1.5)

The last formula due to Shohat [13].
An important progress in the construction of Gaussian formulas was made

by Golub and Welsch [8] in 1969, giving a numerical algorithm which is based
on determining the eigenvalues and the first components of the eigenvectors
of a symmetric tridiagonal matrix. Namely, taking the first n equations from
(1.2), they obtained

Jnp
(n)
k = xp(n)

k +
√

βn pn(x)en,(1.6)

where

Jn =




α0
√

β1 O
√

β1 α1
√

β2
√

β2 α2
. . .

. . . . . .
√

βn−1

O
√

βn−1 αn−1




, p(n)
k =




p0(x)
p1(x)
p2(x)

...
pn−2(x)
pn−1(x)




,
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and en is the last coordinate vector, en = [0 0 . . . 1]T . The matrix Jn is
known as the Jacobi matrix. Putting the zero x

(n)
k (k = 1, . . . , n) of the

polynomial pn(x) in (1.6), instead of x, it is clear that x
(n)
k is the eigenvalue

and p(n)
k is the corresponding eigenvector of the Jacobi matrix Jn, so that

(1.5) can be expressed in the form A
(n)
k ‖p(n)

k ‖2
E = 1 (k = 1, . . . , n), where

‖a‖2
E = aTa (a ∈ Rn). After a normalization of eigenvectors of the Jacobi

matrix,
p(n)

k

‖p(n)
k ‖E

=: q(n)
k = [q(n)

k1 q
(n)
k2 . . . q

(n)
kn ]T ,

and a fact that ‖p(n)
k ‖E = ‖p(n)

k ‖E/‖q(n)
k ‖E = p0(x

(n)
k )/q

(n)
k1 = (1/

√
µ0)/q

(n)
k1 ,

the Christoffel numbers become

A
(n)
k = µ0(q

(n)
k1 )2 (k = 1, . . . , n).(1.7)

Finally, simplifying QR algorithm so that only the first components of the
eigenvectors are computed, Golub and Welsch [8] gave an efficient procedure
for construction of Gaussian quadrature rules. This procedure is imple-
mented in several programming package including the most known ORTHPOL
given by Gautschi [6].

Since, the Jacobi matrix in (1.6) is symmetric and tridiagonal, QR-
algorithm can be used for construction of weights. It is known that in the
case of the positive definite orthogonal polynomials, i.e., when the coeffi-
cients βk are positive, QR-algorithm can be used successfully for a construc-
tion of nodes (see [9]). However, in the case when some of coefficients βk are
negative, QR-algorithm may become ill-conditioned.

In this note we give our observations on numerical behavior of this al-
gorithm in some cases (Section 2), propose a modification of the algorithm
(Section 3), and finally we give a few interesting numerical examples.

2. Some Observations on Numerical Behavior of the Algorithm
Based on (1.7)

The ill-conditioning of QR-algorithm for finding eigenvalues of the Jacobi
matrix was studied in [12] and presented for the class of the generalized
Bessel polynomials, which coefficients in the three-term recurrence relation
are given by

αk = − 2α

(α + 2k)(a + 2 + 2k)
, k ∈ N0,



72 G. V. Milovanović and A. S. Cvetković

βk = − 4k(α + k)
(α + 2k)2((α + 2k)2 − 1)

, k ∈ N,

and

β0 = − 4πi
1 + α

.

As it can be seen all sub-diagonal entries in the Jacobi matrix for the
generalized Bessel polynomials are purely imaginary numbers. It is also
believed that for all definite classes of polynomials, a case when some of the
coefficients βk are negative, QR-algorithm exhibits ill-conditioning in the
process of the eigenvalues construction. In our numerical experiments this
was not proved. For example, for a class of polynomials orthogonal on the
semicircle (see [7]) QR-algorithm can be used for constructing the eigenvalues
of the Jacobi matrix and such construction is not ill-conditioned. For some
other definite classes of orthogonal polynomials, QR-algorithm also does not
exhibit ill-conditioning.

The problem of ill-conditioning of QR-algorithm in a construction of
eigenvalues, can be resolved only by using higher precision arithmetics. Es-
pecially, for the class of the generalized Bessel polynomials, the construction
can be performed by an algorithm proposed in [12]. This algorithm uses
Newton-Kantorvič method with certain good starting values applied on the
second order differential equation which is satisfied by the generalized Bessel
polynomial. It is clear that in the case of the generalized Bessel polynomi-
als, QR-algorithm cannot be used for a construction of related Gaussian
quadrature rules, because the construction of eigenvalues is ill-conditioned.

It is also easy to check that the algorithm for weights based on (1.7)
cannot be used for construction of Gaussian quadrature rule even in cases
when a class of orthogonal polynomials is positive definite. Running QR-
algorithm for a construction of Gaussian quadrature rule for the generalized
Hermite weight function w(x) = |x|2µe−x2

on R, with the parameter µ = 10
and n = 100, introduces errors in the weight coefficients. If the weights are
constructed using eigenvectors of the Jacobi matrix, in the fashion proposed
in [8], the maximal relative error in constructed weights is of the order 10−3.
If we decrease parameter µ, this error in the weights is encountered for bigger
degree of polynomials.

Similar behavior is exhibited for the generalized Gegenbauer polynomials,
orthogonal with respect to the weight function w(x) = |x|2α+1(1 − x2)β on
(−1, 1). Increasing the parameter α, when β is fixed, increases relative errors
in the weights calculated using eigenvectors of the Jacobi matrix.
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It is important to indicate that algorithm for the construction of Gaus-
sian quadrature rule using eigenvalues and eigenvectors, proposed in [8], does
not control errors in the constructed weights. Because of this fact, the eigen-
values can be constructed with the machine precision, but weights can be
constructed with a different error.

3. A Modified Algorithm

In this section we describe a modification of the previous algorithm for
construction of weights which can be applied in all cases when the calculation
of orthogonal polynomials using three term recurrence relation is stable. In
this modification, the nodes x

(n)
k , k = 1, . . . , n, are calculated in a usual way

using QR-algorithm, but for the calculation of the weight coefficients A
(n)
k

we apply the Shohat’s formula (1.5). Notice that such a way was also used in
the period before an application of QR-procedure (cf. Gautschi [3]). Thus,
we use here complete eigenvectors, but not only their first components.

Since, the numerical stability of calculation of orthogonal polynomials
using the three term recurrence relation is crucial, we gave some preliminary
results on general theory of difference equations. In [2, 4] the following
definition can be found.

Definition 2.1. Let fk and gk be two linearly independent solutions of the
recurrence relation (difference equation)

yk+1 + akyk + bkyk−1 = 0, k ∈ N0.(3.1)

For the solution fk of (3.1) is said to be minimal, and for gk to be dominant
if

lim
k→+∞

fk

gk
= 0.

It is known that dominant solutions can be calculated numerically stable
directly from (3.1) (see for example [2, 4, 9]). However, the minimal solution
cannot be calculated numerically stable using equation (3.1) straightforward.
But it can be calculated using the same equation backwards.

If we start from some index m, and if we put zk = yk+1/yk, then we have
following equalities

zk−1 = − bk

ak + zk
, k = m− 1, . . . , 1.(3.2)
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If we know the value zm−1 then we can calculate numerically stable other
values zk, k = m − 2, . . . , 1, 0. In that case, the minimal solution can be
expressed by the following equalities

fk−1 =
fk

zk−1
, k = m, . . . , 1.

This procedure can be found in [2, 4, 9].

Thus, this consideration shows that we can calculate both solutions (dom-
inant and minimal) of a second order difference equation in a numerically
stable way.

In order to calculate the weights by (1.5) we need the values of the se-
quence pν(x

(n)
k ), ν = 0, 1, . . . , n − 1, where x

(n)
k , k = 1, . . . , n, are zeros of

the polynomial pn. If orthogonal polynomials are dominant solution of the
difference equation (1.2), then the calculations can be made straightforward.

When sequence pν(x
(n)
k ), ν = 0, 1, . . . , n − 1, has been calculated we

can evaluate pn(x(n)
k ) also. Of course, this value is zero, but this gives us

an opportunity to measure the error propagation in calculations. Let eps
be the corresponding machine precision in computer arithmetics used in
calculations. From (1.2), which can be rewritten in the form

pn(x(n)
k ) =

(x(n)
k − αn−1)pn−1(x

(n)
k )−√

βn−1pn−2(x
(n)
k )√

βn
,(3.3)

it can be seen that the quantity

(x(n)
k − αn−1)pn−1(x

(n)
k )−

√
βn−1pn−2(x

(n)
k ),(3.4)

has to be eps times smaller then any included summand. If this is not true,
then the calculation suffers from ill-conditioning and the expression

log10

∣∣∣∣∣
(x(n)

k − αn−1)pn−1(x
(n)
k )−√

βn−1 pn−2(x
(n)
k )√

βn−1 pn−2(x
(n)
k )

∣∣∣∣∣− log10 eps(3.5)

gives the number of decimal digits lost due to ill-conditioning of the three
term recurrence relation.

In the case when sequence of orthogonal polynomials is the minimal so-
lution of (1.2), then calculations are performed backwards. Since pn(x(n)

k )
is zero, we have zn−1 = 0, which enables a construction over the system of
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equations (3.2). To control the error propagation in calculations we can use
the fact that

z0 =
x

(n)
k − α0√

β1
.

Then the number of decimal digits lost due to ill-conditioning can be mea-
sured by the following expression

log10

∣∣∣∣∣
z0
√

β1 − x
(n)
k + α0

x
(n)
k − α0

∣∣∣∣∣− log10 eps.(3.6)

Using the criterions (3.5) and (3.6) we can decide about the way how to
calculate the weights. It is important to indicate here that the three term
recurrence relation is not always stable to calculate the values of related
orthogonal polynomials. If we deal with a positive measure which support-
ing set has isolated points or it consists only of isolated points, then the
calculation of related orthogonal polynomials near the isolated point is not
numerically stable if the three term recurrence relation is used straightfor-
ward. In other words, near isolated points of the support, the sequence of
orthogonal polynomials is not dominant solution for the three term recur-
rence relation, it is rather minimal. This is understandable if we recall that
every isolated point of the supporting set has near itself at least one zero
of the orthogonal polynomials when degree of polynomial is big enough (see
[5]).

For example, using a straightforward calculation, given with relation (1.2)
for the generalized Charlier polynomials, which are supported on the set of
nonnegative integers (cf. [1]), will give an inaccurate result if calculations are
performed near any nonnegative integer and when degree of the polynomial
is large enough. This is a consequence of the fact that the zeros of Charlier
polynomials are distributed near nonnegative integers if degree of polynomial
is big enough.

If there is an isolated point of the supporting set, the calculations of values
of orthogonal polynomials near that point should be performed backwards
using equations (3.2). For such points, the values of orthogonal polynomials
are minimal solution.

But if the supporting set for the measure has no isolated points all cal-
culations can be performed using straightforward relation (1.2). For any
reasonable number of points, the concentration of zeros of orthogonal poly-
nomials cannot be that dense that solution of the three term recurrence
relation becomes minimal. For example, calculations for Jacobi, generalized
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Gegenbauer, generalized Hermite, generalized Laguerre, Lindelöf, Abel and
logistic polynomials can be performed safely using relation (1.2).

It is interesting to mention that in the case of the generalized Bessel poly-
nomials, the calculation cannot be done straightforward. This means that at
zeros of the generalized Bessel polynomial of degree n, the generalized Bessel
polynomials are minimal solution of the corresponding three term recurrence
relation. This fact can be easily understand if we know that the zeros of the
generalized Bessel polynomials are grouped near number zero in the complex
plane. Almost all zeros of the generalized Bessel polynomial of degree n, for
n large enough, are arbitrarily close to zero. Since QR-algorithm cannot be
applied even for a construction of zeros for the generalized Bessel polynomi-
als, the construction of Gaussian quadrature rules involving the generalized
Bessel polynomials cannot be done using QR-algorithm. However, it can be
constructed using algorithm proposed in [12] with construction of weights
using the three term recurrence relation backwards (3.2).

In the case of positive-definite orthogonal polynomials, all quantities
p2

ν(x
(n)
k ), ν = 0, 1, . . . , n − 1, are positive and, therefore, the summation in

(1.5) should be performed starting from the smallest terms, (see for example
[9]). Otherwise, if the sequence of orthogonal polynomials is not positive
definite, summation can be made arbitrarily.

In numerical experiments have been conducted it was enough to perform
summation as it is given in (1.5) for all classes of orthogonal polynomials of
interest.

In order to evaluate weights using (1.4) we need the values pn−1(x
(n)
k ),

k = 1, . . . , n. These values are not critical and their evaluations can be
performed either using recurrence straightforward or backwards. However,
an evaluation of the derivative p′n at the points x

(n)
k , k = 1, . . . , n, can

be numerically unstable. Since zeros of the polynomial pn are known (i.e.
the points x

(n)
k , k = 1, . . . , n), a calculation of derivative at the points

x
(n)
k , k = 1, . . . , n, is easy. But if the zeros are dense in an interval, which

is a case when the sequence of orthogonal polynomials is positive definite
(i.e., when polynomials are orthogonal with respect to positive measure on
the finite interval), the calculation of the derivative is numerically unstable.
The derivative can be calculated using the following expression

p′n(x(n)
k ) =

1√
β0 · · ·βn

n∏

ν=0, ν 6=k

(x(n)
k − xn

ν ).(3.7)

It is clear that if zeros are closely distributed, a calculation using this equa-
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tion is numerically unstable. An asymptotic distribution of zeros of Legendre
polynomials is given in [14]. It can be concluded that for polynomial of de-
gree 22, at least two zeros have the same first significant digit. Subtracting
these zeros makes decreasing of one significant digit in the result. Of course,
if zeros are not so densely distributed then equation (1.4) can be used for
the construction, where the derivative is calculated using (3.7).

Remark 1. There is still another way for the calculation of derivatives. Differen-
tiating (1.2) we get

pn(x) + xp′n(x) =
√

βn+1p
′
n+1(x) + αnp′n(x) +

√
βnp′n−1(x).

If we replace p′n(x) by qn(x), this equation can be qualified as a three term recurrence
equation of a non-homogeneous type

pn(x) + xqn(x) =
√

βn+1qn+1(x) + αnqn(x) +
√

βnqn−1(x),(3.8)

where the starting values are given by q1 = 1/
√

β1β0 and q0 = 0. Numerical
stability of this equation is governed by the non-homogeneous term. It would be
interesting to make some experiments with this equation and to find some numerical
stability properties of this equation.

The solution of the equation (3.8) can be given in the following form

qn(x) = −
n−1∑
ν=0

Nν+1(pn(x))pν(x) + C1pn(x) + C2N(pn(x)),(3.9)

where C1 and C2 are arbitrary constants (in the case of derivatives C1 = C2 = 0) and
N is the numerator operator, which acts on the sequence of orthogonal polynomials
producing another sequence of orthogonal polynomials which satisfy the following
recurrence relation

xNν(pn(x)) =
√

βn+1N
ν(pn+1(x)) + αnNν(pn(x))

√
βnNν(pn−1(x)),

with initial conditions given by

Nν(pν(x)) = − 1√
βν

, Nν(pk) = 0, k < ν.

4. Numerical Examples

The generalized Hermite polynomials satisfy the following recurrence re-
lation

xpn(x) =
√

βn+1pn+1(x) +
√

βnpn−1(x),(4.1)
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where

βn =

{
k, if n = 2k,

(2k + 1 + 2µ)/2, if n = 2k + 1.
(4.2)

They are orthogonal with respect to the measure dλ(x) = |x|2µe−x2
dx on

the interval (−∞,+∞).

Table 4.1: Maximal relative errors (max err) in weights calculated by (1.7) for the
generalized Hermite measure for some selected values of µ and n

µ 5 10 15 20 25
n 100 80 60 40 30

max err 1.5(−10) 2.5(−5) 9.0(−4) 5.3(−6) 3.8(−9)

The maximal relative errors (max err) in the weights Ã
(n)
k , calculated by

the standard formula (1.7), are given in Table 4.1. (Numbers in parentheses
denote decimal exponents.)

As we can see, the maximal relative error increases if the parameter of
the family (µ) and the degree of orthogonal polynomials are increased.

Table 4.2: Nodes x
(n)
k and weights Ã

(n)
k and A

(n)
k , calculated by (1.7) and (1.5),

respectively, for the generalized Hermite weight with µ = 25 and n = 50

k x
(n)
k Ã

(n)
k A

(n)
k

...
45 8.87048112408543 5.83527133818019(13) 5.83527133818503(13)
46 9.27131769434522 3.89993136521226(11) 3.89993135706594(11)
47 9.69733297167313 1.22170372571917(9) 1.22170373445053(9)
48 1.01587551407497(1) 1.43752516649416(6) 1.43752457423890(6)
49 1.06753984703247(1) 4.16975520190378(2) 4.16971067128949(2)
50 1.12991277513983(1) 1.05084478232937(−2) 1.03057175800162(−2)

We also give the weights constructed with both algorithms for the gen-
eralized Hermite measure, with a parameter of the family µ = 25, when the
polynomial degree n = 50. The weights obtained by (1.7) and using the
modified algorithm are denoted by Ã

(n)
k and A

(n)
k , respectively. The nodes

x
(n)
k and corresponding weights are given in Table 4.2. A distribution of

errors in the weights with respect to the position of nodes in the support
of the measure is very interesting. The weights associated with the biggest
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nodes (in modulus) are given with the smallest precision. There is also a
small precision for nodes which absolute values are closest to zero.

The generalized Gegenbauer polynomials satisfy the following three term
recurrence equation

xpn(x) =
√

βn+1pn+1(x) +
√

βnpn−1(x),(4.3)

where

βn =





(k + 1 + α)(k + 1 + α + β)
(2k + 1 + α + β)(2k + 2 + α + β)

, if n = 2k + 1,

k(k + β)
(2k + α + β)(2k + 1 + α + β)

, if n = 2k.

(4.4)

These polynomials are orthogonal with respect to the measure dλ(x) =
|x|1+2α(1− x2)βdx supported on [−1, 1].

The maximal relative errors in the Gaussian weights for the generalized
Gegenbauer weight function, with parameters β = 10 and α = 0(5)30, con-
structed by using (1.7) with n = 100 nodes, are given in Table 4.3.

Table 4.3: Maximal relative errors in the weights Ã
(n)
k (n = 100) for the generalized

Gegenbauer polynomials, with parameters β = 10 and α = 0(5)30

α 0 5 10 15 20 25 30
max err 9.0(−7) 6.9(−9) 3.6(−9) 2.5(−7) 3.4(−5) 1.1(−3) 8.0(−1)

As we can see, the relative error in the weights Ã
(n)
k , constructed by

(1.7), increases when the parameter α increases. The same effect appears as
n increases and parameters of the family are fixed.

The nodes x
(n)
k (k = 46, . . . , 55) and corresponding weights are given in

Table 4.4 for 100-point Gaussian quadrature rule with respect to the gener-
alized Gegenbauer measure with α = 30 and β = 10. The biggest relative
error is achieved for nodes which are closest to the number zero. There are
also relative errors in weights associated with other nodes, but these relative
errors are smaller. Unlike example for the generalized Hermite measure, in
this example, the errors in constructed weights appear symmetrically.

Similar behavior in constructed weights can be demonstrated for the gen-
eralized Laguerre weight w(x) = xse−x (s > −1) on (0,+∞), also. The se-
quence of the generalized Laguerre polynomials satisfies the following three
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Table 4.4: Nodes x
(n)
k and weights Ã

(n)
k and A

(n)
k , calculated by (1.7) and (1.5),

respectively, for the generalized Gegenbauer weight (α = 30, β = 10) and n = 100

k x
(n)
k Ã

(n)
k A

(n)
k

...
46 −0.373269526254518 4.40712931244721(−29) 4.40712947393128(−29)
47 −0.347403738539906 7.18119599285471(−31) 7.18119847637293(−31)
48 −0.320010581648552 6.29195033882866(−33) 6.29196900506548(−33)
49 −0.290248701077263 2.21111291156777(−35) 2.21117188982564(−35)
50 −0.255811616198617 1.50414218779289(−38) 1.50459116124500(−38)
51 0.255811616198618 1.51643281414687(−38) 1.50459116124529(−38)
52 0.290248701077264 2.21070054842355(−35) 2.21117188982596(−35)
53 0.320010581648553 6.29201139272186(−33) 6.29196900506574(−33)
54 0.347403738539905 7.18120162277844(−31) 7.18119847637186(−31)
55 0.373269526254518 4.40712893209631(−29) 4.40712947393113(−29)
...

term recurrence relation

xpn(x)=
√

(n + 1)(n + 1 + s) pn+1(x)+(2n+1+s)pn(x)+
√

n(n + s) pn−1(x).

Table 4.5 shows the maximal relative errors in the weights Ã
(n)
k for the

generalized Laguerre weight function. If we further increase the number of
nodes in the corresponding Gaussian quadrature, the maximal relative error
in weights becomes bigger for the same value of s. However, it seems that
for any reasonable number of nodes (e.g. smaller then 300), the maximal
relative error in the weights (for s = 0) is approximatively constant and its
value is of order 10−13.

Table 4.5: Maximal relative error in weights Ã
(n)
k for the generalized Laguerre

measure in 150-point Gaussian quadrature rule

ν 0 10 20 30 40 50 60
max err 1.9(−12) 4.6(−11) 1.4(−7) 6.9(−5) 1.3(−4) 8.3(−3) 1.8(−1)

The problem in the precision of constructed weights can also be found
when a QR-modification of some positive measure is performed. As we know,
QR-modifications of some measure dλ(x) can always be represented in the
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Table 4.6: Nodes, weights with errors, and the exact weights for QR-modified Leg-
endre measure given by (4.6)

k x
(n)
k Ã

(n)
k A

(n)
k

...
60 0.107812380640346 2.09914865872597(−18) 2.09914865837238(−18)
61 0.138710282843229 2.13892724571921(−20) 2.13892724438224(−20)
62 0.219458604066318 2.21698613750904(−25) 2.21698643737794(−25)
63 0.329221328136957 1.24201083492062(−27) 1.24200433447655(−27)
64 0.432757097507551 7.27768189481662(−27) 7.27762869886060(−27)
65 0.496125821491815 3.78302684067583(−25) 3.78302470868232(−25)
66 0.554326542758999 5.07429534068515(−21) 5.07429532520943(−21)
...

following way

dλ̃(x) =
n∏

i=1

(x− xi)2kidλ(x),(4.5)

where the points xi are inside the support of the measure dλ(x) and ki

are nonnegative integers. The total degree of a modification is the sum of
all numbers ki. For almost all measures, which are interesting in applica-
tions, the algorithm for weights based on (1.7) returns inaccurate values for
constructed weights, if the total degree of modification is big enough. For
example, if we perform QR-modifications on the Legendre measure in this
way

((x− 1/2)(x− 2/5)(x− 3/10)(x− 1/5))6 dx,(4.6)

then the maximal relative error in weights is going to be of the magnitude
10−6. Table 4.6 shows nodes x

(n)
k , weights with errors Ã

(n)
k , and the exact

weights A
(n)
k (60 ≤ k ≤ 66) for the previous measure, when the number of

nodes in the quadrature rule is n = 100.

If we increase the number of QR-modifications, the maximal relative error
is going to be increased also. For example, if we take the measure to be

((x− 1/2)(x− 2/5)(x− 3/10)(x− 1/5))12 dx,

the magnitude of corresponding maximal relative error in the weights be-
comes 10−5, when n = 100.
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A very similar behavior can be encountered with other different types of
measures (e.g. generalized Hermite measure, generalized Laguerre measure,
Jacobi measure, generalized Gegenabuer measure).

Table 4.7: Zeros xν (ν = 1, 2, 3, 4) of the s-orthogonal generalized Hermite polyno-
mial of degree four, obtained by the standard and modified method

ν standard method modified method
1 −7.28962206 . . . −7.289621792645020
2 −3.66640712 . . . −3.666407011304882
3 3.66640695 . . . 3.666407011304883
4 7.28962175 . . . 7.289621792645021

The problem with constructed weights, using algorithm based on (1.7),
originated in an implementation of an algorithm proposed in [10]. This
algorithm uses Gaussian quadrature rule to approximate integrals which
then simplifies the computation of the solution for certain system of non-
linear equations characterizing s-orthogonal polynomials. Using Gaussian
quadrature rule constructed by algorithm based on (1.7), returned zeros of
s-orthogonal polynomials have severely damaged precision. As an illustra-
tion of this fact, we give zeros of a s-orthogonal polynomial of degree 4 for
s = 10, when the orthogonality is taken with respect to the generalized Her-
mite measure with µ = 15. The corresponding zeros are given in Table 4.7.
A similar behavior is exhibited for smaller values of µ, but then the degree
of a s-orthogonal polynomial has to be bigger. It can be observed that zeros
of the s-orthogonal polynomial are not even symmetric if a calculation is
performed using weights constructed with the algorithm based on (1.7).
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