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ABSTRACT
Two transformations of gradient-descent iterative methods for solv-
ing unconstrained optimization are proposed. The first transforma-
tion is calledmodification and it is defined using a small enlargement
of the step size in various gradient-descent methods. The second
transformation is termed as hybridization and it is defined as a com-
position of gradient-descent methods with the Picard–Mann hybrid
iterative process. As a result, several accelerated gradient-descent
methods for solving unconstrained optimization problems are pre-
sented, investigated theoretically and numerically compared. The
proposed methods are globally convergent for uniformly convex
functions satisfying certain condition under the assumption that the
step size is determined by the backtracking line search. In addi-
tion, the convergence on strictly convex quadratic functions is dis-
cussed. Numerical comparisons show better behaviour of the pro-
posedmethodswith respect to some existingmethods in view of the
Dolan and Moré’s performance profile with respect to all analysed
characteristics: number of iterations, the CPU time, and the number
of function evaluations.
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1. Introduction and overview of related results

The objective of this paper is to study the convergence properties and practical compu-
tational performance of four new methods, created with the aim to solve the following
unconstrained optimization problem

min f (x), x ∈ R
n. (1)

It is assumed that the function f : Rn → R is uniformly convex and twice continuously
differentiable.

The most frequently used general iterative scheme aimed to solve the multivariable
unconstrained minimization problem (1) is the most general iterative scheme

xk+1 = xk + tkdk, (2)
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where xk+1 is a new iterative point, xk is the previous iterative point, tk > 0 is a step length,
and dk is a search direction. The key problem is to find the descent direction vector dk and
a suitable step size tk. The search direction dk must satisfy the descent condition gTk dk < 0.
The most frequent descent direction is dk = −gk, which produces the gradient descent
(GD) iterative scheme

xk+1 = xk − tkgk, (3)

where tk is defined by the inexact or exact line search. The most important method for
computing tk is the backtracking line search. The backtracking line search procedure from
[1] starts from t = 1 and it reduces the objective function sufficiently in each iteration.
The following Algorithm 1.1 from [33] will be used in order to implement the inexact line
search which determines the step size tk.

Algorithm 1.1 The backtracking line search.
Require: Objective function f (x), the direction dk of the search at the point xk and

numbers 0 < σ < 0.5 and β ∈ (0, 1).
1: t = 1.
2: While f (xk + tdk) > f (xk)+ σ tgTk dk, take t := tβ .
3: Return tk = t.

The Newton method with line search is defined by

xk+1 = xk − tkG−1
k gk, (4)

wherein G−1
k denotes the inverse of the Hessian matrix Gk defined by Gk(x) = ∇2f (xk)

and gk = ∇f (xk) is the gradient vector, and the step size tk is computed using an inexact
line search. The general iterative scheme of quasi-Newton type with line search

xk+1 = xk − tkHk gk (5)

assumes that Bk is appropriately generated symmetric positive definite approximation of
Gk andHk = B−1

k [35]. The update Bk+1 of Bk is defined upon the quasi-Newton property
(secant equation)

Bk+1sk = yk, where sk = xk+1 − xk, yk = gk+1 − gk. (6)

Brezinski in [5] classified known methods for updating the matrix Bk used in (5). Three
common approaches in defining Bk are: scalar matrix Bk = λkI, diagonal matrix Bk =
diag(λ1, . . . , λn) and an appropriate full matrix. In accordance with the necessity to mod-
ify and extend these methods to make them suitable for large problems [19], we exploit the
simplest scalar approximation to the Hessian:

Bk = γkI ≈ Gk, γk > 0, (7)

where I is appropriate identity matrix Our central interest in the present paper leads to
algorithms which are defined by the iterative rule

xk+1 = xk − γ−1
k tkgk, (8)

where gk = ∇f (xk) is the gradient vector and γk > 0 is a parameter aimed to improve
the behaviour of the gradient-descent algorithm and tk denotes the basic step size. The
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iterations (8) will be termed as improved gradient-descent (IGD) methods. Usually, the
parameter tk is defined using the inexact line search procedure, and γk is defined according
to the Taylor’s expansion of the objective function f (x).

Andrei in [1,3] defined iterations in the form

xk+1 = xk − θktkgk. (9)

Approach based on random values of θk which are uniformly distributed inside (0, 1] was
proposed in [3]. Later, Andrei in [1] proposed Algorithm 1.2 for finding an appropriate
value for θk in (9).

Algorithm 1.2 Determine the scalar θk from (9) as in [1].
Require: Objective function f (x),
1: (Backtracking) Find the step size tk ∈ (0, 1] using Algorithm 1.1.
2: Compute z = xk − tkgk, gz = ∇f (z) and yk = gz − gk.
3: Compute ak = tk(gk)Tgk, bk = −tk(yk)Tgk.
4: Return θk = ak/bk.

The iterative rule (9) within which θk is defined using Algorithm 1.2 was termed as
Accelerated Gradient Descent (AGD) in [1]. Following this notation, these iterations will be
denoted by

xAGDk+1 = xAGDk − θAGDk tkgAGDk . (10)

Several variants and modifications of the IGD iterative scheme (8) were proposed in
[22,23,25,33,34]. Nowwe are going to make a survey of IGDmethods in order to reach our
iteration schemes. The accelerated gradient methods defined in [33] are of the type (8),
in which the approximation of the Hessian is defined by the scalar matrix γkI, where
γk = γ (xk, xk−1) is the matching acceleration parameter. The SM method originated in
[33] was defined by the iterative process

xSMk+1 = xSMk − tk(γ SM
k )−1gSMk , (11)

where gSMk is the gradient vector, tk > 0 is the step length defined by the backtrack inexact
line search and γ SM

k > 0 is the acceleration parameter defined on the basis of the Taylor’s
approximation of the function f at the point xSMk+1, as follows:

γ SM
k+1 = 2γ SM

k
γ SM
k

[
f (xSMk+1)− f (xSMk )

] + tk‖gSMk ‖2
t2k‖gSMk ‖2 .

The Double direction and double step-size accelerated methods, termed as ADSS and
ADD methods, respectively, were presented in [22,23]. The ADD method is based on the
usage of two search directions

xADDk+1 = xADDk − tk(γ ADD
k )−1gADDk + t2kd

ADD
k , (12)

where dk is an appropriate second search direction.
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The next schemewas proposed as theAccelerated double step-size (ADSS) model in [22]:

xADSSk+1 = xADSSk −
(
tk(γ ADSS

k )−1 + lk
)
gADSSk , (13)

where tk and lk are step sizes, derived by two independent backtracking procedures: the
first backtracking calculates tk, while the second backtracking gives the value of lk. The
TADSS method from [34] is defined upon the assumption tk + lk = 1, which implies the
iterative rule

xTADSSk+1 = xTADSSk − ψk gTADSSk ,

where ψk = tk((γ TADSS
k )−1 − 1)+ 1. The acceleration parameters of ADD, ADSS and

TADSSmethods are defined, respectively, as follows:

γ ADD
k+1 = 2

f (xADDk+1 )− f (xADDk )− tk(gADDk )T(
tkdADDk − (γ ADD

k )−1gADDk
)

(
tkdADDk − (γ ADD

k )−1gADDk
)T(

tkdADDk − (γ ADD
k )−1gADDk

)
, (ADDmethod [25])

γ ADSS
k+1 = 2

f (xADSSk+1 )− f (xADSSk )

+ (
tk(γ ADSS

k )−1 + lk
) ‖gADSSk ‖2(

tk(γ ADSS
k )−1 + lk

)2 ‖gADSSk ‖2
, (ADSSmethod [24])

γ TADSS
k+1 = 2

f (xTADSSk+1 )− f (xTADSSk )+ ψk‖gTADSSk ‖2
ψ2
k‖gTADSSk ‖2 ,

ψk = tk
(
(γ TADSS

k )−1 − 1
) + 1

(TADSSmethod [36]).

The efficiency of IGD methods with accelerated parameters defined using the Taylor
expansion was numerically tested in [26].

The author in [12] considered two Relaxed Gradient Descent Quasi Newton (RGDQN
and RGDQN1) iterative schemes of the form

xk+1 = xk − θktkγ−1
k gk, (14)

where θk is the relaxation parameter. The RGDQN iterations are defined with random val-
ues θk from the interval (0, 1), while the RGDQN1 algorithm uses the relaxation θk which
is defined by

θk = γk

tkγk+1
.

The RGDQN and RGDQN1 iterative schemes confirm that AGD iterative schemes with
more than two acceleration parameters could be usable.

The author of [16] applied the TADSS iterative scheme in minimizing underage costs
for spare assemblies and subassemblies in aviation industry. In spite of the fact that these
costs are hard for quantification, a combination of the TADSS iterations with the method
for spare parts inventory forecasting based onRayleigh’smodel and theNewsvendormodel
is able to determine the underage cost in predefined time intervals.

Moreover, we will exploit the Picard–Mann hybrid iterative process which was defined
in [15]. It is assumed that themappingT : C → C in (16) is defined on a nonempty convex
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subset C of a normed space E. The hybrid iterations define the iterative sequences xk, yk
by the next three relations

x1 = x ∈ C,

xk+1 = Tyk,

yk = (1 − αk)xk + αkTxk, k ∈ N. (15)

The real number αk ∈ (0, 1) from (15) is denoted in [25] as the correction parameter.
An equivalent aggregated single iteration of (15) is defined as

xk+1 = H(T)(xk) = T[(1 − αk)xk + αkTxk], k ∈ N. (16)

Let us mention that the iterations (16) will be denoted byH(T, xk) = H(T)(xk) in order to
clarify the presentation.

The author in [15] used a chosen set of constant values for this parameter (α = αk ∈
(0, 1),∀k) for numerical experiments and showed that the process (16) converges faster
than the Picard, Mann and Ishikawa iterative processes from [14,17,27].

The iterative process (16) was used in [25] to create an accelerated hybridization of the
SM method (denoted byHSM). Using the operator T in (15) or (16) to be equal to the SM
iterative rule (11):

T(xk) := xSMk − (γ SM
k )−1tkgSMk ,

then the iterations (16) become so called HSM iterative rule of the form

xHSMk+1 := H(SM)(xk) = xHSMk − (αk + 1)(γHSM
k )−1tkgHSMk , (17)

where xHSMk+1 is a new iterative point, xHSMk is the previous iterative point, gHSMk is the corre-
sponding gradient vector, tk is a step length, αk correction parameter and γHSM

k > 0 is the
acceleration parameter defined by

γHSM
k+1 = 2γHSM

k
γHSM
k

[
f (xHSMk+1 )− f (xHSMk )

] + (αk + 1)tk‖gHSMk ‖2
(αk + 1)2t2k‖gHSMk ‖2 .

In [21], the authors proposed so called modified HSM (MHSM) method by finding
appropriate initial step-size parameter in the backtracking procedure.

Hybridization of theADDmethod was proposed and investigated in [24]. The resulting
iterations are of the form

xHADDk+1 = xHADDk − (αk + 1)tk(γHADD
k )−1gHADDk + (αk + 1)t2kdk,

wherein

γHADD
k+1 = 2

f (xHADDk+1 )− f (xHADDk )− (αk + 1)(gHADDk )T
(
t2kdk − tk(γHADD

k )−1gHADDk
)

(αk + 1)2t2k
(
tkdk − (γHADD

k )−1gHADDk
)T (

tkdk − (γHADD
k )−1gHADDk

) .

It is worth mentioning that the IGD iterations (8) in the case γk = 1 become the gradient-
descent (GD) iterative scheme (3). Usually, the step length tk is defined by the inexact or
exact line search.
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On the other hand, the IGD iterations (8) in the case tk = 1 become the gradient descent
(GD) iterative scheme

xk+1 = xk − γ−1
k gk, (18)

wherein γk can be defined in different ways. Barzilai and Borwein in [4] proposed two
variants of theGDmethod, termed as BBmethod, with the steplength γ BB

k := γ−1
k in (18).

The steplength γ BB
k in the first variant is defined after the minimization of the norm

‖sk−1 − γ yk−1‖2 with respect to γ , which yields

γ BB
k = sTk−1yk−1

yTk−1yk−1
. (19)

The steplength γ BB
k in symmetric case is computed on the basis of the minimization of

‖γ sk−1 − yk−1‖2, which yields

γ BB
k = sTk−1sk−1

sTk−1yk−1
. (20)

As a consequence, the BB iterations are defined as

xBBk+1 = xBBk − γ BB
k gBBk .

The BB method was modified in many articles, such as [6,7,8–11,29,30,36,37]. So called
Scalar Correction (SC) method from [18] proposed the trial steplength in (18) defined by

γ SC
k+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
sTk rk
yTk rk

, yTk rk > 0

‖sk‖
‖yk‖

, yTk rk ≤ 0.
rk = sk − γkyk. (21)

The SC iterations are defined as

xSCk+1 = xSCk − γ SC
k gSCk .

Relaxed steepest descent and BBmethod by a parameter θk ∈ (0, 2) are considered in [28].
In general, our intention is to introduce and investigate theoretically and numerically

two modifications of gradient-descent algorithms. We will use the term accelerated gradi-
ent descent algorithms to denote these modifications. The first acceleration is termed as
modification, and it is based on an appropriate small enlargement of basic the step size in
gradient-descent methods. The second acceleration is called hybridization, and it is based
on a proper composition of accelerated gradient-descent methods and the Picard–Mann
hybrid iterative process. Globally observed, we investigate possibility to use composite step
size in gradient-descent algorithms. Composite step size is generated as a function of differ-
ent parameters. These parameters could be considered asmultiple step sizes which produce
the final step length in gradient algorithms according to certain rules.

Main highlights of the present paper can be emphasized as follows.

(1) Transformation of gradient-descent methods, called modification, is proposed and
investigated theoretically and numerically. The modification is defined by replacing
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the basic step size tk in GD and AGD methods as well as in the IGD iterative class by
the step size tk + t2k − t3k . The resulting iterations will be termed asMGD,MAGD and
MIGD, respectively.

(2) A hybridization of gradient-descent methods is defined as a composition of all consid-
ered GD methods and modified GD methods with the Picard–Mann hybrid iterative
process.

(3) Convergence properties of defined methods on the class of uniformly convex as well
as on strictly convex quadratic functions are investigated.

(4) Numerical experiments analyse three main characteristics of iterative methods: num-
ber of iterations, the CPU time, and the number of function evaluations.

The rest of the paper is developed by following the next organization. Modification of
gradient descent methods is introduced in Section 2. Section 2.1 describes Modified AGD
(MAGD) method, while Section 2.2 is aimed to the Modified IGD (MIGD) method. In
Section 3, we define the HGD method as a result of the hybridization of the GD iteration
with the Picard–Mann hybrid iterative process. Hybridization of AGD methods (HAGD)
andAMGDmethods (HMAGD) is defined in Section 3.1. Section 3.2 defines the hybridiza-
tion of IGDmethods (HIGD) andMIGDmethods (HMIGD). TheHMSMmethod is stated
in a particular case. We also present the HMSM method that is created by modifying the
MSM method. Section 4 investigates the convergence properties of the presented MSM,
HMSM, MAGD and HMAGD methods. In Section 5, we report some numerical results
and compare the performance of the proposedmethodswith some existingmethods. Some
final conclusions are given in the Section 6.

2. Modification of gradient-descent methods

The modification of GD iterations (3) is denoted by MGD = M(GD) and defined by the
iterative rule

xk+1 = M(GD)(xk) = xk − (
tk + t2k − t3k

)
gk. (22)

Wewill use the notationMGD to denote the iterations (22). Themain idea used in defining
the iterations (22) is the replacement of the basic step size tk in the GD methods (3) by a
new basic step size tmod

k = tk + t2k − t3k .
The underlying idea in defining the step size tmod

k is given by the paper [24], where the
iterative scheme is given by the next relation

xk+1 = xk − αtkγ−1
k gk + αt2kdk, α ∈ (1, 2).

On the other hand, having in view that tmod
k > tk, we are obviously trying to use a slightly

greater step size in the aim tomake themethodwhich is better than some existingmethods
in this area.

It is assumed that tk is defined by the backtracking procedure defined in Algorithm 1.1,
which implies tk ∈ (0, 1). As a consequence, the justification for this modification lies in
the inequalities

tk ≤ tk + t2k − t3k ≤ tk + t2k .
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As a conclusion, (22) is based on a relatively small increase in the step length tk inside the
interval [tk, tk + t2k].

2.1. Modified AGDmethod

Using the same notation as in the previous section, the AGD process (10) is transformed
into theModified AGDmethod (MAGD shortly) as

xMAGD
k+1 = M(AGD)(xMAGD

k ) = xMAGD
k − θk(tk + t2k − t3k)g

MAGD
k . (23)

In this way, we introduce an iterative method for unconstrained optimization, which can
be termed asMAGDmethod.

Algorithm 2.1Modified accelerated gradient-descent method (theMAGDmethod).
Require: Objective function f (x) and chosen initial point xMAGD

0 ∈ dom(f ).
1: Set k = 0 and compute f (xMAGD

0 ) and gMAGD
0 = ∇f (xMAGD

0 ).
2: If test criteria are fulfilled, then stop the iteration; otherwise, go to the next step.
3: (Backtracking) Find the step size tk ∈ (0, 1] using Algorithm 1.1.
4: Compute zMAGD = xMAGD

k − tkgMAGD
k , gMAGD

z = ∇f (zMAGD) and yMAGD
k =

gMAGD
z − gMAGD

k .
5: Compute ak = tk(gMAGD

k )TgMAGD
k , bk = −tk(yMAGD

k )TgMAGD
k and θk = ak/bk.

6: Compute xMAGD
k+1 = xMAGD

k − θk(tk + t2k − t3k)g
MAGD
k .

7: Compute f (xMAGD
k+1 ) and gMAGD

k+1 = ∇f (xMAGD
k+1 ).

8: Set k := k + 1, go to the step 2.
9: Return xMAGD

k+1 and f (xMAGD
k+1 ).

2.2. Modified IGDmethods

The modification of IGD iterations, denoted by MIGD = M(IGD), produces the class of
iterations of the general form

xMIGD
k+1 = M(IGD)(xMIGD

k ) = xMIGD
k − γ−1

k
(
tk + t2k − t3k

)
gMIGD
k , (24)

where γk is appropriately defined using Taylor expansion. Clearly, since γk > 0, it follows
that

γ−1
k tk ≤ γ−1

k
(
tk + t2k − t3k

)
,

which implies that (24) defines an appropriate modification of the IGD class of methods,
termed asMIGD class.

It is possible to consider modifications of various IGD methods, such as SM, ADSS,
TADSS. Thesemodifications will be defined by the functionsMSM = M(SM),MADSS =
M(ADSS) and MTADSS = M(TADSS), respectively. Only M(SM) will be described in
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details. An application of the transformationM to the SM method leads to iterations

xMSM
k+1 = M(SM)(xMSM

k ) = xMSM
k − (tk + t2k − t3k)(γ

MSM
k )−1gMSM

k . (25)

In that case, from Taylor expansion of the second rate, the approximation of f (xMSM
k+1 ) can

be brought as follows:

f (xMSM
k+1 ) ≈ f (xMSM

k )− (tk + t2k − t3k)(γ
MSM
k )−1(gMSM

k )TgMSM
k

+ 1
2
(tk + t2k − t3k)

2
(
(γMSM

k )−1gMSM
k

)T ∇2f (ξ)(γMSM
k )−1gMSM

k . (26)

The parameter ξ in (26) fulfils the condition ξ ∈ [xMSM
k , xMSM

k+1 ]. One possible value for
ξ is

ξ = xMSM
k + δ(xMSM

k+1 − xMSM
k ) = xMSM

k − δ(tk + t2k − t3k)(γ
MSM
k )−1gMSM

k , 0 ≤ δ ≤ 1.
(27)

Following [33], the matrix∇2f (ξ) is replaced by the diagonal matrix γMSM
k+1 I, Based on the

previous, the expression (26) becomes

f (xMSM
k+1 ) ≈ f (xMSM

k )− (tk + t2k − t3k)(γ
MSM
k )−1‖gMSM

k ‖2

+ 1
2
(tk + t2k − t3k)

2γMSM
k+1 (γ

MSM
k )−2‖gMSM

k ‖2. (28)

Then γMSM
k+1 can be expressed from (28) in the following way:

γMSM
k+1 = 2γMSM

k
γMSM
k

[
f (xMSM

k+1 )− f (xMSM
k )

] + (tk + t2k − t3k)‖gMSM
k ‖2

(tk + t2k − t3k)
2‖gMSM

k ‖2 . (29)

Again, similarly as in [33], here we assume that γMSM
k+1 > 0; otherwise the Second-Order

Necessary Condition and Second-Order Sufficient Condition will not be fulfilled. If the
unwanted situation γMSM

k+1 < 0 happens in any iterative step, then the difficulty can be
resolved by taking γMSM

k+1 = 1.
For the end of this section, in Algorithm 2.2 we display theMSM method:

Algorithm 2.2Modified SM method (theMSM method).
Require: Objective function f (x) and chosen initial point xMSM

0 ∈ dom(f ).
1: Set k = 0 and compute f (xMSM

0 ), gMSM
0 = ∇f (xMSM

0 ) and take γMSM
0 = 1.

2: If test criteria are fulfilled, then stop the iteration; otherwise, go to the next step.
3: (Backtracking) Find the step size tk ∈ (0, 1] using Algorithm 1.1.
4: Compute xMSM

k+1 = xMSM
k − (γMSM

k )−1(tk + t2k − t3k)g
MSM
k .

5: Compute f (xMSM
k+1 ) and gMSM

k+1 = ∇f (xMSM
k+1 ).

6: Determine the scalar approximation γMSM
k+1 of the Hessian of f at the point xMSM

k+1 using
(29).

7: If γMSM
k+1 < 0, then take γMSM

k+1 = 1.
8: Set k := k + 1, go to the step 2.
9: Return xMSM

k+1 and f (xMSM
k+1 ).
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3. Hybridization of gradient-descent methods

The second class of iterations is defined by the hybrid correction of theGD iterations (8). A
hybrid form of theGDmethod is defined in the spaceC := Rn, assuming that themapping
T : Rn → Rn in (15) is defined by the GD iteration, i.e. Tyk = GD(yk) = yk − tkgk. Then,
using (15), we are able to derive the next set of iterations:

x1 = x ∈ R
n,

xk+1 = GD(yk) = yk − tkgk,

yk = (1 − αk)xk + αkGD(xk)

= (1 − αk)xk + αk
(
xk − tkgk

)
= xk − αktkgk, k ∈ N. (30)

By replacing the definition of yk from (30) into the definition of xk+1, we obtain the hybrid
method HGD = H(GD) which is defined by

xk+1 = H(GD)(xk) = xk − (αk + 1)tkgk. (31)

Since tk ∈ (0, 1) and αk + 1 ≥ 1, it follows that

tk ≤ (αk + 1)tk,

which furthermeans that theHGD iterations (31) define another increase of the step length
in the GD class.

Moreover, we consider the acceleration (24) and hybridization (31) incorporated in a
single iterative rule

xk+1 = H(MGD)(xk) = H(M(GD)(xk))(xk) = xk − (αk + 1)(tk + t2k − t3k)gk. (32)

The class of iterations (32) is termed as HMGD = H(MGD) class. Since tk ∈ (0, 1) and
αk + 1 ≥ 1, it follows that

tk ≤ tk + t2k − t3k ≤ (αk + 1)(tk + t2k − t3k),

which further means that HMGD iterations (32) defines an increase of the step length in
theMGD class and theMGD class is based on an increase of the step size in the GD class.

3.1. Hybridization of AGD andMAGDmethods

In order to define a hybrid form of theAGDmethod, assume thatC = Rn and themapping
T : Rn → Rn in (15) is defined by the AGD iteration, i.e. Tyk = AGD(yk) = yk − θktkgk.
Then, using (15), we are able to derive the next iterations:

x1 = x ∈ R
n,

xk+1 = AGD(yk) = yk − θktkgk,

yk = (1 − αk)xk + αkAGD(xk)
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= (1 − αk)xk + αk
(
xk − θktkgk

)
= xk − αkθktkgk, k ∈ N. (33)

By replacing the definition of yk from (33) into the definition of xk+1, we obtain

xHAGDk+1 = H(AGD)(xHAGDk ) = xHAGDk − (αk + 1)θktkgHAGDk . (34)

Similarly, we obtain

xHMAGD
k+1 = H(MAGD)(xHMAGD

k ) = xHMAGD
k − (αk + 1)θk(tk + t2k − t3k)g

HMAGD
k . (35)

The step length parameter tk is calculated using the inexact backtracking line search
defined in Algorithm 1.1. It is possible to remark that we take a constant value from the
interval (0, 1) for the correction parameter αk in each iteration, as proposed in [15]. Below
we present Algorithm 3.1 the HMAGDmethod.

Algorithm 3.1Hybridization of theMAGDmethod (the HMAGDmethod).
Require: Objective function f (x), αk ∈ (0, 1) and chosen initial point xHMAGD

0 ∈ dom(f ).
1: Set k = 0 and compute f (xHMAGD

0 ) and gHMAGD
0 = ∇f (xHMAGD

0 ).
2: If test criteria are fulfilled, then stop the iteration; otherwise, go to the next step.
3: (Backtracking) Find the step size tk ∈ (0, 1] using Algorithm 1.1.
4: Compute zHMAGD = xHMAGD

k − tkgHMAGD
k , gHMAGD

z = ∇f (zHMAGD) and
yHAAGDk = gHMAGD

z − gHMAGD
k .

5: Compute ak = tk(gHMAGD
k )TgHMAGD

k , bk = −tk(yHMAGD
k )TgHMAGD

k and θk = ak/bk.
6: Compute xHMAGD

k+1 = xHMAGD
k − (αk + 1)(tk + t2k − t3k)θkg

HMAGD
k .

7: Compute f (xHMAGD
k+1 ) and gHMAGD

k+1 = ∇f (xHMAGD
k+1 ).

8: Set k := k + 1, go to the step 2.
9: Return xHMAGD

k+1 and f (xHMAGD
k+1 ).

3.2. Hybridization of IGD andMIGDmethods

The second class of iterations is defined by the hybrid correction of the IGD iterations (8),
which is defined by

xk+1 = H(IGD)(xk) = xk − (αk + 1)γ−1
k tkgk, (36)

where αk ≥ 0 is appropriately selected real parameter defined using (15).
Moreover, we consider the MIGD acceleration (24) and hybridization HIGD (36)

incorporated in a single iterative rule

xk+1 = H(MIGD)(xk) = H(M(IGD)(xk))(xk) = xk − (αk + 1)γ−1
k

(
tk + t2k − t3k

)
gk.
(37)

Since tk ∈ (0, 1) and αk + 1 ≥ 1, it follows that

tkγ−1
k ≤ (

tk + t2k − t3k
)
γ−1
k ≤ (αk + 1)

(
tk + t2k − t3k

)
γ−1
k ,

which further means thatHIGD defined in (36) defines another increase of the step length
in the IGD class and HMIGD (37) is an acceleration of HIGD and MIGD, and, conse-
quently, of IGD. The class of iterations (36) is termed as HIGD class. Finally, the class of
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iterations (37) will be termed as hybridMIGD class (shortly HMIGD class). For example,
the method (17) belongs to the HIGD class.

Particularly, the hybridization of the MSM iterations will be denoted by HMSM and it
is defined as

xHMSM
k+1 = H(MSM)(xHMSM

k ) = xHMSM
k − (αk + 1)(tk + t2k − t3k)(γ

HMSM
k )−1gHMSM

k .
(38)

To complete defining theHMSMmethod, we need to compute the value of the acceleration
parameter γHMSM

k . The approximation of the Hessian of the objective function f is given
by the diagonal matrix

∇2f ≈ γHMSM
k+1 I, (39)

in which scalar γHMSM
k+1 = γ (xHMSM

k+1 , xHMSM
k ) is the appropriately selected real number

based on the Taylor approximation of the function f at the point xHMSM
k+1 , computed by

means of (38):

f (xHMSM
k+1 ) ≈ f (xHMSM

k )− (αk + 1)(tk + t2k − t3k)(g
HMSM
k )T(γHMSM

k )−1gHMSM
k

+ 1
2
(αk + 1)2(tk + t2k − t3k)

2
(
(γHMSM

k )−1gHMSM
k

)T
× ∇2f (ξ)(γHMSM

k )−1gHMSM
k . (40)

In the previous equation, the variable ξ satisfies ξ ∈ [xHMSM
k , xHMSM

k+1 ]. Since the point
xHMSM
k is close enough to the point xHMSM

k+1 , it is reasonable to take ξ = xHMSM
k+1 . Now, on

the basis of the equality (39), one can obtain the next equality

f (xHMSM
k+1 ) ≈ f (xHMSM

k )− (αk + 1)(tk + t2k − t3k)(γ
HMSM
k )−1‖gHMSM

k ‖2

+ 1
2
(αk + 1)2(tk + t2k − t3k)

2γHMSM
k+1 (γHMSM

k )−2‖gHMSM
k ‖2. (41)

According to (41), γHMSM
k+1 is computed in the following way:

γHMSM
k+1 = 2γHMSM

k
γHMSM
k

[
f (xHMSM

k+1 )− f (xHMSM
k )

] + (αk + 1)(tk + t2k − t3k)‖gHMSM
k ‖2

(αk + 1)2(tk + t2k − t3k)2‖gHMSM
k ‖2 .

(42)
Again, all values γHMSM

k+1 < 0 will be replaced by γHMSM
k+1 = 1.

Now, everything is ready to describe the algorithm of the HMSM method:

4. Convergence analysis

In the following proposition and lemma, we restate and derive some basic statements
needful for analysing the convergence properties of Algorithms 2.1, 2.2, 3.1 and 3.2.
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Algorithm 3.2Hybridization of theMSM method (the HMSM method).
Require: Objective function f (x), αk ∈ (0, 1) and chosen initial point xHMSM

0 ∈ dom(f ).
1: Set k = 0 and compute f (xHMSM

0 ), gHMSM
0 = ∇f (xHMSM

0 ) and take γHMSM
0 = 1.

2: If test criteria are fulfilled, then stop the iteration; otherwise, go to the next step.
3: (Backtracking) Find the step size tk ∈ (0, 1] using Algorithm 1.1.
4: Compute xHMSM

k+1 = xHMSM
k − (αk + 1)(tk + t2k − t3k)(γ

HMSM
k )−1gHMSM

k .
5: Compute f (xHMSM

k+1 ) and gHMSM
k+1 = ∇f (xHMSM

k+1 ).
6: Determine the scalar γHMSM

k+1 using (42).
7: If γHMSM

k+1 < 0, then take γHMSM
k+1 = 1.

8: Set k := k + 1, go to the step 2.
9: Return xHMSM

k+1 and f (xHMSM
k+1 ).

The following assumptions will be used in this section:

(H1) the function f has a lower bound on B0 = {x ∈ Rn | f (x) ≤ f (x0)}, where x0 ∈ Rn;
(H2) the gradient g of f is Lipschitz continuous in an open convex set B ⊇ B0, i.e. there

exists L>0 such that

‖g(x)− g(y)‖ ≤ L‖x − y‖, ∀ x, y ∈ B. (43)

The following result, restated from [1,32], will be useful.

Proposition 4.1 ([1,32]): Let dk be a descent direction and the gradient g(x) = ∇f (x) sat-
isfies the Lipschitz condition (43). If the backtracking line search in Algorithm 1.1 is used,
then

tk ≥ min

{
1,−β(1 − σ)

L
gTk dk
‖dk‖2

}
. (44)

The proofs of Proposition 4.2 and Lemma 4.1 can be found in [20,31]. These statements
are restated for the sake of completeness.

Proposition 4.2: If the function f : Rn → R is twice continuously differentiable and uni-
formly convex on Rn, then (H1) and (H2) are satisfied.

Lemma 4.1: Under the assumptions of Proposition 4.2 there exist real numbers m, M
satisfying

0 < m ≤ 1 ≤ M, (45)

such that f (x) has an unique minimizer x∗ and

m‖y‖2 ≤ yT∇2f (x)y ≤ M‖y‖2, ∀ x, y ∈ R
n; (46)

1
2
m‖x − x∗‖2 ≤ f (x)− f (x∗) ≤ 1

2
M‖x − x∗‖2, ∀ x ∈ R

n; (47)

m‖x − y‖2 ≤ (g(x)− g(y))T(x − y) ≤ M‖x − y‖2, ∀ x, y ∈ R
n. (48)
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Lemma 4.2 was proposed in [33] for the IGD iterative scheme. It estimates the iterative
decreasing of the objective function when the IGDmethod is applied.

Lemma 4.2 ([33]): For twice continuously differentiable and uniformly convex function f :
Rn �→ R, and for the IGD sequence {xk} generated by (8) the following inequality is valid

f (xk)− f (xk+1) ≥ μ‖gk‖2, (49)

where

μ = min
{
σ

M
,
σ(1 − σ)

L
β

}
. (50)

In subsequent, it is assumed that dk is a descent direction. Important observation is
that the scalar approximation of Hessian allows to avoid the assumption that f is twice
continuously differentiable. Consequently, instead of (46) and (45) which assumes that f
twice continuously differentiable and uniformly convex function, we will use the following
simple requirement for γk:

m ≤ γk ≤ M, 0 < m ≤ 1 ≤ M, m,M ∈ R. (51)

In the case γk < 0 it is possible to use γk = 1, while in the case γk > M wewill use γk = M.
Theorem 4.1 investigates the convergence of MIGD method for uniformly convex

functions under assumptions (H1) and (H2).

Theorem4.1: Let the assumptions (H1) and (H2) be satisfied, let (51) be valid and f : Rn �→
R is uniformly convex function. Then the MIGD sequence {xk} generated by (24) satisfies the
inequality of the form (49), (50).

Proof: The MIGD iterations are of the form xk+1 = xk + tkdk, wherein dk = −γ−1
k (1 +

tk − t2k)gk. According to the exit condition of the backtracking Algorithm 1.1, the next
inequality is valid

f (xk)− f (xk+1) ≥ −σ tkgTk dk. ∀ k ∈ N. (52)

In the case tk < 1, taking into consideration (52) in conjunctionwith dk = −γ−1
k (1 + tk −

t2k)gk, the following inequalities can be derived

f (xk)− f (xk+1) ≥ −σ tkgTk dk = −σ tkgTk (−γ−1
k (1 + tk − t2k)gk).

Now, (44) implies

tk ≥ (1 − σ)β

L
· γk

1 + tk − t2k
,

and further

f (xk)− f (xk+1) ≥ σ
(1 − σ)βγk

L(1 + tk − t2k)
· g

T
k gk(1 + tk − t2k)

γk

≥ σ
(1 − σ)β

L
‖gk‖2.
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In accordance with (51), the following inequality holds in the case tk = 1:

f (xk)− f (xk+1) ≥ −σ gTk dk = −σ gTk (−γ−1
k (1 + tk − t2k)gk)

≥ σ

γk
‖gk‖2

≥ σ

M
‖gk‖2.

Finally from the above two inequalities derived in both possible cases, tk < 1 and tk = 1,
we get (50) and the proof is complete. �

Remark 4.1: (a) The same result as in Theorem 4.1 can be verified for the MAGD
method. In order to verify this statement, it is necessary to replace γ−1

k by θk.
(b) The result as in Theorem 4.1 can be directly applied toMSM method.

Theorem 4.2 investigates bounds of iterative decreasing of the goal function when the
HIGDmethod is applied.

Theorem 4.2: Let the assumptions (H1) and (H2) be satisfied in conjunction with (51) and
f : Rn �→ R is uniformly convex function.

(a) The inequality of the form (49) is valid for any HIGD sequence {xHIGDk }, where

μ = min
{
σ

M
(αk + 1),

σ(1 − σ)

L
β

}
. (53)

(b) The inequality of the form (49) is valid for any HMIGD sequence {xHMIGD
k }, where μ

satisfies (53).

Proof: (a) We analyse the next two cases which refer to the value of the iterative step size:
tk < 1 and tk = 1. According to the exit condition of the backtracking Algorithm 1.1, the
inequality (52) is valid.

In the case tk < 1, taking into account (44), we get

tk ≥ −β(1 − σ)

L
gTk dk
‖dk‖2

.

Since the HIGD iterations satisfy

dk = −(αk + 1)γ−1
k gk, (54)

it follows that

tk ≥ β(1 − σ)γk

L(αk + 1)
. (55)
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An application of (55) and (54) into (52) produces the following inequalities:

f (xk)− f (xk+1) ≥ −σ tkgTk (−(αk + 1)γ−1
k gk)

≥ σ(1 − σ)βγk

L(αk + 1)
· g

T
k gk(αk + 1)

γk

≥ σ(1 − σ)β

L
‖gk‖2.

On the other hand, in accordance with (51), the following inequality holds in the case
tk = 1:

f (xk)− f (xk+1) ≥ −σ gTk dk ≥ σ

M
(αk + 1)‖gk‖2.

Finally from the above two inequalities derived in the case tk < 1 and tk = 1, we get

f (xk)− f (xk+1) ≥ min
{
σ

M
(αk + 1),

σ(1 − σ)

L
β

}
‖gk‖2

and the proof of the part (a) is completed.
The statement in (b) can be verified similarly. �

Remark 4.2: After comparison of inequalities (50) and (53), it can be concluded that the
HIGD iterations warrant greater decrease of f (xk+1) with respect to f (xk) with respect to
both the IGD andMIGD rule in the case tk = 1, because of σ/M(αk + 1) > σ/M.

In Theorems 4.3 and 4.4 we prove a linear convergence ofMAGD and HIGDmethods,
respectively, for uniformly convex functions.

Theorem 4.3: Let the assumptions (H1) and (H2) be satisfied in conjunction with (51)
and f : Rn �→ R be uniformly convex function. If the sequence {xMAGD

k } is generated by
Algorithm 2.1, then

lim
k→∞

‖gMAGD
k ‖ = 0, (56)

and the sequence {xMAGD
k } converges to x∗ at least linearly.

Proof: The proof is similar as in [33, Theorem 4.1], and will be omitted. �

Theorem 4.4: Let the assumptions (H1) and (H2) be satisfied in conjunction with (51) and
f : Rn �→ R be uniformly convex function. If the sequence {xHIGDk } is generated by the HIGD
iterations, then

lim
k→∞

‖gHIGDk ‖ = 0, (57)

and the sequence {xHIGDk } converges to x∗ at least linearly.
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Corollary 4.1: If the assumptions (H1) and (H2) are satisfied in conjunction with (51) and
f : Rn �→ R is uniformly convex function, the inequality of the form (49) is valid for theHGD,
HSM, HAGD sequences {xk}, where μ is defined as in (53). Also,

lim
k→∞

‖gk‖ = 0,

and the sequence {xk} converges to the optimal value x∗ at least linearly.

In Lemma 4.3 we want to prove convergence of theMSMmethod on the class of strictly
convex quadratic functions. Also, we discover the condition on smallest and largest eigen-
values of the matrixAwhich guarantee successful application of theMSM iterative scheme
on the strictly convex quadratic functions given by

f (x) = 1
2
xTAx − bTx, (58)

where A is a real n × n symmetric positive definite matrix and b ∈ Rn. Particularly,
Theorem 4.1 is valid for the MSM iterations defined in Algorithm 2.2. Denote the
eigenvalues of the matrix A as λ1 ≤ λ2 ≤ · · · ≤ λn.

Lemma 4.3: The following inequality holds for a strictly convex quadratic function f given
by the expression (58) which involves symmetric positive definite matrix A ∈ Rn and the
gradient-descent method (25) with the parameters γMSM

k determined according to (29) and
the primary step size tk defined in Algorithm 1.1:

λ1 ≤ γMSM
k+1
tk+1

≤ 2λn
σ

, k ∈ N, (59)

wherein the quantities λ1 and λn represent the smallest and the largest eigenvalues of A,
respectively.

Proof: The difference between two successive values of f defined in (58) is equal to

f (xMSM
k+1 )− f (xMSM

k ) = 1
2
(xMSM

k+1 )
TAxMSM

k+1 − bTxMSM
k+1 − 1

2
(xMSM

k )TAxMSM
k + bTxMSM

k .
(60)

The replacement of (25) in (60) gives

f (xMSM
k+1 )− f (xMSM

k ) = 1
2

[
xMSM
k − (tk + t2k − t3k)(γ

MSM
k )−1gMSM

k ]T

× A[xMSM
k − (tk + t2k − t3k)(γ

MSM
k )−1gMSM

k

]
− bT[xMSM

k − (tk + t2k − t3k)(γ
MSM
k )−1gMSM

k ]

− 1
2
(xMSM

k )TAxMSM
k + bTxMSM

k

= −1
2
(tk + t2k − t3k)(γ

MSM
k )−1(xMSM

k )TAgMSM
k

− 1
2
(tk + t2k − t3k)(γ

MSM
k )−1(gMSM

k )TAxMSM
k
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+ 1
2
(tk + t2k − t3k)

2(γMSM
k )−2(gMSM

k )TAgMSM
k

+ (tk + t2k − t3k)(γ
MSM
k )−1bTgMSM

k .

Since the gradient of the function (58) is equal to gMSM
k = AxMSM

k − b, one can verify

f (xMSM
k+1 )− f (xMSM

k ) = (tk + t2k − t3k)(γ
MSM
k )−1[bTgMSM

k − (xMSM
k )TAgMSM

k ]

+ 1
2
(tk + t2k − t3k)

2(γMSM
k )−2(gMSM

k )TAgMSM
k

= (tk + t2k − t3k)(γ
MSM
k )−1[bT − (xMSM

k )TA]gMSM
k

+ 1
2
(tk + t2k − t3k)

2(γMSM
k )−2(gMSM

k )TAgMSM
k

= −(tk + t2k − t3k)(γ
MSM
k )−1(gMSM

k )TgMSM
k

+ 1
2
(tk + t2k − t3k)

2(γMSM
k )−2(gMSM

k )TAgMSM
k . (61)

After replacing (61) into (29), the parameter γMSM
k+1 becomes

γMSM
k+1 = 2γMSM

k
γMSM
k

[
f (xMSM

k+1 )− f (xMSM
k )

] + (tk + t2k − t3k)‖gMSM
k ‖2

(tk + t2k − t3k)
2‖gMSM

k ‖2

= (gMSM
k )TAgMSM

k
‖gMSM

k ‖2 .

The last relation reveals that γMSM
k+1 is the Rayleigh quotient of the real symmetric matrix

A at the vector gMSM
k . So, the next inequalities hold:

λ1 ≤ γMSM
k+1 ≤ λn, k ∈ N. (62)

The verification of the left inequality in (59) is straight from (62), since 0 < tk+1 ≤ 1. To
prove the right inequality in (59), we use the upper bound initiated by the line search

tk ≥ β(1 − σ)γk

L
,

which leads to the next inequality:

γMSM
k+1
tk+1

<
L

β(1 − σ)
. (63)

Taking into account that the gradient of the objective (58) is equal to g(x) = Ax − b
in conjunction with the assumption that the real matrix A symmetric, the next can be
concluded:

‖g(x)− g(y)‖ = ‖Ax − Ay‖ = ‖A(x − y)‖ ≤ ‖A‖‖x − y‖ = λn‖x − y‖. (64)

On the basis of the last equation, we can conclude that Lipschitz constant L in (63) can take
the largest eigenvalue λn of thematrixA. Considering the estimations for the Backtracking
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parameters σ ∈ (0, 0.5) and β ∈ (σ , 1) we finally get
γMSM
k+1
tk+1

<
L

β(1 − σ)
= λn

β(1 − σ)
<

2λn
σ

. (65)

Therefore, the right inequality in (59) is proved. �

The convergence of the MSM method under the additional assumption λn < 2λ1 is
considered in Theorem 4.5.

Theorem 4.5: Let f be a strictly convex quadratic function given by (58). If the eigenvalues of
thematrix A satisfy the additional assumption λn < 2λ1, then theMSMmethod (25) satisfies

(dk+1
i )2 ≤ δ2(dki )

2, (66)

where

δ = max
{
1 − σλ1

2λn
,
λn

λ1
− 1

}
. (67)

In addition,

lim
k→∞

‖gMSM
k ‖ = 0. (68)

Proof: Let {xMSM
k } be the sequence generated by Algorithm 2.2. Assume that {v1, v2, . . . ,

vn} are orthonormal eigenvectors of A. Then for arbitrary vector xMSM
k , using gMSM

k =
AxMSM

k − b, there exist real constants dk1, d
k
2, . . . , d

k
n such that

gMSM
k =

n∑
i=1

dki vi. (69)

Now, using (25) one can simply verify the following

gMSM
k+1 = AxMSM

k+1 − b

= A(xMSM
k − (tk + t2k − t3k)(γ

MSM
k )−1gMSM

k )− b

= gMSM
k − (tk + t2k − t3k)(γ

MSM
k )−1AgMSM

k

=
(
I − (tk + t2k − t3k)(γ

MSM
k )−1A

)
gMSM
k .

Using the simple linear representation for gMSM
k+1 of the form (69), we get

gMSM
k+1 =

n∑
i=1

dk+1
i vi =

n∑
i=1

(
1 − (tk + t2k − t3k)(γ

MSM
k )−1λi

)
dki vi. (70)

To prove (66), it is enough to show that |1 − λi/(γ
MSM
k (tk + t2k − t3k)

−1)| ≤ δ. There are

two cases. First, if λi ≤ γMSM
k

tk+t2k−t3k
implying (59), we can conclude the following:

1 >
λi

γMSM
k (tk + t2k − t3k)

−1
≥ σλ1

2λn
=⇒ 1 − λi

γMSM
k (tk + t2k − t3k)

−1
≤ 1 − σλ1

2λn
≤ δ.

(71)
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Now, let us examine another case γMSM
k /(tk + t2k − t3k) < λi. Since

1 <
λi

γMSM
k (tk + t2k − t3k)

−1
≤ λn

λ1
, (72)

it follows that ∣∣∣∣∣1 − λi

γMSM
k (tk + t2k − t3k)

−1

∣∣∣∣∣ ≤ λn

λ1
− 1 ≤ δ. (73)

Now, in order to prove limk→∞ ‖gMSM
k ‖ = 0,we use the orthonormality of the eigenvectors

{v1, v2, . . . , vn} as well as (69) and get

‖gMSM
k ‖2 =

n∑
i=1
(dki )

2. (74)

Since (66) is satisfied and 0 < δ < 1 holds, in view of (74) it follows that (69) holds, which
completes our proof. �

Convergence properties of hybrid methods (HMIGD,HMAGD andHMSM) in the case
of strictly convex quadratic functions can be proven analogously on the basis of Lemma 4.3
and Theorem 4.5.

5. Numerical experiments

In this section, we present numerical results obtained by testingMAGD,MSM, HMAGD,
HMSM andHSM methods. It is important to mention that theHSM method in work [25]
showed much better results than the SMmethod from [33] In addition, the SMmethod in
[33] gave better results thanAGD andGDmethods. For these reasons, we choose theHSM
method for comparing versus toMAGD,MSM,HMAGD andHMSMmethods. At the end
of this section, we present the numerical results obtained by testing theMSM method and
the SM method.

The codes used in the tests are written in the Matlab R2017a programming language,
and the tests were performed on the computer Workstation Intel Core i3 2.0GHz. The
number of iterations, number of function evaluations and CPU time in all tested methods
are analysed in numerical experiments.

Example 5.1: Numerical experiments are based on 28 test functions from [2]. For each
of tested functions in Tables 1, 2 and 3 we have considered 12 different numerical exper-
iments with the number of variables, equal to 100, 200, 300, 500, 1000, 2000, 3000, 5000,
7000, 8000, 10,000 and 15,000. Summary numerical results for MAGD, MSM, HMAGD,
HMSM and HSM, tested on 28 large scale test functions, are presented in Tables 1, 2
and 3.

For each of five considered algorithms (MAGD,HMAGD,MSM,HMSM andHSM), we
have taken the same stopping criteria used in [25]:

‖gk‖ ≤ 10−6 and
|f (xk+1)− f (xk)|

1 + |f (xk)|
≤ 10−16.
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Table 1. Summary numerical results for the number of iterations in Example 5.1.

Number of iterations

Test function MAGD HMAGD MSM HMSM HSM

Extended penalty function 341 391 689 744 684
Perturbed quadratic function 352,325 356,402 34,828 84,420 79,198
Raydan 2 function 60 119 108 160 160
Diagonal 3 function 119,719 124,750 7030 21,287 20,626
Generalized tridiagonal 1 function 647 653 346 443 422
Extended tridiagonal 1 function 692,219 755,340 1370 82,248 74,898
Extended TET function 455 455 156 261 286
Diagonal 4 function 8084 10,590 96 1681 2055
Diagonal 5 function 48 109 72 120 120
Extended Himmelblau function 302 400 260 693 358
Perturbed quadratic diagonal function 1,060,824 5,965,848 37,454 196,373 155,484
Quadratic QF1 function 362,896 368,183 36,169 89,026 78,932
Extended quadratic penalty QP1 function 229 275 369 340 374
Extended quadratic penalty QP2 function 356,357 84,634 1674 22,385 20,432
Quadratic QF2 function 71,647 388,352 32,727 90,357 89,593
Extended quadratic exponential EP1 function 67 128 100 268 193
Extended tridiagonal 2 function 1665 1721 659 710 778
ARWHEAD function (CUTE) 12,834 71,741 430 4261 4151
Almost perturbed quadratic function 354,369 358,466 33,652 84,546 79,701
LIARWHD function (CUTE) 925,138 1,963,100 3029 271,705 244,509
ENGVAL1 function (CUTE) 822 821 461 561 522
QUARTC function (CUTE) 177 165 217 292 256
Diagonal 6 function 60 119 108 162 160
Generalized quartic function 229 270 181 209 226
Diagonal 7 function 159 216 147 266 209
Diagonal 8 function 154 216 120 202 177
Full Hessian FH3 function 63 153 63 207 186
Diagonal 9 function 325,609 614,270 10,540 79,802 63,237

The backtracking parameters for all algorithms are σ = 0.0001 and β = 0.8, which means
thatwe accept a small decrease in f predicted by a linear approximation at the current point.
The value of correction parameter αk = 0.1 was used in three hybrid methods (HMAGD,
HMSM and HSM).

Table 4 contains the results corresponding to the average number of iterations, the
number of function evaluations and the CPU time for all 336 numerical experiments.

Based on the results arranged in Table 4, it is observable that theMSMmethod gives four
and more times better results compared toMAGD, HMAGD, HMSM and HSM methods.
This conclusion is confirmed by performance profiles for the number of iterations, the
number of function evaluations and the CPU time.

Performance profiles of a givenmetric, proposed in [13], is a widely used tool for bench-
marking and comparing the performance of optimization software on a large test set. For
performance measures, as usual, the number of iterations, number of function evaluations
and computation time (CPU time) are used. Figure 1 (left) shows the performances of
compared methods relative to the number of iterations. Figure 1 (right) illustrates the per-
formance of these methods relative to the number of function evaluations. Figure 2 shows
the performance of the considered methods relative to the CPU time. The top curve cor-
responds to the method that exhibits the best performances with respect to the chosen
performance profile.

From the results displayed in Tables 1–3 and according to graphs included in
Figure 1 (left), 1 (right) and Figure 2, we can conclude the following.
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Table 2. Summary numerical results for the number of function evaluations in Example 5.1.

Number of function evaluations

Test function MAGD HMAGD MSM HMSM HSM

Extended penalty function 9085 11,702 3479 3638 3460
Perturbed quadratic function 13,855,459 14,193,163 200,106 366,943 334,564
Raydan 2 function 132 250 228 332 332
Diagonal 3 function 4,244,404 4,482,972 38,158 93,632 88,698
Generalized tridiagonal 1 function 9057 9616 1191 1396 1330
Extended tridiagonal 1 function 2,077,341 3,021,492 10,989 425,411 387,939
Extended TET function 4130 4168 528 753 818
Diagonal 4 function 133,440 185,397 636 8140 9517
Diagonal 5 function 108 230 156 253 253
Extended Himmelblau function 5192 7164 976 2754 1172
Perturbed quadratic diagonal function 3,872,8371 236,316,190 341,299 1,018,378 807,185
Quadratic QF1 function 13,192,789 13,541,108 208,286 387,021 332,928
Extended quadratic penalty QP1 function 2939 3747 2196 1846 2141
Extended quadratic penalty QP2 function 8,846,145 2,282,567 11,491 116,071 105,841
Quadratic QF2 function 2,810,965 16,640,880 183,142 394,364 378,921
Extended quadratic exponential EP1 function 1513 2878 894 2500 1716
Extended tridiagonal 2 function 9613 10916 2866 2793 3010
ARWHEAD function (CUTE) 468,970 2,847,637 5322 27,050 28,015
Almost perturbed quadratic function 13,936,462 14,275,979 194,876 367,586 336,419
LIARWHD function (CUTE) 41,619,197 90,302,744 27,974 1,409,648 1,269,240
ENGVAL1 function (CUTE) 8332 8531 2285 2956 2700
QUARTC function (CUTE) 414 402 494 644 572
Diagonal 6 function 132 275 270 362 356
Generalized quartic function 1244 1696 493 526 592
Diagonal 7 function 745 1187 504 756 672
Diagonal 8 function 740 1064 383 753 589
Full Hessian FH3 function 1955 5508 566 1898 1541
Diagonal 9 function 12,984,028 25,166,521 68,189 392,059 307,951

(1) The MSM method gives better results compared to other methods concerning all
three considered performance criteria: number of iterations, number of function
evaluations and the CPU time.

(2) In general, the accelerated method shows better performances than the hybrid meth-
ods. Exactly, this means that MAGD is better than HMAGD as well as MSM with
respect to HSM.

(3) The class of SMmethods (MSM,HSM andHMSM) exhibit better performances from
the AGDmethods (MAGD and HMAGD).

In Figure 1 (left), it is observable that all fivemethods successfully solve all the problems,
and theMSMmethod is best in 75.0%of the test problems compared to theMAGD(25.0%),
HMAGD(3.6%), HMSM(0%) and HSM(0%).

In Figure 1 (right), it is observable that all five methods successfully solve all the
problems, and the MSM method is best in 75.0% of the test problems compared to the
MAGD(10.7%), HMAGD(3.6%), HMSM(7.1%) and HSM(3.6%).

Graphs in Figure 2 show that all five methods successfully solve all the problems, and
the MSM method is best in 78.6% of the test problems compared to the MAGD(10.7%),
HMAGD(0%), HMSM(10.7%) and HSM(3.6%).

In Table 4, we can notice that the MAGD and HMAGD methods have extremely
low average results for CPU time. For this reason, we will omit them from further
testing.
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Table 3. Summary numerical results for the CPU time (sec) in Example 5.1.

CPU time (sec)

Test function MAGD HMAGD MSM HMSM HSM

Extended penalty function 2.69 3.19 1.59 1.38 1.53
Perturbed quadratic function 6049.53 6432.67 116.28 210.17 210.42
Raydan 2 function 0.17 0.23 0.23 0.20 0.28
Diagonal 3 function 6401.97 7049.88 52.61 153.34 155.52
Generalized tridiagonal 1 function 7.78 7.22 1.47 1.83 1.58
Extended tridiagonal 1 function 8853.17 11,247.73 29.05 1121.67 1018.38
Extended TET function 2.77 2.50 0.52 0.80 0.91
Diagonal 4 function 16.17 22.34 0.20 1.70 1.86
Diagonal 5 function 0.31 0.44 0.34 0.55 0.42
Extended Himmelblau function 1.03 1.36 0.30 0.66 0.31
Perturbed quadratic diagonal function 22,820.17 102,830.22 139.63 476.63 277.48
Quadratic QF1 function 6846.45 7960.61 81.53 155.34 128.80
Extended quadratic penalty QP1 function 1.06 1.25 1.00 0.92 0.84
Extended quadratic penalty QP2 function 1872.80 532.38 3.52 20.11 18.09
Quadratic QF2 function 768.56 5263.98 73.44 169.16 158.72
Extended quadratic exponential EP1 function 0.84 1.05 0.69 1.17 1.17
Extended tridiagonal 2 function 2.53 3.34 1.05 0.97 1.22
ARWHEAD function (CUTE) 138.00 1627.41 1.97 11.53 13.56
Almost perturbed quadratic function 7086.56 8258.72 73.05 148.22 131.58
LIARWHD function (CUTE) 15,372.63 32,393.92 9.25 707.83 635.06
ENGVAL1 function (CUTE) 2.64 2.47 1.05 1.42 1.27
QUARTC function (CUTE) 2.08 1.91 1.84 2.34 2.30
Diagonal 6 function 0.14 0.38 0.23 0.36 0.33
Generalized quartic function 0.50 0.70 0.28 0.28 0.38
Diagonal 7 function 0.69 1.02 0.55 0.80 0.84
Diagonal 8 function 0.66 1.08 0.47 1.13 0.67
Full Hessian FH3 function 1.19 3.13 0.39 1.72 1.39
Diagonal 9 function 6662.98 7734.27 43.61 219.52 104.09

Table 4. Average numerical outcomes for 28 test functions tested on 12 numerical experiments in
Example 5.1.

Average performances MAGD HMAGD MSM HMSM HSM

Number of iterations 165,982.11 395,281.68 7,251.96 36,918.89 32,783.11
Number of function evaluations 5,462,603.64 15,118,785.14 46,713.46 179,659.39 157,445.43
CPU time (sec) 2,961.29 6,835.19 22.72 121.85 102.46
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Figure 1. Performance profiles based on the number of iterations (left) and function evaluations (right).
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Figure 2. Performance profile based on CPU time.

Example 5.2: The goal of the next numerical experiment is to investigate the behaviour
of the MSM, HMSM, and HSM methods with respect to an increase in the number of
variables.

Table 5. Summary numerical results for the number of iterations in Example 5.2.

Number of iterations

Test function MSM HMSM HSM

Extended penalty function 747 777 795
Perturbed quadratic function 90,056 216,249 208,908
Raydan 2 function 99 146 146
Diagonal 2 function 61,480 2761 57,062
Diagonal 3 function 9143 31,331 32,541
Generalized tridiagonal 1 function 310 409 381
Extended tridiagonal 1 function 1557 111,650 98,106
Extended TET function 143 231 254
Diagonal 4 function 88 1606 1958
Diagonal 5 function 66 110 110
Perturbed quadratic diagonal function 66,898 325,007 270,034
Quadratic QF1 function 94,931 236,085 219,454
Extended quadratic penalty QP1 function 408 353 400
Extended quadratic penalty QP2 function 1061 8496 7627
Quadratic QF2 function 89,646 246,260 244,162
Extended quadratic exponential EP1 function 93 280 211
Extended tridiagonal 2 function 650 654 711
ARWHEAD function (CUTE) 431 4396 4431
Almost perturbed quadratic function 88,120 222,865 219,976
LIARWHD function (CUTE) 6201 756,758 709,335
ENGVAL1 function (CUTE) 428 552 502
QUARTC function (CUTE) 210 277 244
Diagonal 6 function 99 151 149
COSINE function (CUTE) 220 175,767 248
Generalized quartic function 165 193 220
Diagonal 7 function 165 296 204
Diagonal 8 function 114 202 197
Full Hessian FH3 function 55 233 228
HIMMELH function (CUTE) 110 99 99
Extended Rosenbrock 55 55 55
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Table 6. Summary numerical results for the number of function evaluations
in Example 5.2.

Number of function evaluations

Test function MSM HMSM HSM

Extended penalty function 4050 4125 4521
Perturbed quadratic function 531,633 941,045 883,112
Raydan 2 function 209 303 303
Diagonal 2 function 400,443 31,069 266,617
Diagonal 3 function 50,629 137,875 140,393
Generalized tridiagonal 1 function 1075 1357 1219
Extended tridiagonal 1 function 13,320 578,079 508,592
Extended TET function 484 657 736
Diagonal 4 function 583 7775 9080
Diagonal 5 function 143 232 232
Perturbed quadratic diagonal function 626,251 1,685,791 1,402,532
Quadratic QF1 function 563,538 1,027,186 927,053
Extended quadratic penalty QP1 function 2396 2083 2454
Extended quadratic penalty QP2 function 6940 43,453 39,132
Quadratic QF2 function 504,120 1,072,757 1,032,582
Extended quadratic exponential EP1 function 847 3147 2057
Extended tridiagonal 2 function 2936 2599 2708
ARWHEAD function (CUTE) 5844 29,860 32,806
Almost perturbed quadratic function 525,546 969,555 929,583
LIARWHD function (CUTE) 65,898 3,926,707 3,685,122
ENGVAL1 function (CUTE) 2324 3044 2863
QUARTC function (CUTE) 475 609 543
Diagonal 6 function 220 381 372
COSINE function (CUTE) 652 775,878 692
Generalized quartic function 451 485 579
Diagonal 7 function 621 1015 819
Diagonal 8 function 452 836 851
Full Hessian FH3 function 598 2486 2514
HIMMELH function (CUTE) 231 209 209
Extended Rosenbrock 121 121 121

Numerical experiments are based on 30 test functions from [2]. We have considered 11
different numerical experiments with the number of variables equal to 1000, 2000, 3000,
5000, 7000, 8000, 10,000, 15,000, 20,000, 30,000 and 50,000, for each function in Tables 5, 6
and 7. Summary numerical results forMSM,HMSM andHSM, tested on 30 large scale test
functions, are presented in Tables 5, 6 and 7. The parameter values and stopping criteria
are the same as in the previous numerical experiment.

Figure 3 (left), 3 (right) and Figure 4 respectively were created from the results shown
in Tables 5, 6 and 7. Figure 3 (left) shows the performances of compared methods relative
to the number of iterations. In this Figure, it is observable that MSM, HMSM and HSM
methods successfully solve all the problems, and theMSM method is best in 90.0% of the
test problems compared to the HMSM and HSM. Figure 3 (right) shows the performance
of these methods relative to the number of function evaluations. Also in this Figure, it is
observable thatMSM, HMSM and HSM methods successfully solve all the problems, and
theMSM method is best in 86.7% of the test problems compared to theHMSM andHSM.

Figure 4 shows the performance of the considered methods relative to the CPU time.
In this Figure, it is observable thatMSM, HMSM and HSM methods successfully solve all
the problems, and theMSM method is best in 80.0% of the test problems compared to the
HMSM and HSM.
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Table 7. Summary numerical results for the CPU time in Example 5.2.

CPU time (sec)

Test function MSM HMSM HSM

Extended penalty function 3.69 3.91 4.91
Perturbed quadratic function 748.80 1364.23 1312.34
Raydan 2 function 0.48 0.63 0.66
Diagonal 2 function 802.17 37.55 613.45
Diagonal 3 function 128.64 410.58 478.38
Generalized tridiagonal 1 function 3.00 4.08 3.39
Extended tridiagonal 1 function 68.13 3513.39 2850.02
Extended TET function 1.19 1.63 1.72
Diagonal 4 function 0.42 3.80 4.45
Diagonal 5 function 0.67 1.45 1.25
Perturbed quadratic diagonal function 696.84 1916.58 1609.41
Quadratic QF1 function 614.67 1056.86 976.09
Extended quadratic penalty QP1 function 1.94 1.91 2.14
Extended quadratic penalty QP2 function 11.08 52.48 49.23
Quadratic QF2 function 548.59 1201.77 1168.66
Extended quadratic exponential EP1 function 1.13 3.69 2.36
Extended tridiagonal 2 function 2.44 2.05 2.20
ARWHEAD function (CUTE) 3.98 27.72 26.77
Almost perturbed quadratic function 548.47 1010.25 984.58
LIARWHD function (CUTE) 60.05 5138.77 4750.78
ENGVAL1 function (CUTE) 3.02 3.34 2.72
QUARTC function (CUTE) 4.20 5.28 5.34
Diagonal 6 function 0.56 0.89 0.75
COSINE function (CUTE) 2.17 1776.70 1.75
Generalized quartic function 0.64 0.77 0.69
Diagonal 7 function 1.83 2.83 2.11
Diagonal 8 function 1.31 2.00 2.27
Full Hessian FH3 function 1.08 4.70 5.11
HIMMELH function (CUTE) 1.13 1.08 1.03
Extended Rosenbrock 0.13 0.30 0.20
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Figure 3. Performance profiles based on the number of iterations (left) and function evaluations (right).

Table 8 contains the average number of iterations, the CPU time, and the number of
function evaluations for all 330 numerical experiments.

On the basis of the results obtained in Table 8, we can conclude that theMSM method
has on average three and more times better results (number of iterations, the number of
function evaluations and CPU time) than the other two methods.



OPTIMIZATION METHODS & SOFTWARE 27

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MSM
HMSM
HSM

Figure 4. Performance profile based on CPU time.

Table 8. Average numerical outcomes for 30 test functions tested on
11 numerical experiments in Example 5.2.

Average performances MSM HMSM HSM

Number of iterations 17,124.97 78,141.63 69,291.60
Number of function evaluations 110,434.33 375,023.97 329,346.57
CPU time (sec) 142.08 585.04 495.49

After increasing the number of variables from 15,000 to 50,000 in the second numer-
ical experiment, it can be noticed that the ratio of (successful and fast) solved problems
between the MSM method and the HMSM and HSM method remains approximately
the same. The MSM method has three and more times better results from the other two
methods.

In the following example, we compare MSM and SM methods to show superiority of
the MSM method achieves better results with respect to number of iterations, number of
function evaluations and the CPU time.

Example 5.3: The goal of the next numerical experiment is to investigate the behaviour of
theMSM and SM methods with respect to a number of iterations, the number of function
evaluations and CPU time.

Numerical experiments are based on 30 test functions from the Example 5.2. We have
considered 11 different numerical experiments with the number of variables equal to 1000,
2000, 3000, 5000, 7000, 8000, 10,000, 15,000, 20,000, 30,000 and 50,000, for each function
in Table 9. Summary numerical results for MSM, and SM, tested on 30 large scale test
functions, are presented in Table 9. The parameter values and stopping criteria are the
same as in the previous numerical experiments.

Figures 5 and 6 respectively were created from the results shown in Table 9. Figure 5
shows the performances of compared MSM and SM methods relative to the number of
iterations (left) and the number of function evaluations(right). Figure 6 shows the per-
formance of the considered methods relative to the CPU time. In Figures 5 and 6, it is
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Table 9. Summary numerical results for the number of iterations, number of function evaluations and
CPU time in Example 5.3.

Numberof iterations
Number of function

evaluations CPU Time

Test function MSM SM MSM SM MSM SM

Extended penalty function 747 650 4050 2924 3.69 3.00
Perturbed quadratic function 90,056 160,542 531,633 916,964 748.80 1304.34
Raydan 2 function 99 99 209 209 0.48 0.59
Diagonal 2 function 61,480 58,288 400,443 326,472 802.17 970.42
Diagonal 3 function 9143 17,019 50,629 93,596 128.64 242.94
Generalized tridiagonal 1 function 310 293 1075 1020 3.00 3.86
Extended tridiagonal 1 function 1557 3871 13,320 32,720 68.13 143.08
Extended TET function 143 143 484 489 1.19 1.16
Diagonal 4 function 88 88 583 583 0.42 0.47
Diagonal 5 function 66 66 143 143 0.67 0.72
Perturbed quadratic diagonal function 66,898 81,148 626,251 853,416 696.84 915.50
Quadratic QF1 function 94,931 169,298 563,538 964,865 614.67 1046.86
Extended quadratic penalty QP1 function 408 298 2396 3262 1.94 2.89
Extended quadratic penalty QP2 function 1061 1630 6940 11,055 11.08 13.03
Quadratic QF2 function 89,646 176,214 504,120 986,671 548.59 1143.13
Extended quadratic exponential EP1 function 93 70 847 724 1.13 0.91
Extended tridiagonal 2 function 650 457 2936 2727 2.44 2.19
ARWHEAD function (CUTE) 431 309 5844 5308 3.98 6.06
Almost perturbed quadratic function 88,120 168,157 525,546 952,654 548.47 1050.47
LIARWHD function (CUTE) 6201 19,725 65,898 193,633 60.05 106.20
ENGVAL1 function (CUTE) 428 326 2324 2937 3.02 3.42
QUARTC function (CUTE) 210 277 475 609 4.20 5.28
Diagonal 6 function 99 99 220 220 0.56 0.61
COSINE function (CUTE) 220 198 652 636 2.17 1.63
Generalized quartic function 165 175 451 471 0.64 0.53
Diagonal 7 function 165 99 621 253 1.83 0.97
Diagonal 8 function 114 116 452 1127 1.31 2.61
Full Hessian FH3 function 55 55 598 608 1.08 1.14
HIMMELH function (CUTE) 110 110 231 231 1.13 1.25
Extended Rosenbrock 55 55 121 121 0.13 0.25
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Figure 5. Performance profiles based on the number of iterations (left) and function evaluations (right).

observable that MSM and SM methods successfully solve all the problems, graph MSM
method in all of those cases first come to the top which signifies that theMSM is the best.

Based on the results shown in the tables, the average results, the created graphics and
the comprehensive analysis, we can conclude that theMSM method gives the best results.
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Figure 6. Performance profile based on CPU time.

6. Conclusion

The underlying iterative methods are gradient descent (GD) and two its accelerations,
called AGD and IGD. Several classes of iterative methods are defined as two transfor-
mations of gradient-descent iterative methods for solving unconstrained optimization are
proposed. The first transformation of gradient-descent methods is calledmodification and
it is defined by replacing the basic step size tk in GD and AGD methods as well as in the
IGD iterative class by the slightly larger step size tk + t2k − t3k . The resulting iterationswill be
termed asMGD,MAGD andMIGD, respectively. The second transformation of gradient-
descent methods is called as hybridization is defined as a composition of all consideredGD
methods and modified GD methods with the Picard–Mann hybrid iterative process. The
resulting hybrid iterations applied on GD, AGD and IGD will be termed as HGD, HAGD
andHIGD. Further, hybridization ofMGD,MAGD andMIGD producesHMGD,HMAGD
andHMIGD iterations. It is proved that defined methods are linearly convergent methods
for the uniformly convex functions. Derived methods are numerically tested and com-
pared. Noticeable improvement in favour of the MSM method regarding the number of
iterations, CPU time and the number of function evaluations is observed. Applied Dolan
and Moré’s performance profiles of all methods subject to the number of iterations, the
CPU time and the number of function evaluations also confirm the dominance of theMSM
method.

A summarization of different step sizes used in the methods described in the current
research is presented in Table 10 in order to clarify the attributes ‘Multiple Step Size’ in the
title. The strike in the table means that the corresponding step size is not in use.

According to Table 10, the method GD is the basic method. Multiple Step-Size (MSS)
methods are AGD, SM, ADD, ADSS, TADSS, RGDQN1. Accelerated Multiple Step-Size
(AMSS) methods are generated applying the modificationM and hybridizationH on the
MSSmethods. An arbitrary AMSSmethods obtained usingM (resp.H) will be termed as
MAMSS (resp.HAMSS). Clearly, some new combinations of known optimization meth-
ods with their modifications and hybridizations could be further discovered, for example
MADSS,MTADSS, HADSS, HTADSS, HMADSS, HMTADSS and so on.
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Table 10. Summary of parameters defining step sizes.

Step sizes

Method First Second Third

GD tk – –
AGD tk θk –
SM tk (γ SM

k )−1 –

ADD tk (γ ADD
k )−1 t2k

ADSS tk (γ ADSS
k )−1 lk

TADSS tk (γ TADSS
k )−1 1 − tk

RGDQN1 tk γ−1
k θk = γk

tkγk+1

HGD tk αk + 1 –
HSM tk (γ HSM

k )−1 αk + 1

HADD tk (αk + 1)(γ HADD
k )−1 (αk + 1)t2k

MGD tk + t2k − t3k – –

MAGD tk + t2k − t3k θk –

MSM tk + t2k − t3k (γMSM
k )−1 –

HMGD tk + t2k − t3k αk + 1 –

HMAGD tk + t2k − t3k θk αk + 1

HMSM tk + t2k − t3k (γ HMSM
k )−1 αk + 1

Unlike to traditional gradient-descent (GD) algorithms, which are defined on a sin-
gle step size, improved gradient-descent (IGD) algorithms are based on the usage of two
or more parameters which define the step size. Is it necessary to use the product of two
or more parameters to define the step size? Why to use a product of scaling parame-
ters if you keep in mind that this product gives again a number? Theoretically, the GD
method indicates good convergence properties, but it is usually very slow in practical appli-
cations. Numerical experiments show that introducing two scaling parameters could be
useful and improves the standard GD method with respect to all three important crite-
ria, the number of iterations, the CPU time and the number of function evaluations. As
a support of this conclusion, it is important that the AGD method was compared in [1]
with the GD method. Numerical experiments evidently show better results in favour to
the AGD scheme with respect to the classical GD scheme. Also, numerical experience in
[33] shows a clear advantage of the SM method over the AGD iterations. Finally, numer-
ical testing in [24–26,34] exactly indicates that some further improvements are always
possible.

Possible further research includes several new strategies. Firstly, instead of the diago-
nal matrix, it is possible to consider appropriately defined positive-definite matrix Bk as
a better approximation of the Hessian. Later, it is possible to apply similar strategy with
two parameters, where one of the parameters is defined according to the third or fur-
ther term of Taylor’s expansion. Also, continuous-time nonlinear optimization gives a new
approach to accelerating parameters, which is based on the scaling parameter and the time
interval.

Obtained results motivate further investigations of possible accelerated gradient-
descent method and its transformations into corresponding variants of accelerated or
hybrid methods.



OPTIMIZATION METHODS & SOFTWARE 31

Acknowledgments

This author gratefully acknowledge support from the Research Project 174013 of the Serbian
Ministry of Science.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Predrag S. Stanimirović http://orcid.org/0000-0003-0655-3741

References

[1] N. Andrei, An acceleration of gradient descent algorithm with backtracking for unconstrained
optimization, Numer. Algor. 42 (2006), pp. 63–73.

[2] N. Andrei, An unconstrained optimization test functions collection, Adv. Model. Optim.
10 (2008), pp. 147–161.

[3] N. Andrei, Relaxed gradient descent and a new gradient descent methods for unconstrained
optimization. Visited August 19, 2018. Available at https://camo.ici.ro/neculai/newgrad.pdf.

[4] J. Barzilai and J.M. Borwein,Two-point step size gradientmethod, IMA J. Numer. Anal. 8 (1988),
pp. 141–148.

[5] C. Brezinski, A classification of quasi-Newton methods, Numer. Algor. 33 (2003), pp. 123–135.
[6] Y.H. Dai, Alternate step gradient method, Report AMSS–2001–041, Academy of Mathematics

and Systems Sciences, Chinese Academy of Sciences, Beijing, 2001.
[7] Y.H.Dai andR. Fletcher,On the asymptotic behaviour of some new gradientmethods, Numerical

Analysis Report, NA/212, Dept. of Math. University of Dundee, Scotland, UK, 2003.
[8] Y.H. Dai, J.Y. Yuan andY. Yuan,Modified two-point step-size gradientmethods for unconstrained

optimization, Comput. Optim. Appl. 22 (2002), pp. 103–109.
[9] Y.H. Dai and Y. Yuan,Alternate minimization gradient method, IMA J. Numer. Anal. 23 (2003),

pp. 377–393.
[10] Y.H. Dai and Y. Yuan, Analysis of monotone gradient methods, J. Ind. Manag. Optim. 1 (2005),

pp. 181–192.
[11] Y.H. Dai andH. Zhang,An adaptive two-point step-size gradientmethod, Research report, Insti-

tute of ComputationalMathematics and Scientific/Engineering Computing, Chinese Academy
of Sciences, Beijing, 2001.

[12] S.S. Djordjević, Two modifications of the method of the multiplicative parameters in descent
gradient methods, Appl. Math. Comput. 218 (2012), pp. 8672–8683.

[13] E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles, Math.
Program. 91 (2002), pp. 201–213.

[14] S. Ishikawa, Fixed points by a new iteration method, Proc. Am. Math. Soc. 44 (1974),
pp. 147–150.

[15] S.H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl. 2013 (2013),
p. 69. Springer Open Journal 2013.

[16] N. Kontrec and M. Petrović, Implementation of gradient methods for optimization of underage
costs in aviation industry, Univ. Thought Publ. Nat. Sci. 6 (2016), pp. 71–74.

[17] W.R. Mann,Mean value methods in iterations, Proc. Am. Math. Soc. 4 (1953), pp. 506–510.
[18] M. Miladinović, P.S. Stanimirović and S. Miljković, Scalar correction method for solving large

scale unconstrained minimization problems, J. Optim. Theory Appl. 151 (2011), pp. 304–320.
[19] J. Nocedal and S.J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.
[20] J.M. Ortega andW.C. Rheinboldt, Iterative Solution of Nonlinear Equation in Several Variables,

Academic Press, New York, 1970.

http://orcid.org/0000-0003-0655-3741
https://camo.ici.ro/neculai/newgrad.pdf


32 B. IVANOV ET AL.

[21] S. Panić, M.J. Petrović and M. Mihajlov-Carević, Initial improvement of the hybrid accelerated
gradient descent process, Bull. Aust. Math. Soc. 98 (2018), pp. 331–338.

[22] M.J. Petrović, An accelerated double step size method in unconstrained optimization, Applied
Math. Comput. 250 (2015), pp. 309–319.

[23] M.J. Petrović and P.S. Stanimirović, Accelerated double direction method for solving uncon-
strained optimization problems, Math. Probl. Eng. 2014 (2014), article ID 965104, 8 pages.

[24] M.J. Petrovic, P.S. Stanimirovic, N. Kontrec and J. Mladenovic, Hybrid modification of accel-
erated double direction method, Math. Probl. Eng. 2018 (2018), Article ID 1523267, 8 pages,
https://doi.org/10.1155/2018/1523267.

[25] M.J. Petrović, V. Rakocević, N. Kontrec, S. Panić and D. Ilić, Hybridization of accelerated
gradient descent method, Numer. Algor. 79 (2018), pp. 769–786.

[26] M. Petrović, N. Kontrec and S. Panić, Determination of accelerated factors in gradient decent
iterations based on Taylor’s series, Univ. Thought Publ. Nat. Sci. 7 (2017), pp. 41–45.

[27] E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des
approximations successives, J. Math. Pures Appl. 6 (1890), pp. 145–210.

[28] M. Raydan and B.F. Svaiter, Relaxed steepest descent and Cauchy-Barzilai-Borwein method,
Comput. Optim. Appl. 21 (2002), pp. 155–167.

[29] M. Raydan, On the Barzilai and Borwein choice of steplength for the gradient method, IMA J.
Numer. Anal. 13 (1993), pp. 321–326.

[30] M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained
minimization problem, SIAM J. Optim. 7 (1997), pp. 26–33.

[31] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
[32] Z.-J. Shi, Convergence of line search methods for unconstrained optimization, Appl. Math.

Comput. 157 (2004), pp. 393–405.
[33] P.S. Stanimirovic and M.B. Miladinovic, Accelerated gradient descent methods with line search,

Numer. Algor. 54 (2010), pp. 503–520.
[34] P.S. Stanimirović, G.V. Milovanović and M.J. Petrović, A transformation of accelerated dou-

ble step size method for unconstrained optimization, Math. Probl. Eng. 2015 (2015), article ID
283679, 8 pages.

[35] W. Sun and Y.-X. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer,
Berlin, 2006.

[36] M.N. Vrahatis, G.S. Androulakis, J.N. Lambrinos andG.D.Magoulas,A class of gradient uncon-
strained minimization algorithms with adaptive step-size, J. Comp. Appl. Math. 114 (2000),
pp. 367–386.

[37] Y. Yuan,Anew stepsize for the steepest descentmethod, J. Comput.Math. 24 (2006), pp. 149–156.

https://doi.org/10.1155/2018/1523267

	1. Introduction and overview of related results
	2. Modification of gradient-descent methods
	2.1. Modified AGD method
	2.2. Modified IGD methods

	3. Hybridization of gradient-descent methods
	3.1. Hybridization of AGD and MAGD methods
	3.2. Hybridization of IGD and MIGD methods

	4. Convergence analysis
	5. Numerical experiments
	6. Conclusion
	Acknowledgments
	Disclosure statement
	ORCID
	References

