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Abstract. For complex polynomials orthogonal on the semicircle [2–4], [7], or on a
circular arc [1], with respect to a complex-valued inner product, we consider an other
type of orthogonality on a simple closed curve with respect to a complex weight χ(z),
with a singularity in z = 0. In some cases, the weight can be found explicitly.

1. Introduction

One new type of orthogonality, so-called orthogonality on the semicircle, has been
introduced by Gautschi and Milovanović [2], [3]. The inner product is given by

(1.1) (f, g) =
∫

Γ
f(z)g(z)(iz)−1 dz,

where Γ is the semicircle Γ = {z ∈ C : z = eiθ, 0 ≤ θ ≤ π}. Alternatively,

(1.2) (f, g) =
∫ π

0
f(eiθ)g(eiθ) dθ.

This inner product is not Hermitian, but the corresponding (monic) orthogonal
polynomials {πk} exist uniquely and satisfy a three-term recurrence relation of the
form

πk+1(z) = (z − iαk)πk(z) − βkπk−1(z), k = 0, 1, 2, . . . ,(1.3)
π−1(z) = 0, π0(z) = 1.

Notice that the inner product (1.1) possesses the property (zf, g) = (f, zg).
In the paper [4] Gautschi, Landau and Milovanović have considered a general case of

orthogonality with respect to a complex weight function. Namely, let w : (−1, 1) $→ R+

be a weight function which can be extended to a function w(z) holomorphic in the half
disc D+ = {z ∈ C : |z| < 1, Im z > 0}, and

(1.4) (f, g) =
∫

Γ
f(z)g(z)w(z)(iz)−1 dz =

∫ π

0
f(eiθ)g(eiθ)w(eiθ) dθ.
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Under the assumption

(1.5) Re (1, 1) = Re
∫ π

0
w(eiθ) dθ &= 0,

the monic, complex polynomials {πk} orthogonal with respect to the inner product
(1.4) exist and satisfy the recurrence relation like (1.3).

Several interesting properties of such polynomials, especially for Gegenbauer weight,
were shown in [4] and [7]. Besides of polynomials orthogonal on the semicircle, the
coresponding functions of the second kind and associated polynomials were introduced
and investigated in [7]. Also, some applications in numerical integration and numerical
differentiation were given.

Recently M. G. de Bruin [1] has given a generalization of such orthogonal polyno-
mials. Namely, he considered the polynomials {πR

k } orthogonal on a circular arc with
respect to the complex inner product

(1.6) (f, g) =
∫ π−ϕ

ϕ
f1(θ)g1(θ)w1(θ) dθ,

where ϕ ∈ (0, π/2), and for f(z) the function f1(θ) is defined by

f1(θ) = f
(
−iR + eiθ

√
R2 + 1

)
, R = tan ϕ.

Alternatively, the inner product (1.6) can be expressed in the form

(1.7) (f, g) =
∫

ΓR

f(z)g(z)w(z)(iz − R)−1 dz,

where ΓR = {z ∈ C : z = −iR + eiθ
√

R2 + 1, ϕ ≤ θ ≤ π − ϕ, tan ϕ = R}.
For R = 0 the arc ΓR reduces to the semicircle Γ .
In this paper, we study an another type of orthogonality of these polynomials, so-

called Geronimus’ version of orthogonality [5] on a contour with respect to a complex
weight.

2. Geronimus’ version of orthogonality on a contour

In the paper [6], J. W. Jayne considered the Geronimus’ concept of orthogonality
for recursively generated polynomials. Ya. L. Geronimus proved that a sequence of
polynomials {πk}, which is orthogonal on a finite interval on real line, is also orthogonal
in the sense that there is a weight function z → χ(z) having one or more singularities
inside a simple curve C and such that

(2.1) 〈πk, πm〉 =
1

2πi

∮

C
πk(z)πm(z)χ(z) dz =

{
0, k &= m,

hm, k = m.
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Following Geronimus [5] and Jayne [6], we will determine a such complex weight
function z → χ(z), for (monic) polynomials {πk} orthogonal on the semicircle Γ , and
also for the corresponding polynomials {πR

k } orthogonal on the circular arc ΓR (R > 0).
We denote by C any positively oriented simple closed contour surrounding some

circle |z| = r > 1. We assume that

(2.2) χ(z) =
∞∑

k=1

ωkz−k, ω1 = 1,

for |z| > r.
At first, we express zn as a linear combination of the monic polynomials πm (m =

0, 1, . . . , n), which are orthogonal on the semicircle Γ , with respect to the inner product
(1.4), i.e. (1.5). Namely, we have

(2.3) zn =
n∑

m=0

γn,mπm(z),

where

(2.4) (zn, πm) = γn,m(πm, πm), m = 0, 1, . . . , n.

Using the inner product (2.1) and the representation (2.2), we obtain

〈zn, 1〉 =
1

2πi

∮

C
znχ(z) dz

=
1

2πi

∮

C

∞∑

k=1

ωkzn−k dz = ωn+1.

On the other hand, because of (2.3) and the orthogonality condition (2.1), we find

〈zn, 1〉 = 〈
n∑

m=0

γn,mπm(z), 1〉 =
n∑

m=0

γn,m〈πm, 1〉,

i.e.,
〈zn, 1〉 = γn,0〈π0, π0〉 = γn,0h0.

Thus, we have
wn+1 = γn,0h0 = γn,0,

because h0 = ω1 = 1.
Finally, using (2.4) and the moments µn = (zn, 1), we obtain

ωn+1 =
µn

µ0
, n ≥ 0,



4 GRADIMIR V. MILOVANOVIĆ AND PREDRAG M. RAJKOVIĆ

and

(2.5) χ(z) =
1
µ0

∞∑

k=1

µk−1z
−k (|z| > r).

So, we need the convergence of this series for |z| > r > 1.

Let w be a weight function, nonnegative on (−1, 1), holomorphic in

D+ = {z ∈ C : |z| < 1, Im z > 0},

integrable over ∂D+, and such that (1.5) is satisfied.

The moments µk can be expressed in the form

(2.6) µ0 =
∫

Γ
w(z)(iz)−1 dz =

1
i

(
iπw(0) − v.p.

∫ 1

−1

w(x)
x

dx

)

and

(2.7) µk =
∫

Γ
zkw(z)(iz)−1 dz = i

∫ 1

−1
xk−1w(x) dx, k ≥ 1.

These moments are included in the series (2.5).

Additionally, we suppose that the weight function w has such moments µk, which
provide the convergence of the series (2.5) for all z outside some circle |z| = r > 1 lying
interior to C.

Theorem 2.1. Let w be a weight function satisfying the above conditions. Then the
monic polynomials {πk}, which are orthogonal on the semicircle Γ with respect to the
inner product (1.4), are also orthogonal in the sense of (2.1), where

χ(z) =
1
z

(
1 +

i

µ0

∫ 1

−1

w(x)
z − x

dx

)
(|z| > r > 1)

and

µ0 = πw(0) + i v.p.
∫ 1

−1

w(x)
x

dx.

Proof. Let |z| > r > 1 and let the moments are given by (2.6) and (2.7). Then,
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(2.5) becomes

χ(z) =
1
z

(
1 +

1
µ0

∞∑

k=1

µkz−k

)

=
1
z

(
1 +

i

µ0

∞∑

k=1

z−k

∫ 1

−1
xk−1w(x) dx

)

=
1
z

(
1 +

i

µ0z

∞∑

k=1

z−(k−1)

∫ 1

−1
xk−1w(x) dx

)

=
1
z

(
1 +

i

µ0z

∫ 1

−1
w(x)

( ∞∑

k=1

(x

z

)k−1
)

dx

)

=
1
z

(
1 +

i

µ0z

∫ 1

−1
w(x)

1
1 − x

z

dx

)
,

i.e.,

χ(z) =
1
z

(
1 +

i

µ0

∫ 1

−1

w(x)
z − x

dx

)
. !

In Gegenbauer case we obtain the following result:

Corollary 2.2. Let w(z) = (1− z2)λ−1/2, (λ > −1/2). The monic polynomials {πk},
which are orthogonal on the unit semicircle with respect to the inner product (1.4), are
also orthogonal in the sense of (2.1), where

(2.8) χ(z) =
1
z

+
i√
π z2

·
Γ(λ + 1

2 )
Γ(λ + 1)

F
(
1,

1
2
, λ + 1;

1
z2

)
,

where F is the Gauss hypergeometric series and Γ is the gamma function.

Proof. Using the above theorem for Gegenbauer weight, we obtain

χ(z) =
1
z

+
i

πz

∫ 1

−1

(1 − x2)λ−1/2

z − x
dx,

i.e.,

χ(z) =
1
z

+
i

πz2

∫ 1

0
t−1/2(1 − t)λ−1/2(1 − tz−2)−1 dx,

which is equivalent to (2.8).

Remark. In Legendre case (λ = 1/2) we obtain

χ(z) =
1
z

+
i

πz
log

z + 1
z − 1

,



6 GRADIMIR V. MILOVANOVIĆ AND PREDRAG M. RAJKOVIĆ

where the interval from −1 to 1 on the real axis is connsidered as a branch cut.

Now, we consider the polynomials {πR
k } (R > 0) which are orthogonal on the circular

arc.
Let w be a weight function, nonnegative on (−1, 1), holomorphic in

M+ = {z ∈ C : |z + iR| <
√

R2 + 1, Im z > 0},

and integrable over ∂M+.
In this case, the moments µk can be expressed in the form

µk =
∫

ΓR

zkw(z)(iz − R)−1 dz = −
∫ 1

−1
xk(ix − R)−1w(x) dx, (k ≥ 0),

i.e.,

(2.9) µk =
∫ 1

−1

R + ix

R2 + x2
xkw(x) dx (k ≥ 0).

Again, we suppose that the weight function w has such moments µk, which provide
the convergence of the series (2.5) for all z outside some circle |z| = r > 1 lying interior
to C.

Theorem 2.3. Under the above conditions on the weight function w, the monic poly-
nomials {πR

k }, which are orthogonal on the circular arc ΓR with respect to the inner
product (1.6), i.e., (1.7), are also orthogonal in the sense of (2.1), where

(2.10) χ(z) =
1
µ0

∫ 1

−1

(R + ix)w(x)
(R2 + x2)(z − x)

dx (|z| > r > 1)

and

µ0 =
∫ 1

−1

R + ix

R2 + x2
w(x) dx

Proof. Let |z| > r > 1. Using the moments, given by (2.9), we get

∞∑

k=1

µk−1z
−k =

∞∑

k=1

(∫ 1

−1

R + ix

R2 + x2
xk−1w(x) dx

)
z−k

=
∫ 1

−1

R + ix

R2 + x2
· w(x)

z

∞∑

k=1

(x

z

)k−1
dx

=
∫ 1

−1

(R + ix)w(x)
(R2 + x2)(z − x)

dx,

i.e., (2.10). !
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