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Abstract: For finite positive Borel measures supported endial line we consider a new type of quadra-
ture rule with maximal algebraic degree of exactness, wimeblves function derivatives. We prove the
existence of such quadrature rules and describe their pegperties. Also, we give an application of
these quadrature rules to the solution of a Cauchy problehowt solving it directly. Numerical exam-
ples are included as well.
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1. Introduction

Letdu be afinite positive Borel measure on the real line such thatipport supf ) is an unbounded
set, and all its momentgy, = [ Xdu(x), k= 0,1,..., exist and are finite. Letn be the set of all
algebraic polynomials of degree at mast(€ Np). The n-point quadrature formula of the highest
degree of precision is the well-known Gaussian quadrature

[ 100000 = 3 wef 060+ (), (L.1)
R K=1

which is exact on the se¥,,_1, i.e.,Ry(f) = 0 for eachf € 2,,_1. The nodesy, k=1,...,n, are the
eigenvalues of a symmetric tridiagonal (so-called Jacotarix J,(du), whose elements are formed
from the coefficients in the three-term recurrence relafidwrihe monic polynomialg i (dy; - ) fneny,
orthogonal with respect to the inner product

(1.9 = [ F9809du(0 (.9 € L2(du). 12)

The weight coefficients (Cotes-Christoffel numbeng)in (1.1) can be expressed in terms of the first
components of the corresponding (normalized) eigenveetof= [Vk1 Vk2 .. Vkn]"), ViVk = 1, k=
1,...,n. In other wordsx are zeros of the orthogonal polynomial(dy; -) of degreen, andwy =
tovZ 1, k=1,...,n(see Golub & Welsch (1969)).

Gaussian quadrature formulae were generalized in sevesa.wn the middle of the last century,
the idea of numerical integration involving multiple nodess put forward, i.e.,

n 2s¢

_ £ ()
/Rf(x)d;.l(x) —k;izowk,lf (%) +R(f),
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together with a general conceptadwer orthogonalitysee Chakalov (1948, 1954, 1957), Turan (1950),
Popoviciu (1955), Ghizzetti & Ossicini (1970, 1975), etd)survey of such quadratures was given in
Milovanovi€ (2001). An efficient algorithm for construect quadrature formulas with multiple Gaus-
sian nodes in the presence of certain fixed nodes was reqgaetignted by Milovanovic, Spalevit &
Cvetkovi€ (2004) (see also Shi & Xu (2007)).

Further extensions dealing with quadratures with multipddes for ET (Extended Tschebycheff)
systems were given by Karlin & Pinkus (1976), Barrow (19 )janov, Braess & Dyn (1986), Bo-
janov (1997), etc. Recently, a method for constructing gdimed Gaussian quadrature rules for Miintz
polynomials on(0, 1) has been given by Milovanovit & Cvetkovit (2005).

Another type of quadrature with multiple nodes are the dedairkhoff quadratures. Roughly
speaking their quadrature sums do not include all derigatiVWwe mention here only a very special case
of Birkhoff quadrature, the generalizéd, m) quadrature problem

/f Ydu(x) = i [ka Xc) -+ Wicf ™ (%) | +R(f) (1.3)

of highest degree of precision, which was first stated in 187#uran fordu(x) = dxon[—1,1], m= 2,
and with nodes taken as the zeros of the polynofigk) := (1—x2)P._,(x), whereR is the Legendre
polynomial of degreé (cf. Turan (1980)). For some particular results concagrih3) see Varma
(1986), Dimitrov (1991), Milovanovit & Varma (1997), Lard (2003).

Recently Masjed-Jamei (2007) proposed the idea of quaeraiies of the form

/‘B w(x) f (x)dx = i Wi F ™ (%) + Ram( F),
=

Ja

wherew is a positive function and(V)(A) = 0 at some poink € Rforv=0,1,...,m—1.

Using this idea, for a restricted class mftimes continuously differentiable functions énc R,
denoted byC™(A; A), whereA € A and suppdp) C A, in this paper we consider Gaussian quadrature
formulae of the form

/f )du(x Zka %) + Ram(f). (1.4)

The restriction referred to in the previous sentence is th@C™(A; A) has a zero of ordenatx= A,
i.e., f(x) = (x—A)Mg(x). In this way we wish to construct the formula (1.4), which iaet for all
algebraic polynomials of degree at most2m— 1. The resulting quadrature formula will then be
equivalent to the Gaussian formula

m e 79X
JLotoc=2mauto = 5w (855

Although this formula resembles (1.3) far= 0, it is quite different from (1.4) and its construction and
investigation require different tools.

To circumvent the conditions(A) = f/(A) = ... = (MU (A1) =0, instead of (1.4), we can equiva-
lently study the Gaussian rule

(g S @2[171).
X=X

[ (109~ Pr-a(x Zwkf (%) + Rom( F), (1.5)
R
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wherePy_1(X) = Pn_1(f;X) is the Taylor polynomial of the functiohe C™(A) at a fixed poink=A €
A defined by
m-1 ¢(v) ()\ )

Prno1(x ) = Zo v

(x—A)", meN.

An additional motivation for this type of quadrature comésodrom its applications to initial-value
problems for ordinary differential equations.

During the process of review of our manuscript, a paper of&#{2008) on the same subject was
submitted and published. There are however some substdifféaences between that and the present
paper. First, there is a difference concerning the scopeeafsults. Our paper deals with positive Borel
measures while the paper of Welfert (2008) is concernedwitlypositive weight functions supported
on the intervala, 3). In Welfert (2008) there are only a few examples regardimgddisesn = 1 and
A = a; also, the weight functions considered are only the sintgggamples of the classical weight
functions. In contrast, in this paper all classical weigdnts discussed, with an arbitrary position of
A € R, together with the most relevant examples of non-classiedsures. Also, Welfert (2008) is
concerned only with the definite case, and the non-definge anot elaborated on at all. Finally, the
numerical examples in Welfert (2008) involve only constimes in a very few pointsn= 2 orn = 3).

This paper is organized as follows. In Section 2 we give soralmpinary and auxiliary results. The
main result, some properties of the quadrature rules (@sS)ell as a method for their construction, are
stated in Section 3. Special cases are analyzed in SectiBmdlly, numerical examples are given in
the last section.

2. Preliminary and auxiliary results

For an arbitraryA € R we introduce a subset 6?2, -1 by
phm = {p ‘ pe Ponim1, PY(A)=0,k=0,1,...,m— 1}. 2.1)
An elementp € gzén’Tl can be expressed in the fonpix) = (x— A)™Mq(x), whereq € P2,_1, or as
P9 = i [ - pM @) (2.2)
(m—21)! /)

The last expression can be obtained using Taylor's fornarlp £ &5, -1 atx = A, with the remain-
der term in Cauchy’s form,

m-1 (v) X
00 = 3 P e+ [y m g

which reduces to (2.2) ip € 225:™,.
Also, for givenA ,x € R we introduce an auxiliary function— (A ,x;t) by

X t 9 )\ g )
W x) { Kot A< 23)
X)), A >X

wherexa is the characteristic function of the gkt
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LEMMA 2.1 For eacltp € gzé\r;ml (A € R, n,me N) we have the following transformation
/ p(x) dp(x / p(m (2.4)

W(t) = g LU ) ), 2.5)

Proof. Let y(A,x;t) be defined as in (2.3). Integrating (2.2) with respect to tleasoredu(x) and
using Fubini’s theorem (cf. Lieb & Loss (1997, p. 25)) we canlenge the order of integration, so that

we have
[pwanx = [ du(X)ﬁ J x=omtpmae
AL 1 = [ 0™ R P ) d

- m./Rp dt/ WA, xt) du(x),

which is (2.4), withw(t) given by (2.5). O

Let a= inf Co(supgdu)) andb = sup Cdsupfdu)), where Cdsupddu)) denotes the convex
hull of the supporting set of the measutg. In the following lemmas we give some properties of the
functionw, defined by(2.5).

In the sequel we consider only nontrivial cases, which afierdint from the simple case when
a=b=A.

where

LEMMA 2.2 (a) Ifmis an even integer, then for evekye R the functionw is a nonnegative weight
function supported on the set

Suppw) = Co(supdy)) U (a,A]U[Ab).
(b) If mis an odd integer, then for the functianwe have:
e for A < a, wis positive on(A,b) and is supported on the set Gapddu)) U[A,b);

e for A € Co(supfdu)), w(x) < 0 on(a,A) andw(x) > 0 on(A,b), and is supported on the set
Co(supgdu));

e for A > b, wis negative or(a,A) and is supported on the set Gapgdpu)) U (a,A].

Proof. The point is to investigate the integral (2.5). Let us suppforst thatA < a. Then it can be
easily shown that, fox € Co(supgdy)), we have

YA X1) = Xax 1) = Xt 400) X)X 100 (1),
so that (2.5) becomes

R e T AL (RMICP SRMIOL TS

=

R
o) () m-1
M1\ /R(X*t) X(t,+oo)ﬁCo(supqdu))(X)dIJ(X)- (2-6)
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We now clearly see that is a positive weight function of ,b) and it is supported on the s@t, +o) N
Co(supgdy)), regardless ofn.
Consider now the case > b. Itis easy to conclude that in this case, fat Co(supgdyu)), we have

PAX1) = X)) = =X(—oop) (D) X(=0t) (X);

so that
W) = (mil)! /R(X*t)mflw(%X:t)du(X)
- %/u@(xt)ml)((°°vt>ﬁ00<supr(du>>(X>dﬂ(><)- (2.7)

Using this formula we conclude that the supporting setffds the se{—c, A] N Co(supf1t)). Also, it
is checked directly that the integrand is positive on thegattegration, so that this function is positive
on(a,A), providedmis even, while in the case of oddthe function is negative.
Finally, we consider the casec (a,b). Then, forx € Co(supfdu)), we have
WA xt) = { X(t,+o0) (X)XCO(supndu))(t)v A<t
—X(=eo) (X) XcCosupgdp)) (1) A > 1,
and therefore

I Tl Kl L L]

[ =™ X (0, A <,

f/R(xft)mflx(,m’t)(x)d;.l(x), 2>t

XCo(supgdp)) (t)

i (2.8)

Forw(A) we may choose an arbitrary value, for examm€) ) = 0. Now, it is easy to check that in
the case whem is even, the functionv is positive on(a,A) U (A,b) and is supported on the interval
Co(supgdy)). In the case whemis odd, the functionv is negative on the intervah, A) and positive
on the interval A, b), and is supported on Csupgdp)). O

In order to further elaborate on the properties of the quadeaule (1.5) we need the concept of
regularity of a complex measuds).

Definition 2.1 The sequence of polynomia{$n }nen, is said to be a sequence of (formal) orthogonal
polynomials with respect to the complex measdmeif and only if:

1) the degree of the polynomig}, is n,

2) there exists a sequence of complex numbers| # 0, n € Ny, such that for everm,m e Ny
/anpmdn = | Pnl[*&nm.

A complex measurdn is said to be regular if and only if there exists a sequenctoainal) orthogonal
polynomials with respect tdn. If a regular measurdn is absolutely continuous with respect to the
Lebesgue measure, i.dn(x) = v(x) dx, then the functiowv is also regular.
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It can be proved rather easily that a complex meadnris regular if and only if all of the associated
Hankel determinants are different from zero, i.e.,

MNno N1 N2 - I
m n2 ns - n
(VneN) Hyp=| M2 N3 Na - Nnit | £,
NMh-1 M NMnyr -+ Non-2

whereny, k € Ny, is the corresponding sequence of moments with respectetontrasuredn (see
Chihara (1978, p. 11)). In the special case of a positive orealyt all of the Hankel determinants
are greater than zero, and then the sequence of orthogolyalbpaals does exist. Similarly, if the
measure is negative, it is easy to show tHat ; < 0 andH,, > 0 for eachn € N. Thus, in this case,
the corresponding sequence of orthogonal polynomialseists.

According to Lemma 2.2, there is only one case in which we otclaim the existence of orthogo-
nal polynomials with respect to the measwi¢) dt, i.e., whem € (a,b). However, in that case we can
characterize the positions of the zeros of orthogonal potyials with respect to the regular measure
w(t)dt, wherew is given by (2.5).

LEMMA 2.3 LetA € (a,b) and assume that the measwui¢) dt is regular, with the associated sequence
of (formal) orthogonal polynomial§pn } nery,. Then for everyn € N at most one zero of the polynomial
pn is not contained irfa, b) and all zeros of the polynomiak, are simple and real.

Proof. The crucial part in the proof is that the functischanges its sign only at the poiht Assume
that there are two zeros @k, e.g. x; andxp, which are outside the intervéh, b) and that the zeros
Xk, - - - Xn, K> 2, with odd multiplicities, are inside the interv@, b).

We consider the integral

/ "x-A) <ﬁ<xx@>> P()W(x) dx (2.9

and claim that it cannot be zero. Namely, it is easily seeh (tha A )w(x) does not change sign on
(a,b); actually it is positive. Alsopn(X) [17_x(Xx—X¢) does not change its sign farc (a,b), since all
zeros with odd multiplicities ofy,, which are insideg(a,b), are contained in the product, so that this
product of two polynomials has only zeros with even multipiés in (a,b). Thus, this consideration
shows that the integral cannot be zero. However, sireel ) [17_(x—X;) is a polynomial of degree at
mostn — 1, because of orthogonality, the integral (2.9) must be Eguzero, which is a contradiction.

Assume now that all zeros @f, with odd multiplicities, are insidéa, b) and are listed by, ..., Xn,
k > 2. Then consider the integral given in (2.9). Using the sargaraents as above, we conclude that
such an integral cannot be zero since the integrand doeshaage its sign offa,b). This is again a
contradiction to the orthogonality condition, since thdypomial in the product is at most of degree
n—1. It does not produce a contradiction with the orthogowpatlindition if and only ifk = 2, in which
case the polynomigl, hasn — 1 simple zeros, which implies that it hasimple zeros.

Since the polynomiap, hasn simple zeros and is a real polynomial with at least 1 zeros con-
tained in the intervala, b), we must have that if a zero is not g, b) then it is real. O

Definition 2.2 We say that a given complex measdrg has the so-called GQR (Generalized Quadra-
ture Rule) property if and only if for everye Ng there existnodes, ..., x, € C and weightsvy, ..., w, €
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C such that for eaclp € “5,_1 we have

/R pdn = kZka P(X)-

Now, we are able to prove the following result:

LEMMA 2.4 For a given positive measudg:, let w be defined by(2.5) and let the corresponding
measurav(t) dt be regular. Then, for evenrye N, it has the GQR property, with real nodes. .., X,
and real weightsy, ..., wy.

Proof. Assume thatthe measuilg (t) = w(t)dtis regular. Then there exists a sequence of polynomials
{Pn}neny, orthogonal with respect to this measdrg. As we proved in Lemma 2.3, all zeros pf are
simple and real. For a fixenle N, we consider the interpolatory quadrature rule

n
/ pdn =% Wkp(X), PE Pnu,
R K=1

wherexy, k=1,...,n, are zeros of the polynomigh. Such a quadrature rule always exists uniquely
since the matrix of the linear system for computing the wisigh, k= 1,...,n, is the well-known
Vandermonde matrix, which is always non-singular (see Hodohnson (1991, Section 6.1)).

In order to prove that this quadrature rule is exactds,_1, we take an arbitrary polynomial e
Pan—1, Which can be expressed uniquelyms qpn+r (9,r € %n_1), and integrate it with respect to
the measurdn (t) = w(t)dt. Then, we get

n n
/pdn:/qpndn+/rdn:/rdn: D Wi (i) = Y WkP(%),
R R R R K=1 k=1

where we used the orthogonalifyqp.dn =0 (g € #,_1) and the fact that

P(%) = A(X) Pn(%) +1 (%) =T(X0), k=1,....n.
Thus,w(t) dt has the GQR property. O

3. Main Result
Now we are able to state the main result.

THEOREM 3.1 Letdu be a finite positive Borel measure on the real line such thaifas moments
exist and are finite and leb be a positive integer. If the functiom, given by(2.5), is regular, then
the quadrature rulél.5) exists uniquely with real nodes, ...,x, and weightswy, ..., w,, which are
parameters of the-point Gaussian quadrature formula with respect to the oreagt) dt, i.e.,

[sttmdt= 3 e + Rl @)

whereR,(g) = 0 for eachg € Po_1.
Moreover, we have:

(i) If mis an even integer, all weightg are positive and all nodeg are contained in the interval
Co(supgdu)) U (A,b)U(a,A), wherea= inf Co(supddu)) andb = sup Cdsupddy));
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(ii) If mis an odd integer, then, far < a (A > b), all weightswy are positive (negative) and all nodes
X are contained in the intervéA | b) ((a,A));

(iii) If mis an odd integer andl € (a,b), there is at most one node outside the intetaal).

Proof. According to Lemma 2.1, we have

/ pdu = / P Owdt, pe PAT,
R JR

where the functiorw is given by (2.5). Assuming that the measw)dt is regular, according to
Lemma 2.4, this measure has the GQR property. Hence, thiste e corresponding Gaussian quadra-
ture rule (3.1), with nodes, ..., X, and weightav,, ..., wy,, such that

. . n
d :/ M owt)dt=Y wep™ (%), pe 2pM,
J,pau= [ pMOuidt= Y mp™ (). pe 23

sincep™ € Py,_1.
According to Lemma 2.2 the statements (i) and (i) immedyafi@low. Finally, the statement (iii)
follows from Lemma 2.3. O
Now, we are able to derive a quadrature formula of the previype for any polynomiap €
gZZnerfl-

THEOREM 3.2 Under the conditions of Theoreml3for anyp € %>y, m_1, Wwe have

= PR . m
A pa =3 B A x-AFAHE+ 3 o p ™) (32)

wherex, andwy, v =1,...,n, are the nodes and the weights of the quadrature(.5.

Proof. Itis easy to see that, for anye “2n.m-1, the polynomial

m-1 5k ()
k!( e

ax) = p(x) —

k=0

belongs to the spac@é\rﬂ"l. Then our quadrature rule (1.5) is exact for this polynomjalo that

n
qdu =% wyg™(x).
/R le
If we substitute the expression fgmwe get what is stated. O

The following result is related to the convergence of thedyature rules (1.5).

COROLLARY 3.1 Letsuppdyu) be a bounded subset of the real linemlfc N) is even A arbitrary and
f € C™(supfw)), then

/fd B3 1f iU )/R( —t)¥dp(x)+ lim ZWV (3.3)

If m(e N)is odd,A € R\Co(supg)) andf € C"(supgw)), then(3.3) also holds.
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Proof. Using Taylor’s formula with the remainder term in Cauchysrh, we have

= I0Y K X m—1 ¢ (m)
(9= = (x=A) +(m71)!/}\(x—t) M) (t) it

Integrating with respect to the measulge, we get

/fd S lf (A )/R(x—/\)kdu(x)—i— M () dt,

Jsuppw)

wherew is given by (2.5). Applying the Gaussian quadrature ruletfierweightw in the last integral
we get

f”tw )dt & W. )x
/Sumw) (tyw( zv (%).

According to the fact that(™ e C(supfw)), the sequence of Gaussian quadrature rules for the weight
w converges to the integral on the left, which finishes the foroo O
One possible application of the previous result is the faithg.

COROLLARY 3.2 Suppose that we are given the Cauchy problem
fOA)=a, k=01,....m—1 f™Mx) =gx), xelA,b],
with g € C[A,b], b€ R. Then, for suppdu) C [A,b], we have

. mflak . K . n
[ fdu= kZ)E./R (- AN+ Jim, 5 wg(s).

wherex, andw,, v =1,... n, are the nodes and the weights of the Gaussian quadraterériuhe
weight function(2.5).

Proof. Using Taylor’s formula with the remainder term in Cauchysm, we have

_$H e / f(m ™1,
k;, (m— 1

/ﬂ%fdu _ mzj%/ (x_;\)kdu(x)+m—11)!/Rdu(x)/;(x—t)m1g(t)dt
- ;i,k (x—A)dp(x +/g

Thanks to the continuity of the functiagwe have

b n
J, stmdt=im_ 5 wgix)

wherex, andw,, v =1,...,n, are nodes and weights of the Gaussian quadrature ruledoreight
functionw. O
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4. Special cases
In the special case of certain Jacobi measures we can giweptioiteexpression for the functiow. In

this section we use the hypergeometric functjsp< a,cb ;z> defined by the series

© (@nb), 2
nEO( (an n #1)

for |z < 1, and by continuation elsewhere. Hégg, denotes the shifted factorial defined B)n =
a(a+1)...(a+n-1)forn> 0, (a)o =1, whereais any real or complex number.

THEOREM 4.1 Letdu(x) = (1— x)"(ler)BX[,l’l] (x)dx be the Jacobi measure with the parameters
a,3 > —1. Then for the functiomv, given by(2.5), we have:
(@) If A < —1andp € Ny, then

m-1 v
_t)m-1pa+p+l m1><2> (v+a)! -
Xyt pra-umrzrE VZO< v 1-t) (v+a+B+1)V A<t<—1

w(t) = == v
(=1t al(1—t)™ (1 41)8 % (6) (1t) (v+m—1) t>—1;
v=0

1+t) (v+a+m)l’

(b) If A € (—1,1) anda, 3 € N, then

():X[fl,l](t) (—1)MBHL-1)*(1+1) m+ﬁvzo< )<1i> ((\‘:EH?)'I o
m- al(1—t)™a(14t)P % < > (1+t)” (v+m-1! o

S (Vv+a+m)!

(c) If A > 1 anda € Ny, then

1+t\Y (v+m-1
+)(+ ) t<1,

_ m+B
L b A Z( )(“ VrBIm

WY =—m=1)

(v+pB)!
a! 1+tm*12"+ﬁ+l < )< > , 1<t<A.
(+1) VZo v 1+t) (v+a+B+1)

Proof. First we prove the statement (b), i.e., the case when(—1,1). LetA <t. Then, using (2.8)
and applying the substitutiam= (x—1t)/(1—t), we have

we) = 2 Py o 0Pax
1 _ B
= )((inll]l()t') (1—t)m+"(1+t)ﬁl/0 u™ (1 —u) [l— <—1—+:> u] du.

Using Euler’s integral representation of the hypergeoimétinction oF;, defined by (see Andrews,
Askey & Roy (1999, Theorem 2.2.1, p. 65))

1
zpl(azf’ ) e P iUt (e b 0)
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for all zin the complexz-plane except for the cut along the real axis from #tave get

MNa+1) —B,m 1-t
— _$\Ma 87 ) -
W) = x a0 LT A (BT ) @)
Now, thanks to the facB € Ny, the hypergeometric series on the right-hand side tereéngtee
Andrews, Askey & Roy (1999, p. 67)), which in an expanded f¢4mi) produces the desired result.
Consider now the cage< A. According to (2.8) and (4.2), by the substitutioe= (t —x)/(1+1),
we have

wit) = — (x—t)™ (1 —x)*(1+x)P dx

X—1(t) /‘t
(m=1)! J_1
r(B+1) —a,m 1+t
—_  (_1ym _t\a m+-B ’ -
e et L] PURUPREE S B
where again using the fact thate Ny, the hypergeometric series on the right-hand side termsnat

((—a)n=0forn> a+ 1) and produces the desired result.
(a) Consider the cades (A, —1), whereA < —1. According to (2.6) and using (4.2), we have

wit) = g(n[:’”f))! ./;ll(x—t)m*l(l—x)“(l—kx)ﬁ dx

_ 2P X g®) M a+ 17 (B+1) , 1<—m+1,a+1 .2 )

(m—1)! r(a+B+2) a+B+2 1-t

where we used the substitutian= (1—x)/2 in order to express our result in terms of a hypergeometric
series. As we can see, the hypergeometric series termimetasisen € N ((—m+ 1), = 0 forn > m).

Fort € (—1,1) we can use the expression (4.2) obtained earlier.

(c) Finally, consider the cades (1,A), whereA > 1. According to (2.7) and using (4.2), we have

wit) = —7)&“]1(;3 ./;z(x—t)m*1(1 —x)%(14x)P dx

20 BFL(—1)™(1+)™ X g0 (t) M (@ + 1) (B+1) c <_m+1,ﬁ+1 L)
(m—1)! ra+pB+2) a+B+2 '1+t)’

where we used the substitution= (1+ x)/2 to express our result by a hypergeometric series. As we
can see, the hypergeometric series terminates beoagss.

For the cas¢ € (—1,1) we can use the expression (4.3) already obtained. O

The result becomes particularly simple for the Legendresmesag = 3 = 0). In that case, directly
from (2.5), we get the following result.

COROLLARY 4.1 Letdu(x) = X|—1,1(x) dx be the Legendre measure. Then for the functiogiven
by (2.5), we have:
(@) IfA < -1, then

w(t) = r’n't (1-t)"— (max{—1,t} —t)™;
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(b) If A € (—1,1), then

wﬁ)”:ﬁ@){(lgﬂ t</\j
: 1-t)™m  t>A;
(c)If A > 1, then

w(t) = X[%}:](t) {(*14)”17 (min{1,t} —t)™|.

Proof. We consider only the cage< —1. Using (2.6), we have

X1 (t) /R(X_t)m71X(t,+°°)(X)X[—l,l](x)dxa A<t

wt) =
—1)! —
M= = L™ g (0x 230 A >t
Xyt /1 1 Xp oyt m
= X—t dx= 1-t)"— (max{ -1t} —t)"].
(m—1)! max{fl!t}( ) o (=0T = (max{—1,t} —t)"]
Similar proof holds for all other cases. O

In Fig. 1 and Fig. 2 we display the graph of the functien w(t) for different values oA andm.

\

0.5 1

FiG. 1. The functiort — w(t) in the case of the Legendre measurerfor 2 (dashed line) anth= 3 (solid line), whem = -2
(left) andA = 1.2 (right)

For the generalized Laguerre measxfte ™ X|o ;) (X) dx a € No, we state the following result.

THEOREM4.2 Letdu be the generalized Laguerre meastifgx) = x* e X|g 1«)(X) dx with A <O,
a € Ng, andm € N arbitrary. Then

mlim-k—1+a)!

ety —— L (—t)k te(r,0),
—1—-k)Kk!
W(t) = Xt +0) (1) %) (m ) (4.4)

CE (o o
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(left) andA = 0.2 (right)

Proof. Using (2.8) we have

X)\, o0 (t) Foo — _
W(t) = ﬁ/o (X*t)m lX(t’+m)(X)X(O,+w)(X)Xae Xdx

o(t) [+
boeml [ e

i 1 K [T omoke1
o K

XA 4e0) (1)
1 a 00
] S (i)t“k/t (x—t)MMleXdx  t>0,
=)

which reduces to (4.4).
The result becomes particularly simple for the ordinaryuerge measurgn = 0).

COROLLARY 4.2 Letdu(x) = € *X[o =) (X)dx A = 0 and letm be arbitrary. Then,

W(t) = € Xjo1e0) (1)-

Hence, it follows that for the Laguerre measure and 0, we have simply that the quadrature rule
is unchanged whem increases and it is really the classical Gaussian quaératile for the Laguerre

measure.
There is also an interesting result for the measurég; (x) dx.

COROLLARY 4.3 Letdu(x) = e ¥ xz(x)dxandA = 0. Then, the functiow in (2.5) is given by
(-1)Me, x< 0,
e x> 0.

Proof. Using (2.8) withA =0, we conclude thaw(x) = (—1)™w(—X), X € R. Forx > 0, the weightv

coincides with the weight alredy calculated for the Lageeneasure given in Corollary 4.2. O
There is also an interesting result for the measure with@pop={—1,1} andu(—1) = u(1) = 1.
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THEOREM4.3 Let [ pdu = p(—1) + p(1). Then we have:

(a) ForA < —1,
oy [ A-HMEE(-1-n™ A <t< -1
M= (m—1)! { (1-ty™, —1<t<i1;
(b) Fora > 1,
_ x[=121) (—1-t)y™? —1l<t<1,
W(t) - (m—l)' { ( 17t)m71+(17t)m717 1<t </\,

(c) Fora € [-1,1],

8 Xeag) [ —(=1-9™h —1<t<A,
W = - -
(m-—1) 1-p™i  A<t<l
Proof. The stated results follow by direct computation, using gstts of Lemma 2.2. O

Inspecting this theorem,we see thatfo= —1 andm= 1 we get the weight functiog;_y y;, which
is the Legendre measure. In Figures 3, 4, and 5 we displayrtighg ofw(t) from Theorem 4.3 for
some selected values dfandm.

FiG. 3. The functiort — w(t) in Theorem 4.3 fod = —2: Left figurem= 1 (dashed line) anth= 2 (solid line); Right figure
m= 3 (dashed line) anch = 4 (solid line)

Finally, we give an explicit result for the measure suppbaa the seNy, with masses & at the
pointsx = k, k € Np.

THEOREM4.4 Letdu be supported on the sBiy, with mass ek at the pointk (€ Np). ForA =0 and
m= 1, the weight functionw, defined in(2.5), is given by
e[t

W=

X[O,Jroo) (t)v

wherelt] is the integer part df.
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Proof. Using (2.6), we have

W) = Yoo ®) [ Xero ()9H0) = Xo o) Y €7
k>t
+oo —[]-1 [t
-1 K e e
= X[0,+°°) (t)e (t] kZOe = X[O,+°°) (t)m = X[O,+°°) (t) e_ 1

5. Numerical examples
In this section we present three numerical examples.

EXAMPLE 5.1 We consider the existence of a quadrature rule with ot$pehe Chebyshev weight of
the second kind:

1 n
/71 p(X)V1—x2dx= zlwv pM(x,), pe c@é\n’ﬁ’l.
V=

If A < -1, according to Theorem 3.1, the quadrature rule exists pa#itive weighta,, v=1,...,n,



16 of 19 G. V. MILOVANOVI € AND A. S. CVETKOVIC

and with nodes contained in the interyal, 1). Choose, for exampld, = —2 andm= 3. Then we have

w(t) = M/l (x—1)%y/1—x2dx

2! max{—1t}
L+ a?), te(-2,-1),
3—2( + )74—8< —12(13+ 2t%) 4+ 3(1+4t°) arcsi ), €[-1,1).

The integral in the second branch wft) whent € [-1,1) can be calculated using the substitution
x=sing, ¢ € (arcsirt,1/2). The graph of this function is shown in Fig. 6 (left).

FIG. 6. The functiort — w(t) in the case of the Chebyshev measure of the second kind fo8 andA = —2 (left) andA =1
(right)

Using the corresponding software for the numerical cortittn of Gaussian quadrature rules (see
Cvetkovi¢ & Milovanovi€ (2004)), we are able to construmtr quadrature rule and we present the
results fom = 20 in Table 1.

EXAMPLE 5.2 As before we consider the same measure withl andm= 3. Then,

_qar(t)  pmin{Lt}
w(t) = 7)([127/'\]()/ (x—1)2/1—x2dx
I

_qq(t
7)([51)7613]()[2 1—1t2(13+ 2t?) + 3(1 + 4t?)(+ 2arcsirft) | .

As we see directly by inspection, our weight function is rtegeon(—1,1) (see Fig. 6 (right)). Table 2
contains the nodes and the weights of the quadrature ri@gféi.this case.

ExaMPLE 5.3 Here we illustrate an application of Theorem 3.2. Caarstide following Cauchy prob-
lem

f(—2)=f/(—2) = f(—2) =0, "(x)=sinx. (5.1)

Using numerical software (see Cvetkovit & Milovanovi®@)) we constructed quadrature rules for
n = 5,10,15,20 and obtained the following relative errors8k 10-°2,9.3 x 1023 3.9 x 1038 and
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TaBLE 1 The nodes x and weights w, v = 1,...,20, for
the quadrature rule with m=3, A = -2 and du(x) =

V1% (X)dx

v Xy Wy
1 —1.991086876748409 .0563519052743393-1)
2 —1.953242532290692 .0683444846677203
3 —1.885990071707095 .P438162358689971
4 —1.790720678320623 .p950049352781838
5 —1.669419086762357 .8184748642670166
6 —1.524602357280282 .8146439234816484
7 —1.359253462117994 .P875092121414554
8 —1.176738954492131 .2438108114282358
9 —9.8071336448629871) 0.1917837747997080

10 —7.750572860202184-1) 0.1396047614042675

11 —5.638568258155322-1) 0.9361418736637676-1)

12 —3.51301923302366+1) 0.5738834354357883-1)

13 —1.415990258816221-1) 0.3180284668567313-1)

14 6.11105302991557%3-2) 0.1567744922341449-1)

15 2528311300770748-1) 0.6716416518160149-2)

16 4.297913946601915-1) 0.2415211847657919-2)

17 58852037150542713-1) 0.6901792356905729-3)

18 7.259243143312154-1) 0.1427314124417317—3)

19 8393823349996572-1) 0.1778634334202285-4)

20 9.2700092734916715-1) 8.3805091723525613-7)

TABLE 2 The nodes xand weights w, v =1,...,10, for the quadra-
ture rule with m=3, A = 1land du(x) =

V1—x2X(_1,1(x)dx

v Xy Wy
1 —0.8418338174326530 —0.2647820886600818-4)
2 —0.6599359783150116 —0.4899251895814333-3)
3 —0.4374147243621220 —0.3266397489379376-2)
4 —0.1878808658250491 —0.3023702670520688-2)
5 0.7267469124647604-1) —0.1245464474562616-1)
6 0.3273456878699940 —0.62800319356194(6-1)
7 0.5594682673260498 —0.94056008276031611)
8 0.7537240590508397 —0.1095874208396626
9 0.8971750417623099 —0.9488044913732112-1)

10 0.9802029946952789 —0.4815164570346023-1)

6.4 x 10755, respectively. For comparison, we give the resultrfer 10, i.e,

[

X)V 1—x2dx~

10

z Wy Sinx, = —2.2095745911970091126655
v=1

17 of 19
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We can solve directly the Cauchy problem (5.1) and get
. : cos2
f(X) = cos2— 2sin2+ (2cos2-sin2)x+ sz + COSX.

For checking the obtained result, we use

1 2
/" foqx/l—»@dx::71(Jﬂ1)+—9§z§ -gnz):=-2209574591197009112665710075
1

whereJ; is the Bessel function of the first kind and order one. As wess) the first 22 digits in the
guadrature sum obtained (for= 10) are exact.

Acknowledgments

The authors would like to thank the referees and ProfessdreE&ili for their careful reading of the
manuscript and for their valuable comments.

The authors were supported in parts by the Serbian Mini§tBci@nce and Technological Development
(No. #144004).

REFERENCES

ANDREWS, G.E., ASKEY, R. & Roy, R. (1999)Special FunctionsEncyclopedia of mathematics and its applica-
tions: v. 71, Cambridge: Cambridge University Press.

BARROW, D.L. (1978) On multiple node Gaussian quadrature formwéseth. Comp32, 431-439.

BoJanoy, B. (1997) Gaussian quadrature formulae for Tchebychetfesys East J. Approx.3, 71-88.

BoJanoy, B.D., BRAESS D. & DYN, N. (1986) Generalized Gaussian quadrature formula&pprox. Theory,
48, 335-353.

CHAKALOV, L. (1948)Uber eine allgemeine QuadraturformélR. Acad. Bulgar. Scii, 9-12.

CHAKALOV, L. (1954) General quadrature formulae of Gaussian tijudgar. Akad. Nauk Izv. Mat. Instl,
67—-84 (Bulgarian); English transEast J. Approx.1 (1995), 261-276.

CHAKALOV, L. (1957) Formules générales de quadrature mécanigigpe de Gaus<;ollog. Math.,5, 69-73.

CHIHARA, T.S. (1978)Orthogonal PolynomialsNew York: Gordon and Breach.

DimITROV, D.K. (1991) On a problem of Turf{0, 2) quadrature formula with a high algebraic degree of pregisio
Aequationes Math41, 168-171.

CVETKOVIC, A.S. & MILOVANOVI C, G.V. (2004) The Mathematica Package “OrthogonalPolyasti Facta
Univ. Ser. Math. Inform.19, 17-36.

GHIZZETTI, A. & OSssICINI, A. (1970)Quadrature FormulaeBerlin: Akademie Verlag.

GHIZZETTI, A. & OssSICINI, A. (1975) Sull’ esistenza e unicita delle formule di quetdra gaussian®end. Mat.,
(6) 8, 1-15.

GoLuB, G.H. & WELSCH, J.H. (1969) Calculation of Gauss quadrature riath. Comput.23, 221-230.

HORN, R.A. & JOHNSON, C.R. (1991)Topics in Matrix AnalysisCambridge: Cambridge University Press.

KARLIN, S. & PINKUS, A. (1976) Gaussian quadrature formulae with multiple sodim: S. KarLIN, C. A.
MICCHELLI, A. PINKUS, AND |.J. SCHOENBERG eds. Studies in Spline Functions and Approximation
Theory New York: Academic Press, 113-141.

LENARD, M. (2003) Birkhoff quadrature formulae based on the zerfodagobi polynomialsMath. Comput.
Modelling 38, 917-927.

Lies, E.H. & Loss M. (1997)Analysis. Graduate Studies in Mathematics, Vol. 14, Providence, Riefican
Mathematical Society.

MASJED-JAMEI, M. (2007) A new type of weighted quadrature rules and itatieh with orthogonal polynomials,
Appl. Math. Comput.188, 154—-165.



GAUSSIAN QUADRATURE RULES USING FUNCTION DERIVATIVES 19 of 19

MILOVANOVI C, G.V. (2001) Quadratures with multiple nodes, power ortimadity, and moment-preserving spline
approximation, In: W. GUTSCHI, F. MARCELLAN, L. REICHEL, eds. Numerical analysis 2000, Vol. V,
Quadrature and orthogonal polynomiald. Comput. Appl. Math127, 267-286.

MILOVANOVI C, G.V. & CVETKOVIC, A.S. (2005) Gaussian type quadrature rules for MiintzesystSIAM J.
Sci. Comput.27, 893-913.

MILOVANOVIC, G.V., SPALEVIC, M.M. & CVETKOVIC, A.S. (2004) Calculation of Gaussian type quadratures
with multiple nodesMath. Comput. Modelling39, 325-347.

MILOVANOVIC, G.V. & VARMA, A.K. (1997) On Birkhoff(0,3) and(0,4) quadrature formulaéNumer. Funct.
Anal. Optim.18, 427-433.

Popovicly, T. (1955) Sur une généralisation de la formule d’ing&ign numérique de Gausicad. R. P. Romine
Fil. lasi Stud. Cerc. Sti6, 29-57 (Romanian).

SHI, Y.G. & XU, G.(2007) Construction ofr--orthogonal polynomials and Gaussian quadrature forméds.
Comput. Math.27, 79-94.

TURAN, P. (1950) On the theory of the mechanical quadraticta Sci. Math. Szegeti2, 30-37.

TURAN, P. (1980) On some open problems of approximation theoipprox. Theory29, 23-85.

VARMA, A.K. (1986) On Birkhoff quadrature formulaByoc. Amer. Math. Soc97, 38—40.

WELFERT, B.D. (2008) On quadrature formulae based on derivativéocation, Appl. Math. Comput.doi:
10.1016/j.amc.2008.01.035.



