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Dedicated to Borislav Bojanov on the occasion of his 60th birthday

In this paper we consider standard and non-standard (interval) quadra-
tures of Gaussian type. We give a short account of these quadratures
and then we derive a new algorithm for the numerical construction of
the interval Gaussian quadratures with respect to the Jacobi measure on
(−1, 1). A numerical example is included.

1. Introduction

Let dµ(t) be a finite positive Borel measure on the real line such that its
support supp (µ) is an infinite set. Suppose that the moments µk =

∫
R t

k dµ(t),

k = 0, 1, . . . , exist and are finite. For real-valued functions f, g ∈ L2(dµ) we
define an inner product

(f, g) = (f, g)dµ =

∫

R
f(t)g(t) dµ(t). (1.1)

With P we denote the set of all algebraic polynomials and with Pn its subset
formed by all polynomials of degree at most n (∈ N0).

Let {πk(dµ)}∞k=0 be the corresponding system of monic polynomials

πk(t) = πk(dµ; t) = tk + lower degree terms,

orthogonal with respect to the measure dµ(t). Because of the property of
the inner product (tf, g) = (f, tg), these polynomials satisfy the fundamental
three-term recurrence relation

πk+1(t) = (t− αk)πk(t)− βkπk−1(t), k = 1, 2, . . . ,

π−1(t) = 0, π0(t) = 1,
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where αk = αk(dµ), βk = βk(dµ), and by convention β0 :=
∫
R dµ(t). The all

zeros of πn(t) are simple and lie in the smallest interval containing the support
E = supp (dµ).

The standard quadrature formulae of Gaussian type have a direct connec-
tion with orthogonal polynomials. However, such connections for non-standard
(interval) quadratures are not known in general. In this paper we give first a
short account on standard and interval quadratures in Sections 2 and 3, re-
spectively, and then, in Section 4, we give a new algorithm for the numerical
construction of the interval Gaussian quadratures with respect to the Jacobi
measure on (−1, 1).

2. Standard Quadratures of Gaussian Type

The n-point quadrature formula

∫

R
f(t) dµ(t) =

n∑

ν=1

Aνf(τν) +Rn(f), (2.1)

which provides an approximation to the integral I(f) =
∫
R f(t)dµ(t), is called

interpolatory if its degree of exactness is at least d = n − 1, i.e., if Rn(f) = 0
for each f ∈ Pd. The degree of exactness for a quadrature formula can be
increased by a special selection of the nodes τν in the node polynomial

ωn(t) =
n∏

ν=1

(t− τν), (2.2)

and it is connected with the theory of orthogonality. Namely, according to
the essential result of Jacobi [18] (see also Gautschi [13]), the interpolatory
quadrature (2.1) has degree of exactness d = n− 1 +m (m > 0) if and only if
the node polynomial (2.2) is orthogonal to all polynomials from Pm−1, i.e.,

(ωn, p)dµ =

∫

R
ωn(t)p(t) dµ(t) = 0 for each p ∈ Pm−1. (2.3)

It is clear that m ≤ n; otherwise, taking p = ωn (∈ Pn) we would get (ωn, ωn) =
‖ωn‖2 = 0, which is impossible. Thus, the optimal value is m = n and (2.1)
has the maximal degree of exactness d = 2n− 1. If we fix some nodes in (2.2),
then the degree of exactness is reduced.

Gauss quadrature formula. The formula with maximal degree of exact-
ness d = 2n− 1 (m = n) is called the Gauss quadrature formula. In that case,
(ωn, p) = 0 for all p ∈ Pn−1. Thus, ωn must be orthogonal to all polynomials
of lower degree with respect to the inner product (1.1), i.e., ωn(t) = πn(dµ; t).
The zeros of πn(dµ; t) are nodes in the Gauss quadrature rule (2.1). His fa-
mous method of approximate integration, Gauss [11] discovered for the Legen-
dre measure dµ(t) = dt on [−1, 1] in 1814, and he obtained numerical values
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of quadrature parameters, the nodes τν and the weights Aν , ν = 1, . . . , n, by
solving nonlinear systems of equations for n ≤ 7.

Computationally, today there are very stable methods for generating Gaus-
sian rules. The standard method of Golub and Welsch [17] is based on Francis’s
QR algorithm for the eigenvalue problem for the following symmetric tridiag-
onal matrix

Jn(dµ) =




α0

√
β1 0√

β1 α1

√
β2

√
β2 α2

. . .

. . .
. . .

√
βn−1

0
√
βn−1 αn−1



.

This matrix is known as the Jacobi matrix and its elements are formed from
the coefficients in the three-term recurrence relation.

Theorem 1. The nodes τν of the n-point Gaussian quadrature rule (2.1)
are the eigenvalues of the Jacobi matrix,

Jn(dµ)vν = τνvν , vTν vν = 1,

and the corresponding weights Aν are given by

Aν = β0v
2
ν,1, vν = [vν,1 . . . vν,n]T .

Gauss-Radau formula. Suppose that the support of the measure dµ(t)
is bounded from below, i.e., inf supp (dµ) = a > −∞. If we want to have
a quadrature formula in which one of the nodes is a, say τ1 = a, then (2.2)
becomes ωn(t) = (t−a)ωn−1(t), and (2.3) reduces to (ωn, p)dµ= (ωn−1, p)dσ= 0
for each p ∈ Pm−1, where dσ(t) = (t − a)dµ(t). The optimal value of m is
now m = n − 1. Thus, according to (2.3), ωn−1 must be orthogonal to all
polynomials of degree at most n − 2 with respect to the measure dσ(t), i.e.,
ωn−1(t) = πn−1(dσ; t). The corresponding formula is called the n-point Gauss-
Radau formula

∫

R
f(t) dµ(t) = AR1 f(a) +

n∑

ν=2

ARν f(τRν ) +RRn (f),

where πn−1(dσ; τRν ) = 0, ν = 2, . . . , n. Here, d = 2n− 2, i.e., RRn (f) = 0 when
f ∈ P2n−2.

Gauss-Lobatto formula. Suppose now that inf supp (dµ) = a > −∞
and sup supp (dµ) = b < +∞, and n ≥ 2. Taking τ1 = a and τn = b (two
nodes are fixed), the polynomial (2.2) becomes ωn(t) = −(t− a)(b− t)ωn−2(t),
and (2.3) reduces to (ωn, p)dµ = (ωn−2, p)dλ = 0 for each p ∈ Pm−1, where
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dλ(t) = (t − a)(b − t)dµ(t). The optimal value of m is now m = n − 2, and
ωn−2 must be ωn−2(t) = πn−2(dλ; t). The corresponding formula is called the
n-point Gauss-Lobatto formula

∫ b

a

f(t) dµ(t) = AL1 f(a) +

n−1∑

ν=2

ALν f(τLν ) +ALnf(b) +RLn(f),

where πn−2(dλ; τLν ) = 0, ν = 2, . . . , n − 1. Here, d = 2n − 3, i.e., RLn(f) = 0
when f ∈ P2n−3.

For finding nodes and weights in the Gauss-Radau and Gauss-Lobatto rules
a similar procedure with some modified matrix eigenvalue problems can be used
(see Golub [16] and Gautschi [12]).

Gaussian-type quadratures with multiple nodes. More than hun-
dred years after the famous Gauss quadrature method, which was enriched by
significant contributions of Jacobi and Christoffel, there appeared the idea of
numerical integration involving multiple nodes, i.e.,

∫

R
f(t)dµ(t) ≈

n∑

ν=1

2sν∑

k=0

Aν,kf
(k)(τν),

as well as a general concept of the power orthogonality (see Chakalov [8, 9, 10],
Turán [34], Popoviciu [31], Ghizzetti and Ossicini [14, 15], etc.). For a positive
measure dµ(t), a such quadrature rule is unique and its nodes τν are contained
in the supp (µ). It is also known that it integrates exactly polynomials of degree
at most 2

∑n
ν=1 sν+2n−1 (cf. [22]). An algorithm for constructing quadrature

formulas with multiple Gaussian nodes in the presence of certain fixed nodes
was recently presented by Milovanović, Spalević and Cvetković [25].

Further extensions dealing with quadratures with multiple node for ET (Ex-
tended Tschebycheff) systems are given by Karlin and Pinkus [19], Barrow [2],
Bojanov, Braess, and Dyn [4], Bojanov [3], etc.

3. Non-standard (Interval) Gaussian Quadratures

If the information data {f(τν)}nν=1 in the standard quadrature (2.1) is re-
placed by {(Ahνf)(τν)}nν=1, where Ah is an extension of some linear operator
Ah : P → P , h ≥ 0, we get a non-standard quadrature formula

∫

R
f(t)dµ(t) =

n∑

ν=1

wν(Ahνf)(τν) +Rn(f). (3.1)

Notice that we use the same notation for the linear operator defined on the
space of all algebraic polynomials and for its extension to the certain class of
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integrable functions X (f ∈ X). As a typical example for such operators is the
average operator

(Ahp)(x) =
1

2h

∫ x+h

x−h
p(t) dt, h > 0, p ∈ P . (3.2)

In the case h = 0 this operator is interpreted as the identity operator A0 = I,
so that, for continuous f , its value at x is f(x), i.e.,

(A0p)(x) = lim
h→0

(Ahp)(x) = (Ip)(x) = p(x). (3.3)

In many cases, especially in physics and technics, the average operator (3.2)
can be used instead of the identity operator, which appears in the standard
quadrature (2.1).

In 1976 Omladič, Pahor, and Suhadolc [28] considered (3.1) with the average
operator. Such kinds of quadratures are known as the interval quadrature
formulae, and they have been also investigated by Pitnauer and Reimer [30],
Kuz’mina [20], Sharipov [32], Babenko [1], Motornyi [26].

Let w be a given weight function on a finite interval [a, b], i.e., a nonnegative
Lebesgue integrable function, such that for each subinterval I = (α, β) ∈ [a, b],
α < β, we have

∫
I w(t) dt > 0. In that case, a weighted average operator can

be considered in the form

(Awh p)(x) =
(Ahpw)(x)

(Ahw)(x)
=

∫ x+h

x−h
p(t)w(t) dt

∫ x+h

x−h
w(t) dt

, h > 0, p ∈ P , (3.4)

or simpler as

(Bwh p)(x) = (Ahpw)(x) =
1

2h

∫ x+h

x−h
p(t)w(t) dt, h > 0, p ∈ P . (3.5)

Let h1, . . . , hn be nonnegative numbers such that

a < τ1 − h1 ≤ τ1 + h1 < τ2 − h2 ≤ τ2 + h2 < · · · < τn − hn ≤ τn + hn < b.
(3.6)

By using these inequalities it is obvious that we have 2(h1 + · · ·+ hn) < b− a.
Taking operators (3.5), Bojanov and Petrov [5] proved that the Gaussian

interval quadrature rule of the maximal algebraic degree of exactness 2n − 1
exists, i.e.,

∫ b

a

f(t)w(t) dt =

n∑

ν=1

wν
2hν

∫ τν+hν

τν−hν
f(t)w(t) dt +Rn(f), (3.7)
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with positive weight coefficients wν , ν = 1, . . . , n, where Rn(f) = 0 for each
f ∈ P2n−1. Also, in the same paper they proved that for hν = h, 1 ≤ ν ≤ n,
this Gaussian interval quadrature formula is unique. In that case, for each
f ∈ C2n[a, b] there exists a point ξ ∈ (a, b) such that

Rn(f) =
f (2n)(ξ)

(2n)!

∫ b

a

Q2n(t)w(t) dt,

where Q2n(t) is a unique monic polynomial of degree 2n such that

∫ τν+h

τν−h
Q2n(t)w(t) dt =

∫ τν+h

τν−h
tQ2n(t)w(t) dt = 0, k = 1, . . . , n.

Moreover, in [6] Bojanov and Petrov proved the uniqueness of (3.7) for
the Legendre weight (w(x) = 1) for any set of lengths hν ≥ 0, k = 1, . . . , n,
satisfying the condition (3.6).

The question of the existence for bounded a, b is proved in [5] in a much
broader context.

Theorem 2. Given an ordered set {m1, . . . ,mn} of odd integers, mk =
2sk + 1, sk ≥ 0, k = 1, . . . , n, with the property n+ 2

∑n
k=1 sk = N + 1, given

a Chebyshev system of functions {u0, u1, . . . , uN} on [a, b] and a set of lengths
h1 ≥ 0, . . . , hn ≥ 0, with 2(h1 + · · ·+hn) < b−a, then there exists a generalized
Gaussian quadrature formula of the form

∫ b

a

f(x)w(x) dx ≈
n∑

k=1

2sk∑

ν=0

µk,ν
2hk

∫

Ik

f(x)uν(x)w(x) dx,

where intervals Ik, k = 1, . . . , n, are non-overlapping and all are subintervals
of [a, b], with length of Ik equals 2hk, which integrates exactly every element
from the linear span of {u0, u1, . . . , uN}.

Recently in [23], using properties of the topological degree of non-linear
mappings (see [29, 33]), it was proved that Gaussian interval quadrature for-
mula is unique for the Jacobi weight function on [−1, 1].

Theorem 3. Let w(x) = (1 − x)α(1 + x)β, α, β > −1. For any given
n ∈ N, hk ≥ 0, k = 1, . . . , n, h1 + · · ·+hn ≤ 1− ε, ε > 0, there exists a unique
interval Gaussian quadrature rule

∫ 1

−1

f(x)w(x) dx =

n∑

k=1

σk
2hk

∫ xk+hk

xk−hk
f(x)w(x) dx +Rn(f), (3.8)

with non-overlapping subintervals (xk − hk, xk + hk) ⊂ (−1, 1), k = 1, . . . , n,
which is exact in P2n−1.
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An algorithm for numerical construction of (3.8) has also been investigated
and some suitable solutions are proposed. A new appropriate algorithm will
be presented in the next section of this paper.

For the special case of the Chebyshev weight of the first kind and the special
set of lengths an analytic solution can be given ([23]).

Theorem 4. Let

δk =
(2k − 1)π

2n
and hk = sin δk sin δ, k = 1, . . . , n,

where δ is chosen such that 0 < δ < π/(2n). The parameters of the interval
Gaussian quadrature with the Chebyshev weight,

∫ 1

−1

f(x)dx√
1− x2

=

n∑

k=1

σk
2hk

∫ xk+hk

xk−hk

f(x)dx√
1− x2

+Rn(f), (3.9)

can be expressed in the analytic form

xk = − cos δk cos δ, σk =
π sin δk sin δ

nδ
, k = 1, . . . , n. (3.10)

In the case when δ → 0, the nodes and weights given in (3.10) reduce
to xk = − cos δk and σk = π sin δk/n, k = 1, . . . , n, and (3.9) becomes the
well-known Gauss-Chebyshev quadrature formula.

Interval quadrature rules of Gauss-Radau and Gauss-Lobatto type with
respect to the Jacobi weight functions are considered in [24].

Recently, Bojanov and Petrov [7] proved the existence and uniqueness of
the weighted Gaussian interval quadrature formula for a given system of con-
tinuously differentiable functions, which constitute an ET system.

4. Algorithm for Numerical Construction of Interval
Quadrature with Jacobi Weight

In this section we give a new algorithm for the numerical construction of
the Gaussian interval quadrature rule for the Jacobi weight function. An al-
ternative algorithm based on Gaussian quadrature rules for the calculation of
the derivative of an analytic function in some bounded domain of the complex
plane was presented in [23]. Although this method is more accurate, it requires
complex arithmetic. Our new method is much simpler than the previous one
presented in [23].

At first, we give some preliminary results using the following notation:

φ(x) = 1− x2,

ψ(x) = −(α+ 1)(1 + x) + (β + 1)(1− x),

w(x) = (1− x)α(1 + x)β.
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It is easy to see that

(φpw)′ = (p′φ+ pψ)w, p ∈ P .

We also use the following notation

Ω(x) =

n∏

k=1

(x− xk − hk)(x− xk + hk),

Ωk(x) =
Ω(x)

(x− xk − hk)(x− xk + hk)
, k = 1, . . . , n.

Theorem 5. For any polynomial p ∈ P2n−2, we have

n∑

k=1

Lk(p,Ω) = 0,

where

Lk(p,Ω) =





p(xk + hk)

2hkΩk(xk + hk)
− p(xk − hk)

2hkΩk(xk − hk)
, hk 6= 0,

(p′ Ωk − pΩ′k)(xk)

(Ωk(xk))2
, hk = 0,

and −1 < x1 − h1, xn + hn < 1, xk − hk ≤ xk + hk, xk + hk < xk+1 − hk+1,
k = 1, . . . , n− 1.

Proof. It can be proved applying the Cauchy Residue Theorem to the
function p/Ω over the circle |z| = R > 1 and letting R → +∞, taking into
account that (p/Ω)(z) = O(z−2) as z →∞ and using the simple identity

Ω′(xk ± hk) = ±2hkΩk(xk ± hk). �

For a simpler presentation of the results we adopt also the following notation

∆k(Ωkφw) =
(Ωkφw)(xk + hk)− (Ωkφw)(xk − hk)

2hk
, k = 1, . . . , n.

Note that in the case hk = 0, by the continuity argument, we have

∆k(Ωkφw) = ∂xk(Ωkφw)(xk).

Theorem 6. Suppose that the distribution of nodes −1 < x1 − h1, xk +
hk < xk+1−hk+1, k = 1, . . . , n, xn+hn < 1, satisfies the following conditions

∆k(Ωkφw) = 0, k = 1, . . . , n. (4.1)

Then there exists a positive constant C such that, for any q ∈ P2n−1,

∫ 1

−1

q(x)w(x) dx = C

n∑

k=1

1

(Ωkφw)(xk + hk)

1

2hk

∫ xk+hk

xk−hk
q(x)w(x) dx. (4.2)
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Proof. Let p ∈P2n−2. Note that in the case hk 6= 0, equation ∆k(Ωkφw) = 0
means

(Ωkφw)(xk + hk) = (Ωkφw)(xk − hk).

If we assume all hk 6= 0, k = 1, . . . , n, and under the condition (4.1), the
equality from the previous theorem can be transformed to

0 =

n∑

k=1

1

2hk

[
(pφw)(xk + hk)

(Ωkφw)(xk + hk)
− (pφw)(xk − hk)

(Ωkφw)(xk − hk)

]

=

n∑

k=1

1

2hk

(pφw)(xk + hk)− (pφw)(xk − hk)

(Ωkφw)(xk + hk)

=

n∑

k=1

1

(Ωkφw)(xk + hk)

1

2hk

∫ xk+hk

xk−hk
(pφw)′dx

=

n∑

k=1

1

(Ωkφw)(xk + hk)

1

2hk

∫ xk+hk

xk−hk
(p′φ+ pψ)w dx.

If hk = 0, the respective term which appears in the previous sum can be
transformed, using the condition (4.1), as follows

(p′ Ωk − pΩ′k)(xk)

(Ωk(xk))2
=

(pφw)′(xk)(Ωkφw)(xk)− (pφw)(xk)(Ωkφw)′(xk)

(Ωkφw)2(xk)

=
(pφw)′(xk)

(Ωkφw)(xk)
=

1

(Ωkφw)(xk)

1

2hk

∫ xk+hk

xk−hk
(pφw)′ dx,

where we used the convention (3.3). As we can see the final expression is the
same regardless if hk = 0 or hk 6= 0.

On the other hand,

∫ 1

−1

(p′φ+ pψ)w dx =

∫ 1

−1

(pφw)′dx = (pφw)(1) − (pφw)(−1) = 0.

Thus, we conclude that, for each q ∈ L ≡ {p′φ + pψ | p ∈ P2n−2} and any
constant C,

∫ 1

−1

q(x)w(x) dx = C

n∑

k=1

1

(Ω′φw)(xk + hk)

∫ xk+hk

xk−hk
q(x)w(x) dx = 0. (4.3)

Note that L is a linear subspace of P2n−1, with dimension 2n − 1. Taking
monomials p = xν−1, ν = 1, . . . , 2n − 1, one basis in L can be chosen as
`ν = (ν − 1)xν−2φ+ xν−1ψ, ν = 1, . . . , 2n− 1, i.e.,

`ν = −(ν + α+ β + 1)xν + (β − α)xν−1 + (ν − 1)xν−2, ν = 1, . . . , 2n− 1,

since ν + α + β + 1 > 0, deg(`ν) = ν, and `ν , ν = 1, . . . , 2n− 1, are linearly
independent.
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The constant C in (4.3) can be chosen such that (4.2) holds also for q(x) = 1,
because

(Ωkφw)(xk + hk) > 0, k = 1, . . . , n,

and

µ0 =

∫ 1

−1

w(x) dx, gk = (Bwhk1)(xk) =
1

2hk

∫ xk+hk

xk−hk
w(x) dx > 0, k = 1, . . . , n,

where the operator Bwh is defined by (3.5). Therefore,

C =
µ0

n∑

k=1

gk
(Ωkφw)(xk + hk)

> 0. (4.4)

Taking `0 = 1, we can check easily that the set of polynomials B =
{`0, `1, . . . , `2n−1} is linearly independent, so that span (B) = P2n−1. Thus,
(4.2), with the constant C as in (4.4), holds for every q ∈ P2n−1. �

Theorem 7. The distribution −1 < x1 − h1, xk + hk < xk+1 − hk+1,
k = 1, . . . , n, xn +hn < 1, is a solution of the system of equations (4.1) if and
only if it defines the Gaussian interval quadrature rule for the Jacobi weight w.

Proof. Suppose that (3.8) is the Gaussian interval quadrature rule for the
Jacobi weight w, i.e.,

∫ 1

−1

p(x)w(x) dx =

n∑

k=1

σk
2hk

∫ xk+hk

xk−hk
p(x)w(x) dx,

for each p ∈ P2n−1. Choose P ∈ P2n−1 such that

Pw = (Ω′mφ+ Ωmψ)w = (Ωmφw)′, m = 1, . . . , n.

Then

∫ 1

−1

(Ω′mφ+ Ωmψ)(x)w(x) dx=

∫ 1

−1

(Ωmφw)′(x) dx

= (Ωmφw)(1)− (Ωmφw)(−1)

= 0,

as well as

0 =
n∑

k=1

σk
2hk

∫ xk+hk

xk−hk
(Ωmφw)′(x) dx=

n∑

k=1

σk
2hk

∆k(Ωmφw)

=
σm
2hm

∆m(Ωmφw), m = 1, . . . , n.
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Since σm 6= 0, we have ∆m(Ωmφw) = 0, m = 1, . . . , n. �
Finally, it is easy to recognize the equations

∆m(Ωmφw) = 0, m = 1, . . . , n, (4.5)

as the one already being used in [23] for the numerical construction of the nodes
in the Gaussian interval quadrature rule. The real benefit are expressions for
the weight coefficients. Combining (4.4) and (4.2), we can express the weight
coefficients as follows

σν =
µ0

(Ωνφw)(xν + hν)

(
n∑

k=1

gk
(Ωkφw)(xk + hk)

)−1

, ν = 1, . . . , n, (4.6)

where

gk =
1

2hk

∫ xk+hk

xk−hk
w(x) dx, k = 1, . . . , n.

According to the uniqueness property already presented in [23], (4.6) presents
the weight coefficients in the Gauss interval quadrature formula for the Jacobi
weight function.

It is important to note that in the case hk = 0, according to the continuity
argument,

gk
∣∣
hk=0

= lim
hk→0

1

2hk

∫ xk+hk

xk−hk
w(x) dx = w(xk),

where we know that the nodes xk have to be inside (−1, 1) if the interval
quadrature formula is going to be Gaussian, i.e., with maximal algebraic degree
of exactness (see [23]).

Numerical construction should be performed in the same way it is proposed
in [23], as far as the construction of nodes is considered. As it is shown in [23],
the solution of the system (4.5) depends continuously on the lengths hk, k =

1, . . . , n. This means if we start with a known solution x
(0)
k , k = 1, . . . , n,

for some known set of lengths h
(0)
k , k = 1, . . . , n, we can modify slightly the

system of lengths and to expect the convergence of the Newton-Kantorovich
method applied to the system of equations (4.5). Of course, there are at least
two known solutions. First, when all lengths are zero, then it is the classical
Gauss-Jacobi quadrature rule, and the second one when the sum of all lengths
equals 2, i.e, when the subintervals cover the whole interval [−1, 1]. In the
latter case, the solutions are obviously known and are given by

x
(0)
k = −1 + h

(0)
k + 2

k−1∑

ν=1

h(0)
ν , k = 1, . . . , n. (4.7)

Of course, we cannot apply the previous starting values if either h
(0)
1 or h

(0)
n is

zero, i.e., the method is safe only in the case when h
(0)
1 6= 0 and h

(0)
n 6= 0.

We can summarize the previous facts in the following algorithm:
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1◦ Using QR-algorithm, construct the classical Gauss-Jacobi quadrature

rule or use equations (4.7) to get the starting values x
(0)
k , k = 1, . . . , n,

denote the starting lengths h
(0)
k , k = 1, . . . , n.

2◦ Modify the lengths for some small amounts and solve (4.5) for the mod-
ified lengths. If during computations some solution goes out of [−1, 1]
or if there is overlapping between the intervals, the process should start
again with a smaller modification of lengths.

3◦ If a desired lengths are reached, stop; if it is not go back to the step 2◦.

Of course, this construction is a painful process. However, there is some
advantage if we start with one or another starting values.

When the nodes are constructed, we can calculate the weight safely using
equations (4.6). Note that all the terms which appear in the formula for the
weight are positive, since

(Ωkφw)(xk+hk) = (φw)(xk+hk)
∏

ν 6=k
(xν+hν−xk−hk)(xν−hν−xk−hk) > 0,

for each k = 1, . . . , n, according to the interlacing property of the solution for
the nodes −1 < x1−h1, xk +hk < xk+1−hk+1, k = 1, . . . , n− 1, xn+hn < 1.
This means that the formula is numerically perfect provided we can calculate
safely quantities (Ωkφw)(xk + hk), k = 1, . . . , n. In the case xk+1 − hk+1 −
xk − hk is not too small, we can say that the calculation is stable, but in
general provided it is of order 10−r, r > 0, we should be ready to lose r digits
precision in calculations. This effect is not cumulative, as we know product of
two numbers has the precision of the one with a smaller precision.

Nodes Weights
−0.9513504367349746 0.9041875921607397(−1)
−0.8231056754448114 0.1642358982486300
−0.6282572988861806 0.2219171495928649
−0.3895449034466384 0.2467619011625343
−0.9834656451885066(−1) 0.3340427418096471

0.2315417963862776 0.3294578645377376
0.5116759367555432 0.2287997969490443
0.7270053532993432 0.1935137389125616
0.8893294771360129 0.1281503510913336
0.9801709253569534 0.5493199877807465(−1)

Table 1: Nodes and weights in the Gaussian interval quadrature formula for a

set of lengths 2−7, 2−7, 2−7, 2−7, 2−3, 2−3, 2−6, 2−6, 2−6, 2−6, for the weight

w(x) = (1− x)−1/3(1 + x)2/3.
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Finally, we give an example. Table 1 presents results for the case of the
weight w(x) = (1 − x)−1/3(1 + x)2/3. The sets of nodes and weights are con-
structed for the system of lengths 2−7, 2−7, 2−7, 2−7, 2−3, 2−3, 2−6, 2−6, 2−6,
2−6.
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