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CHRISTOFFEL-DARBOUX FORMULA FOR ORTHOGONAL
TRIGONOMETRIC POLYNOMIALS OF SEMI-INTEGER DEGREE*

Gradimir V. Milovanovié, Aleksandar S. Cvetkovié
and Marija P. Stanié

Abstract. In this paper we introduce orthonormal trigonometric polynomials of semi-
integer degree with respect to a weight function on [—m,7) and prove the Christoffel-
Darboux formula for a such orthonormal trigonometric system.

1. Introduction

Let denote by T2 linear span of the following trigonometric functions
cosx/2,sinx/2,cos(l + 1/2)x,sin(1+ 1/2)z,...,cos(n + 1/2)z,sin(n + 1/2)x.

Elements of ‘J';,/ 2, i.e., the trigonometric functions of the following form

n 1 1
An+1/2(m) = Z (c,, cos (V + 2) T+ d, sin (u + 2) gg) ,

v=0
where ¢,,d, € R, |ep| + |dn] # 0, are called trigonometric polynomials of semi-
integer degree.
For a given nonnegative weight function weight function w(x) on [—7, 7), which
equals zero only on a set of the Lebesgue measure zero,

27

(1.1) (f.9) = | f(@)g(@)w(z) de,

denotes the corresponding inner product of the functions f and g. For the given
scalar product (1.1), the problem of finding A, 4,/2 € T/ 2, such that

/ A, (D) t(@)w(z)dt =0, te T2,

—T
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was considered at first in [3], and in detail in [1] and [2]. It turns out that this
problem has unique solution if the leading coefficients ¢,, and d,, are fixed in advance
(see [3, §3.]).

Those orthogonal trigonometric systems have applications in construction of
quadrature formulas with maximal trigonometric degree of exactness.

In cite [1] and [2] the two choices of leading coefficients were considered. For
the first choice ¢, = 1, d,, = 0, we denote orthogonal trigonometric polynomial
of semi-integer degree by A¢ /20 and for the second choice ¢, = 0 and d,, = 1

by AS +1/2- For the expanded forms of AC nt1/2 and AS +1/2 we use the following
notation
1 n—1 1 1
= = E ' (n) - (n) 1
(1.2) An+1/2( z) = COS<?1+2>HC+ <c,, cos<u+2>x+dl, sm<1/+2>x),

v=0

A§+1/2(x)—sin< >x+Z( cos( ;):y—kg(”)sm(z/—k;) )

In [1] it was proved that orthogonal trigonometric polynomials of semi-integer
degree Ak+1/2( z) and Ak+1/2( x), k € N, satisfy the following five-term recurrence
relations:

(1.3) AL @) = <2coszfak VAS () — BV AT o(2)
_O‘k Ak 3/2(5'7) 5k2)Ak 3/2(33)

and
1
(14) Aprpl@) = (2cosz = 5! >Ak 12(@) = %ﬁ AL (@)
Ak 3/2( z) — 5 Ak 3/2($)

; : (2) _ 52 _ _ 5@ _
where recurrence coefficients are given by o™’ = ;7 = 71 =6, =0, and
(15) O I3 I = Ieadia o S P (Y

F Dy Tk Dy—2 ’
W I e — I Ji @  Iealf o —IF [ Ix s
k Dy Pk Dy ’
NOM Ly i1 — Dir iy NOE Lioa Ly — I Tk
F Dy Tk Dy_» ’
5(1) _ I/ccfrjlfq — Li—1Jk—1 6(2) _ 1157111%12 — 112
F Dy Tk Dy—2 ’
where Dy_; = Ig_jl,f_j — I,?_j, j=1,2,and
(1.6) IC (AV+1/2’A1/+1/2) JC = (2cos $A5+1/27A§+1/2)

15 = (A§+1/2aA§+1/2)a JS (2C05$Ay+1/2a14y+1/2)
I, = (A§+1/27A§+1/2)7 Jy = (ZcosxAu+1/27A§+l/2)'
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For some special weight functions explicit formulas for five-term recurrence co-
efficients as well as explicit formulas for coefficients of expanded forms (1.2) were
presented in [2].

In this paper, in Section 2, the orthonormal trigonometric polynomials of semi-
integer degree are introduced and the Christoffel-Darboux formula for such or-
thonormal trigonometric system is proved.

2. Main Results

Let us denote

(2.1) i = {

~
ERER
~

sos
| I

Lemma 2.1. The matriz my, n € No, given by (2.1) is positive definite.

Proof. Let a1,as be arbitrary real numbers such that at least one of them
differs from zero. Let denote a = [a ag]T and t(x) = G1Ag+1/2(96) + a2ArSL+1/2($)~
Then

al'm,a= / t2(x)w(x) dz > 0,

—T
since () is nonzero trigonometric polynomial of semi-integer degree n+1/2. There-
fore, the matrix m,, is positive definite for all n € Ng. [

By m,, n € Ny, we denote the positive definite square root of m,, i.e., the
unique positive definite matrix such that m,, = m,m, (see [4]). Since m, is a
symmetric matrix, the matrix m,, is also symmetric, i.e., it has the following form

o an, by
n - bn Cn )
where
(2.2) a2 + 02 =1°, a,b, +bpc, =1, and b2 +c2 =15

Let introduce the following trigonometric polynomials of semi-integer degree
n+1 / 2:

~ Cn by,
(2.3) AC, ) o(@) = mAg—H/Q(I) - mAgﬂ/z(I),
~ a b
A7€+1/2($) = 7%6””_ b2 A§+1/2(x) - 7%6”"_ b2 A§+1/2(w)-
We call the trigonometric polynomials ESH/Q and KSH/Q, n € Ny, orthonormal

trigonometric polynomials of semi-integer degree. The reason for that name lies in
the following simple property.
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Theorem 2.1. IfA
following equalities

(z) and AC_, ,(z), n € Ny, are given by (2.3), then the

n+1/2 n+1/2

(Agﬂ/zaAgﬂ/z) =1, (A§+1/27A5+1/2) =0 and (A§+1/27A5+1/2) =1
hold.

Proof. By direct calculation we have

(CnASH/z bn Ay n+1/2 CnAgH/z bn An+1/2>
anCn — b2 ’ anCn — b2
21¢ — 2b,c, I, + B3T3
(ancn — b2)?
c2 (a2 +b2) — 2bpcn(anby + bpcy) + b2 (b2 + c2)
(ancn — b2)?
a — Qanb2 cn + b4

— =1
(ancn —b2)2 ’

(An+1/27 A§+1/2) =

so we get the first equality. The second and the third equalities can be proved
analogously. [

It is easy to see that the following equalities
(2.4) AS+1/2(33) = anAg+1/2($) + bnA,fH/z(x),
A§L+1/2(x) =b An+1/2(x) + an§+1/2(:z:)
hold.

Theorem 2.2. The orthonormal trigonometric polynomials of semi-integer degree
Agﬂ/z( x) and An+1/2( x), n € N satisfy the following recurrence relations:

AnCp—1 — bpby_1 bpcp—1 —bn_1cp

(2.5)2(}083312[5_1/2(.7?) = Gr1Cnq — b2 1An+1/2( ) + An+1/2( )

2
Gp—1Cn—1— b _;
2 C 2 S
_’_Cnfl‘]nfl + bnfl‘]nfl 2bn 1Cn— 1Jn 1
2
Gp—1Cp—1 — b

A ja()
n—1

2
+(bn_1 + an—16n-1)Jn-1 — bp_16n_1J5 | — @p_1by_1J5_
3
Gn—-1Cn—1 — bn71

A$—1/2(93)

n

Gp—1Cn—2 — bn 1bn 2A an72bn71 Qp— 1bn 2A

+

n— 3/2( )+ n— 3/2(1')

2 2
ap—2Cpn—2 — bn 2 ap—2Cp—2 — bn 2

and

Qp— 1b anbn 1 Gp—-1Cp — bnflb

TS
(2.6)2cosw Ay, 4 5(x) = PR An+1/2( z) +
+(b%—1+an—1cn—1)v] S =bp1cn1JS | —an_1by_1J5_

Gp—1Cn—1 — bn71

A3, (@)
1/2
an—-1Cp—1 — b% 1 n+l/

An 1/2( )
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b2 1Jc 1 —‘y—CI,2 JS —2ap—1bp—1Jp—1 ~g
n—1/2(33)

An—1Cn— 1_b —1

bnflcn72 - bn72cn71 TC ( ) n—2Cn—1 — bnflbn72 TS

2 n—3/2 2 n—3/2
Gp—2Cn—2 — bn_2 / Gp—2Cn—2 — bn_Q /

Specially for n = 1 coefficients multiplying g€1/2(x) and AS 1/2( x) in both recur-
rence relation are equal to zero.

Proof.  Using connections (2.4) from (1.3) and (1.4) as well as (2.2), (1.5) and
(1.6), solving obtained linear system for cos a:A _1/2 and cos xA _1/2 We get what

is stated. The statement for n = 1 follows directly from the fact that af) = §2) =
P =4 = 0in (1.3) and (1.4). O

Theorem 2.3. (Christoffel-Darboux formula) For the orthonormal trigonometric
polynomials of semi-integer degree the following formula

n

(27)  2(cosz —cosy) Y (AL, o (@) AL 0 (y) + AL 0 (@) AL, 2(y))
k=0

(an+lcn - bnbn+l) (g§+3/2(x)f~lg+1/2(y) - gg+3/2(y)11§+1/2(x))
(ancn - b%)

n (bn+1Cn - bn0n+1) (A§+3/2($)Ag+1/2(y) - As+3/2(y)f4§+1/2($))
(ancn —b2)

i (ananrl an+1b )( n+3/2( ) +1/2(y) +3/2( )A5+1/2(x)>
(ancn —b2)

4 (ancnt1 = bnbns1) (A5+3/2( z)AS n+1/2 o

b2

(ancn -

y) — n+3/2( )g§+1/2(x))

n)

Proof. Let us introduce some notation

en = EJICH TS —2bncnn,  fn= 02+ ancn)Jn — bpcnJS — anbpJ?,
gn = bfLJS +a;, JS —2anbndn, Ry = anc, — b2,
AL = anbpi1 — aniibn, AL = cpbnir — cugaby,
A}l = Ap+1¢n — bpg1by, A% = GpCnt1 — bnbpy1-
We prove theorem using mathematical induction. For n = 0, using Theorem 2.2,
we have

2(cosw — cosy) (ATa(2) A5 (y) + A5o () A5 0 (»))

Ag A§ fo
= {h A3/2 hOA3/2+ ho A1/2+ ho Al/z]( )Al/Z( )
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Al A f
1/2( ){ I A3/2 A3/2+ ho A1/2+ OAs/z]( )

Aj Jo 5

—A
A§ A2 fi g ~
[h A3/2 A3/2 + 0141/2 + 0A1/2] (z )Af/2(y)
A§ g
A1/2( ) { Ag/z As/z + A1/2 + 0141/2} (y)

AF (A5 (@) AT 5 (y) — Ag/z( )Af/z( 7))
= e
Af (A3/2( )A1C/2(y) - 25/2(9)2{?/2(1‘))
+ o
NG (A, (@) AT 5 (y) — A (y) A7 ()
+ o
n Aj (gg/z (x)gf/z(y) - g;f/g(y)ﬁf/g (@)
ho '

Suppose it is true for some n = m, then we have

2(cosx — cosy) <g1€1+3/2(33)g§@+3/2(y) + isn+3/2($)gi+3/2(y))

A} +1 Al €m+41 7 f +1 7,
= | —mEL 4C —mitl A8 M AG ST AS
{h " m+s/2 1 Tt m+5/2+h o m+3/2 T Tog 32
A171 A% L
h Am+1/2 h, Am+1/2:| (m)Ag+3/2(y)
~ A 1 A em+1
_A%+3/2($) |:hm: Am+5/2 . Am+5/2 h:+1Am+3/2
f +1 AL, A7, |
LAY Am+1/2 Am+1/2 (y)

her m+3/2 |
Am—i—l Am—|-1 fm+1 iC
+ [hm+ Am+5/2 + mAm-&-S/Q + mAm+3/2

2 ~ T ~

Im+1 A Am
+ n = Am+3/2 . Am+1/2 TAi+1/2 (x)Afn-;-s/z(y)

Am Am fm 1
Am+3/2( ){hm:lAm%/z‘F I, :1Am+5/2 + hm+ Am+3/2

gm+1 7, AL 5
+ B i1 A s T Am+1/2 + mAerl/Z ()
At (Agz+5/2(x)ArCn+3/2(y) - A7Cn+5/2(y)ggl+3/2($))
hm+1
JrAan (A75n+5/2(x)Agz+3/2(y) - Asm+5/2(y)‘42+3/2($))
hm+l
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+A‘fn+1 (ﬁg+5/2(m)ﬁi+3/2(y) - gﬁw/g(y)g}gnw/z(@)
hm+1

i A%n—i—l (Afn+5/2(x)A§¢+3/2 (y) - Avsn+5/2 (y)A§z+3/2 (x))
h7rz+1

B A (Ag+3/2(:r)Ag+1/2(y) - Ag+3/2(y)Ag@+1/2 (z))
B,

_ TAVS (A§n+3/2($)qu+1/2 (y) B A'rSn+3/2 (y)Angrl/Z (l‘))
him

B AL, (Ag+3/2 (1‘)1451_,’_1/2(3/) - Ari+3/2(y)A§1+1/2 (1‘»
him

_ A7 (Ai+3/2(x)A7Sn+l/2(y) - A§n+3/2(y)A§z+1/2 (35))
hom '

Now statement readily follows, since we have

m—+1
2(cosz — cosy) Z (Akc+1/2(x)Agm+1/2(y) + Ai+1/2(x)ArSn+1/2(y))

k=0
= 2(cosw — cosy) > (A1 o (@)A1 o) + A5, 1 jol@) A5 1 o(0))
k=0
+2(cosz — cosy Zg+3/2(x)ﬁgl+3/2(y) + Av7§1+3/2(x)g1€1+3/2(y))
_ A71n (Ag+3/2($)gg@+1/2(y) B Zg+3/2(y)gg+l/2(m))

b,

+ A7, (Avsn+3/2(x)Agz+1/2(y) - Ai+3/2(y)Ag+1/2(m))
hm,

n AL, (Agz+3/2(x)Arsn+l/2(y) - Ag@+3/2 (y)Agﬂ—l/Q (;v))
him

n A7, (A§n+3/2(x)‘4§@+1/2(y) - Ai+3/2(y)Ai+1/2(x))
b

+A}n+1 (gg+5/2(x)‘zwcn+3/2(y) - Afn+5/2(y)Ag+3/2(z))
hm+1

+Afn+1 (A§L+5/2(I)A%+3/2(y) - Awsn+5/2(y)Ag+3/2(z))
hm+1

+Agn+1 (A%+5/2(I)A§L+3/2(y) - Arcn+5/2(y)A§z+3/2(z))
hm+1

+Afn+1 (Ai+5/2(33)‘4§1+3/2(y) - A1§1+5/2(y)‘4i+3/2(33))
hm+1
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_ A, (A7(;1+3/2($)Aﬁ+1/2(1‘/) - ASL+3/2(?/)A2+1/2($))

h"HL
_ A (A7€1+3/2<x)A’rCT'L+1/2(y) B A7€L+3/2(Q)Ag+1/2($>)
hm
B AL, (A%+3/2(I)A§1+1/2 (y) — Ag@+3/2 (y)Af;LH/z(I))
ho
_ArQn (A§n+3/2($)A§n+1/2(y) - A7Sn+3/2(y)A§z+1/2(x))
hm
_ Anps (Agz+5/2($)‘42;+3/2(y) B Ag+5/2(y)A%+3/2(x))
herl
+Afﬁ+1 (Ai+5/2(x)Ag+3/2(y) B Ai+5/2(y)Ag+3/2(m))
hm+1
+A%+1 (ASL+5/2($)A§@+3/2(9) - Ar€1+5/2(y)Afn+3/2(m>)
herl
A% (A51+5/2<x)14§1+3/2(y) - A7€L+5/2(ZU)A§1+3/2($>) 0
hm+1 .
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