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Abstract. In this survey paper we consider some important classes of rational
functions and generalized polynomial systems, the so-called Miintz systems, which
are an important extension of the orthogonal polynomial systems. Rational func-
tions are orthogonal with respect to certain inner products defined on some lines
or on the unit circle in the complex plane. In particular, we give a short account of
Malmquist-Takenaka systems which are orthogonal on the unit circle. In the sec-
ond part of the paper we consider several Miintz systems, including some classes
of algebraic-logarithmic type. Defining an unusual inner product of the generalized
polynomials we introduce the corresponding class of orthogonal Miintz polynomi-
als and connect them with a Malmquist-Takenaka system. Finally, we give a short
account on numerical evaluation of orthogonal Miintz polynomials and point out
an application of such orthogonal polynomials in numerical integration.

1 Introduction

Polynomial systems are very attractive in many applications in mathematics,
physics, and other computational and applied sciences (electronics and com-
munication, signal processing, control system theory, process identification,
etc.). Li particular, classical orthogonal polynomials (cf. [25,30,26]) play a
very important role in many problems in approximation theory and numeri-
cal analysis, as well as in applied sciences. Such polynomials are very useful for
design and construction of electrical network, transfer functions, orthogonal
filters, adaptive control, etc. These applications are mainly based on the least
squares polynomial approximations. The orthogonality of these polynomials
enables the construction of optimal network and optimal filters. Moreover,
the Laplace transforms of the classical polynomials (or their modifications)
are rational functions, which can be easily factorized. This property is very
convenient in constructing simple procedures for several applications. For in-
stance, for designing orthogonal filters and optimal transfer functions may
be used some modifications of the Jacobi polynomials, which are orthogo-
nal on the interval (—1,1). By changing variables z = 2e79 —1 (a > 0),
one can find exponential polynomials orthogonal on (0,+o0). Then, apply-
ing the Laplace transform, one can obtain orthogonal rational functions. The
following approach shows it (see [12]).
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Starting from the orthogonality relation for the Jacobi polynomials P,(.a’ﬂ )(m)
with a, 3 > —1, we obtain, after changing variables z + 1 = 2e~2,

+o0
/ on()pm () dt = S,
0

where
9(a+8+2)/2

1BA 2|
Then, the Laplace transform of ¢,, can be expressed in the form

+o0o
Wals) = Llea®] = [ e on(t) dt
9—(s+1)/2
LR
x3F (-n,a+B+n+1,a+a+1, Ha+B+s5+3);1),

enlt) = e~ (F+1H(1 — e=2t)e/2 plad) (972 1),

1
/ (1 = 2)°/2(1 + 2)*+8-D/2ped) () dp
-1

where the hypergeometric function 3F; is reduced to the following series
Z( ( ) (a+B+n+1(3a+1),
(a+1i(3(a+B8+s+3)),

In a simpler case when a = 0, the function 3F5 can be reduced to 5 F;, and
then we find (see [12])

n—1

M=Qr+1+74)

Wa(s) =v22n + 8+ 1) =2

H(s+(2u+1+5))'

v=0

Such rational functions are orthogonal in certain sense in the complex
plane. In this survey paper we consider several classes of orthogonal rational
functions and connect them with some generalized polynomial systems, the
so-called Miintz systems.

The paper is organized as follows. In Section 2 we study several systems of
rational functions which are orhogonal with respect to certain inner products
defined on some lines or on the unit circle in the complex plane. Section 3
is devoted to the orthogonal Miintz systems which represent an important
extension of the orthogonal polynomial systems. Finally, in Section 5 we give
some remarks on numerical evaluation of vhe Miintz polynomials and mention
an application in numerical integration.

2 Orthogonal Systems of Rational Functions

We start this section with a system of generalized exponential polynomi-
als defined on (0,+00) and then we connect their orthogonality with some
systems of rational functions in the complex domain.
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2.1 Generalized exponential polynomials and orthogonal rational
functions

Let A = {ap,ai1,az,...} be a complex sequence such that Reay > 0. For
each k (k > 0) one denotes by m; > 1 the multiplicity of the appearance
of the numbers oy in the set Ay = {ao,01,2,...,ar}. With the sequence

A we associate the sequence of functions {t™*~! e“"’*‘}::), which can be
orthogonalized with respect to the inner product

+00 .
(f,9) = /0 £(6)30) dt, (1)

for example, using the well-known Gram-Schmidt method. Such an orthonor-
mal system {qk(t)}::?) is unique up to a multiplicative constant of the form
e (Im~g = 0).

For example, if we take A = {1/2,1,1,2,5/2,...}, for which mg =m; =
1, me =2, m3g=myg =1, ..., using MATHEMATICA package:

In[1]:= <<LinearAlgebra‘Orthogonalization®
In[2]:=L[t_]:={Exp[-t/2],Exp[-t],t Exp[-t],Exp[-2t],Exp[-5t/2]}
In[3]:= gq=GramSchmidt [L[t],InnerProduct->

(Integrate[#1 #2,{t,0,Infinity}]&)] //Simplify

we get

qo(t) = e™*/2,

q(t) = —V2 et (=3 +2¢'/2),

02(t) = —V2 e t(~5+ 6e'/2 —6t),

as(t) = —2e72(—15 + 8e! +6€3/2 —12tet),

qa(t) = 3 V5 e75/2(147 — 240€t/? +-80€%/2 415 €* —48te%/?).

If my =1 for each k € Ny, then

k=1
k [1 (i +aw)
q(t) = ch,ie_""", cki = V2Re Ay ":0— (1=0,1,... k).
1=0 I:Io (ai — ay)

v#i

This was given firstly by Erdélyi [18]. A study of exponential polynomials
was given by Schwartz [38].

A more effective way for finding these orthogonal functions uses their
representation in terms of the Fourier integrals. Namely, Djrbashian [16] (see
also [17]) proved the following result:
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Theorem 1. Let

/Reao i [Reay i o —ia
Yo(z) = T z+iap’ i(2) = ™ z+iakJ:=IOz+ia., (k€N).

Then

1 +oo1/} ( )e—iwt o — qe(t), te (0, +00),
Vor Jose Y “e

The condition

0, t € (—0,0).

is necessary and sufficient for the L*>(0,+00) completeness of the orthogonal
system {qx (t)}z:(’)
The proof is based on the fact that the rational functions ¢ belong to

the class H2(G*) of analytic functions f(z) in the upper half-plane G* =
{z € C|Im z > 0} for which

1
+00 %
Ifll= sup (/ If(z+iy)|2d:c>2<+oo.

0<y<+oo oo

Using the Paley-Wiener theorem and Parseval’s equality one can find
+o00 +oo

. 1 -
an) = [ @@= [ wE@T@d @)
where the inner product (-, -) is given by (1) and ¥x(2) = (i/v/7)%n(2).
Putting By = iax, where Im 8 = Reay > 0 for each k, the functions ¥(z)
can be expressed in the form

to(s) = LR, ) = TN
~ v=0

Using Cauchy’s residue theorem, it is very easy to prove the following or-
thogonality result for the rational functions ¥ (z) (cf. Djrbashian [16]):

Theorem 2. The system of functions {¥y(z)}{25 is orthonormal on the real
line, 1.e.,
1 [+

- / !'/k(z)!'/m(z) dzr = ék_m. (4)
™ —00
The corresponding completeness condition for this orthogonal system re-
duces to
400 Im ,Bk

Z:1+1ﬁkl2 - e

Obviously, (2) and (4) give (gk,qm) = Ok, m.
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2.2 Malmquist-Takenaka systems of orthogonal rational
functions

It is easy to see that the simple Moebius transformation z =i %_L‘; changes

the system (3) into the well-known Malmquist-Takenaka system of rational
functions {®x(s)}} 25 orthogonal on the unit circle |s| = 1 (see Malmquist
(22], Takenaka [44], Walsh [47, Sections 9.1 and 10.7], and Djrbashian [17]).
This transformation maps the upper-half plane Im z > 0 into the unit disk
|s| < 1, so that the point 8 maps to the point ax = (i8x +1)/(i8x — 1) inside
the unit circle,

a2 = 1+ |B|? — 2Im B
1+ |Bl?

Usually, such rational functions are represented in the following way (cf.
Djrbashian [17])

<1 (k=0,1,...).

(1 —laol*)!/?
P = ——
O(S) 1- aos
9 k=1
_ (= la)'V2 7 av—s e
Puls) =~ o E(,l—aus o (ke ()
where for a, = 0 we put |a,|/a, = @, /|a,| = —1. The following orthogonality

result holds:

Theorem 3. The system of functions {Px(s)}{ is orthonormal on the unit
circle, i.e.,
1 1

_ g B L " g 0T @) a0 =
Pk, Bm) = 5 f8|=1¢k(s)¢m(s) s =27 | )@ d0 = b,

Practically, this system is the result of an orthogonalization process of the
ordered sequence of the rational functions from the system

smk -1 +oo
{ (1 —ays)™* }k=0
on the unit circle s = el (—7 < § < 7) with respect to the Lebesgue measure

dé
'2—7;'.

Excluding the normalization constants, the Malquist-Takenaka system (5)
can be represented in the form

(s - )
We(s) = E'EO— ) (6)
[1(s—a})

v=0
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where aj, = 1/a,. For a, = 0 we put only s instead of (s —a,)/(s — aj).
Supposing that a, # a, for v # u, we can see that (6) can be written in

the form
n A k
Wn(s) = Z L‘ )
=5
where
n—1
H (a; - au)
App =22 (k=0,1,...,n). (7)
I1 (a; —a3)
i

The case when a, = a, can be considered as a limiting process a, — a,.
By usmg Theorem 3 it is easy to see that the system of rational functions
{Wha(s) }n _o» defined by (6), satisfies the following orthogonality relation

(Wna Wm) = ”Wn”25nma

where
|a0a1 - an|2

1—lan|?

An important auxiliary result was proved in [29]:

IWall* =

Lemma 1. Let —1 <t <1 and let F' be defined by
1 — ds
FO) = 5 § Walo)Wmle) ®)
|s|=1

where the system functions {Wy(s)} are defined by (6) with mutually different
numbers a, (v =0,1,...) in the unit circle |s| = 1. Then

A A
t) _ Z Z n,i = ,]
i=0 j=0
where the numbers A,  are given in (7).

For t = 1, from (8) we obtain that F(1) = (W,, W,,). Thus,

(Wi, W) ZZ An zA ,] _ |aoa1 anl Srm 9)

_ 2
1=0 j=0 1|(1l

This equality gives a connection between the Malmquist-Takenaka system of
rational functions (6) and a Miintz system, which is orthogonal with respect
to an unusual inner product defined in the next section.
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In a general case, we can use a positive Borel measure du(6) on [—m,7]
so that the previous inner product reduces to

(1.9 = 5= [ FaGIau@) (5=,

The corresponding orthogonal systems of rational functions were intensively
investigated in several papers by Djrbashian [13-17], Bultheel, Gonzdlez-
Vera, Hendriksen, and Njastad [9-11], Pan [33-36], etc.

In the extreme case when a, =0 (k =0,1,...), the corresponding system
of functions turns into the system of Szegé polynomials {P(s)}} 5 (see [43,
pp. 287-295] which are orthogonal on the unit circle with the same measure
(27)~1du(f). This kind of orthogonal polynomials on the unit circle have
been introduced and studied by Szeg6 [41,42] and Smirnov [39,40]. A more
general case was considered by Achieser and Krein [1], Geronimus [19,20],
Nevai [31,32], Alfaro and Marcellan [2], Marcelldn and Sansigre [23], etc.
These polynomials are linked with many questions in the theory of time
series, digital filters, statistics, image processing, scattering theory, control
theory, etc.

In the simplest case, for the Lebesgue measure (when du(6) = d@), these
polynomials reduce to the polynomials Py (z) = 2% (k =0,1,...).

A survey on orthogonal polynomials, including basic properties of poly-
nomials orthogonal on the unit circle, can be found in [26].

3 Orthogonal Miintz Systems

Let A = {)\0,/\1, . } be a given sequence of complex numbers. Taking the
following definition for z*:

z = erlogT z € (0,+00), A € C,

and the value at z = 0 is defined to be the limit of z* as z — 0 from (0, +0)
whenever the limits exists, we will consider orthogonal Miintz polynomials
as linear combinations of the Miintz system {z*o,z* ... z*~} (see [7,8]).
The set of all such polynomials we will denote by M, (A), i.e.,

M, (A) = span {z*, 2™, .. z*},

where the linear span is over the complex numbers C in general. The union
of all M,(A) is denoted by M (A).
For real numbers 0 < g < A\; < --- = 00, it is well-known that the real
n

Miintz polynomials of the form 3 axz** are dense in L?[0, 1] if and only if
k=0

+oco
Z /\;1 = +00.
k=1
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In addition, if Ao = O this condition also characterizes the denseness of the
Miintz polynomials in C[0, 1] in the uniform norm.

The first considerations of orthogonal Miintz systems were made by the
Armenian mathematicians Badalyan [4,5] and Taslakyan [45]. Recently, it was
rediscovered by McCarthy, Sayre and Shawyer [24]. A complete investigation
of such systems, including some inequalities of Markov type, was done by
Borwein, Erdélyi, and Zhang [8].

3.1 Miintz-Legendre polynomials

Supposing Re (A;) > —1/2 for each k € Ny and A, = {Xo, A1,...,An}, we
can give the following definition of the Miintz-Legendre polynomials on (0, 1]
(see [4,45,8]):

Definition 15. Let

n—1

Wa(s) = H

v=0

s+th+1 1
s— Ay s — An

(n € No), (10)

where an empty product for n = 0 should be taken to be equal to 1. The nth
Miintz-Legendre polynomial on (0, 1] is given by

P, (z; A,) = E}E}{Wn(s)z’ ds (n=0,1,...), (11)
r

where the simple contour I" surrounds all poles of the rational function (10).

For polynomials P,(z) = P,(z;A,) one can prove an orthogonality rela-
tion on (0, 1):

Theorem 4. Let the polynomials P,(z) be defined by (11). Then, for every
n,m=0,1,..., we have
/1 P, (z)Pp(z) dz = On.m
0 " " 1+, + Xn ’

Evidently, that the polynomials P:(z) = (1 + An + X\s)Y/2Pq(z) are or-
thonormal. In the simplest case when A, # A, (v # u) it is easy to show that
polynomials P,(z) can be expressed in a power form

n
Pn(fl,‘) = ch,km)"‘, (12)
k=0

where .
[TA+X+A)
v=0

Cn,k =

s

()\k - /\u)

v
v

W
x>0
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In a limiting case when A\g = Ay = --- = A, = A, the polynomials (11) are
reduced to B
P(z; Ap) = 2*Lp(—(1 4+ A + A) log z),

where L,(z) is the Laguerre polynomial orthogonal on (0,00) with respect
to the exponential weight e~%, and for which L,(0) = 1.

If we put z = et the Miintz-Legendre polynomials are reduced to the
generalized exponential polynomials. For example, (12) becomes

n
Pu(e™) = cnx e ™.
k=0
In a general case, such polynomials can be expressed in terms of a Laplace
transform (see [27]):

Theorem 5. If W,(s) given by (10) and

n—1 3
s— (A +1 1
Gn(s) = —Wa(=s) = H s(+k)\k : s+ A
k=0 n

then P,(e~t) is the inverse Laplace transform of Gn(s), i.e.,
Pa(e™") = L7 [Gn(s)]-
Taking, for example, a > 1/2 we can prove that

1 a+ioco
P(e7™?) = 5 / Gn(s)e™*t ds.

a—ioco

There is also a kind of the generalized Rodrigues formula for the Miintz-
Legendre polynomials (see [24])

Pp(z) =Dy Dy, ---Da,_,€n(2),

where N N
x k
ba(x) =) ——
k=0 [T (A —Aj)
i=0,j#k

and D, is the differential operator defined by

5d
Drf(z)== '\T(l’lﬂf(fv))-
z
It is easy to prove that £, (z) and its first n — 1 derivatives vanish at the point
z=1
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The polynomials (11) satisfy some recurrence relations, e.g.,
TP (z) — 2P)_1(z) = A Pa(z) + (1 + Ap—1)Pa_i(2) (13)
and

Po(z) = Pooi(z) = (An + Aoy + 1)z= /l t2"1p, 1 (t)dt (z € (0,1)).

T
Also, it is easy to prove that
n—1 B
P,(1)=1 and  Py(1)=XAn+ » (A + X +1).
k=0
An interesting question is connected by the zero distribution of the Miintz-
Legendre polynomials. Badalyan [6] proved the following result (see also [8]):

Theorem 6. For real numbers A\, > —1/2 (v =0,1,...) the Muntz-Legendre
polynomial P,(z; Ay,) has ezactly n distinct zeros in (0, 1), and it changes sign
at each of these zeros. Furthermore, the zeros of the polynomials

Pn—1(z; An-1) and Pp(z; An)

in (0,1) strictly interlace.

3.2 Some algebraic-logarithmic polynomials
An important special case of the Miintz-Legendre polynomials when
A2k = Aoky1 =k (k=0,1,...)

was considered in [27]. Namely, we put Aoy = k and Aogy1 = k+¢ (k =
0,1,...), where ¢ decreases to zero. The corresponding limiting process leads
to orthogonal Miintz polynomials with logarithmic terms,

Pa(2) = Ra(z) + Sn(z)logz  (n=0,1,...), (14)

where R,(z) and Sp(z) are algebraic polynomials of degree [2] and [25!],
respectively, i.e.,

(n/2] [(n-1)/2]
Ru(z) =Y aMz¥,  Sp(z)= Y bMa". (15)
v=0 v=0
Notice that P,(1) = R,(1) = 1. The first few Miintz polynomials (14) are:

Py(z) = 1,

Pi(z) = 1+logz,

Py(z) = -3+ 4z — logz,

P3(z) = 9-—8z+2(1+6z)logz,

Py(z) = =11 — 24z + 362 — 2(1 + 18z) log z,

Ps(z) = 19+ 276z — 29422 + 3(1 + 48z + 60z%) log z,

Ps(z) = —21 — 768z + 390z? + 400z® — 3(1 + 96z + 300z2) log z.
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The explicit expressions for the coefficients of the polynomials (15) for
arbitrary n are given in [27]. These Miintz polynomials can be used in the
proof of the irrationality of ((3) and of other familiar numbers (see 7, pp. 372~
381] and [46]).

Similarly, if we take

Ask = Agk+1 = Azky2 = k (k=0,1,...),
Le, Agk =k — &, A3kp1 =k, Agp42 = k+¢€ (k=0,1,...), where ¢ tends to
zero, we get the corresponding orthogonal Miintz polynomials:

Po(iL') = ].,

P(z) = 1+loguz,

1
Py(z) = 1+210gz+ 1og z,

P3(z) = -7+ 8z —4logz — 3 log2 z,
Py(z) = 29— 28z + (11 + 24z) log z + log®
Ps(z) = =97 + 98z — 4(7 + 15z) log z + (362 — 2) log? z,
Ps(z) = 127 — 342z + 2162 + (32 — 108z) log z + (2 — 108z) log? z.
These polynomials have the form
Pn(z) = Rp(z) + Sp(z)logz + T, (z) log® z,

where Rn(z), Sp(z), and Ty (z) are algebraic polynomials of degree [2],
[25%], and [252], respectively. Notice that P, (1) = Rn(1) = 1.

3.3 One-parametric Miintz-Jacobi polynomials

A little generalization of the Miintz-Legendre polynomials can be done in the
following way. Namely, putting Ay + 3/2 instead of Ay, k = 0,1,..., in the
sequence A, we can define a kind of the Miintz-Jacobi polynomials P° )(:c)
by

p® )
(z) 27r1 }{W (s)z® ds,
where .
Trs+M+8/2+1 1
w® () =TT S . .
n(8) kl;IO s——B/2  s—An—p/2

Then, the following result holds:
Theorem 7. Let 3 € R and Re A\, > —(B3+ 1)/2 for each k € Ny. Then

! B, ~ 1)
p® pB) =/ p® P,(,lﬂ) Bdr = _Inm )
(PO, = [ PO@PD @)af do = g
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In the special case Ay = k (k = 0,1,...), these generalized polynomi-
als reduce to the classical Jacobi polynomials pP (B > —1) shifted to
[0,1] (see [27]). It would be very interesting to construct the Miintz-Jacobi
polynomials pd (z) orthogonal with respect to the inner product

1 —
(f,9) = /0 f(z)g(z) (1 - z)%z? dz.

3.4 Another type of the orthogonal Miintz polynomials

In [12] and [29] we defined an external operation for the Miintz polynomials
from M (A) and the corresponding inner product.
At first, we introduced an operation ® for monomials in the following
way:
P =2 (z € (0,00), a,p € C).

An extension of this operation to the Miintz polynomials P € M, (A) and
Q € M,,(A), ie.,

P(z)=3 pz™ and  Qz) =) gz, (16)
i=0 j=0
can be done as
(POQ)(=) =Y pigiz ™. (17)

i=0 j=0
Under the restrictions that for each ¢ and j we have
A >1,  Re(\dj —1)>0, (18)
we introduce an unusual inner product for Miintz polynomials (16)

Q)= [ Pod@ . (19)

where (P ® Q)(z) is defined by (17).

It is not clear immediately that (19) represents an inner product. A proof
of this fact was given in [29], where Sylvester’s necessary and sufficient con-
ditions [25, p. 214] were used in order to prove a positive definiteness of ma-
trix Hn, = [1/(Aidj — 1)]:]:0. Also, it can be done by taking the functions
fx(8) =1/(A\ =€) (k=0,1,...) and interpreted H, as the corresponding
Gram’s matrix. Indeed,

1 1 [ —_—

=1 2w ), fi(0)£;(6)dé = (fi, £;)-
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Professor Dusan R. Georgijevi¢ (Belgrade) pointed out this fact.

Under the conditions (18), we introduced and studied (see [29]) the Miintz
polynomials Q,(z) = Qn(z;A4,), n = 0,1,..., orthogonal with respect to
the inner product (19). These polynomials are associated with the rational
functions

n—1 _
[1(s=1/\)
Wa(s) =22————  (n=0,1,...) (20)
M=)
v=0
in the sense that
1 8
n = a- n ) 21
Qn(a) = 5 § Wale)a? ds (21)
r
where the simple contour I" surrounds all the points A, (v =0,1,...,n).

Assuming that A; # A; (¢ # j), we get a representation of (21) in the
form

n—1

n IT (A —1/A)
Qn(x) =) Ansz™, App=22—  (k=0,1,...,n).
= H (’\k - ’\V)
ak
The case when A\; = A; can be considered as a limiting process \; — Aj
We note that the rational functions (20) form a Malmquist-Takenaka
system. Indeed, putting a, = 1/), (v =0,1,... ), these functions are reduced
to (6) and the previous coefficients A, ; become

H (l/ay - au)
=0 (k=0,1,...,n),
(1/ax - 1/a,)

T

An,k =

i

Tt
Wi

i.e., (7). Then,

n

1 -
(@n, Qm] =/0 Qo Q) (z)— = ZZAMA i | N2 de,

=0 j=0
i.e.,
AniA,
[@n, Q] = ZZ e
i=0 j=0 ’\ -1

According to Lemma 1 and equality (9), we see that [Qn,Qm] =
(Wn, Wy,) and prove the following orthogonality relation for the polynomials

Qn(z):
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Theorem 8. Under conditions (18) on the sequence A, the Miintz polyno-
mials Qn(z), n =0,1,..., defined by (21), are orthogonal with respect to the
inner product (19), i.e.,

517.,771

[Qn,Qm] = (lAnP — 1)‘A0Al . 'An—IP .

We mention now some recurrence relations for the polynomials Q,(z):

Theorem 9. Suppose that A is a complex sequence satisfying (18). Then the
polynomials Q,(z), defined by (21), satisfy

2Q'y(2) = 2@ () + An@n(2) — (1/An-1)Qn-1(2),

2@y (2) = MnQn(@) + 3 (A — 1/3) Qu(2),
k=0
n—1
2Q1(2) = (An = DQu(2) + 3 (A — 1/A6) Qi (2),
k=0
n—1
Qu(D)=1, Qu()=Xn+ Y (M —1/X),
k=0

Qn(x)=Qn-1(z) — (An — 1/:\,,_1).7:’\" / t™21Qu—1(t)dt  (z € (0,1]).

When )\, — X for each v, we obtain the following particular result of
Miintz polynomials (21):

Corollary 1. Let Q,(z) be defined by (21) and let A\o = A1 =+ = Ap = A.
Then

Qn(z) = 2 Ln(—(A —1/X)logz),

where Ly, () is a Laguerre polynomial.
For real sequences A we can prove ([29,37]):

Theorem 10. Let A be a real sequence such that 1 < Ag < Ay < --- . Then
the polynomial Qn(z), defined by (21), has ezactly n simple zerzz = /0 7
and no other zeros in [1,00).

The graphics of polynomials Q4(z) and Qs(z) are displayed in Fig. 1.
Their zeros are more densely distributed around 0 than in other parts of the
interval [0, 1]. From Fig. 1 we can see that only two zeros of Qs are in the
interval [0.1,1]. In Fig. 2 we display the graphic of @5(z) on the intervals
[0,1077], [10~7,1073], and [1073,0.1]. Notice that Q5(z) has one zero in each
of these intervals.
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Fig. 1. Graphics z — Q4(z) (solid line) and z — Qs(z) (broken line)
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Fig. 2. The Miintz polynomial Qs(z) on [0,1077], [1077,107?], and [1073,0.1]
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4 Numerical Evaluation of the Orthogonal Miintz
Polynomials and an Application

In this section we give a short account on numerical evaluation of the or-
thogonal Miintz polynomials and point out an application of such orthogonal
polynomials in numerical integration.

4.1 Numerical evaluation of orthogonal Miintz polynomials

A direct evaluation of the Miintz polynomials P, (z) (or @,(z)) in the power
form can be problematic in finite arithmetic, especially when n is a large
number and z is close to 1. The polynomial coefficients become very large
numbers when n increases, but their sums are always equal to 1, i.e., P,(1) =
1 and @,(1) = 1. An illustrative numerical example was considered in [27].

Using (11) and an integration along a contour in the complex plane, we
can prove the following result ([27]):

Theorem 11. Let 0 < —1/2, w =log(1/z), and

en(t;w) = % (fn(t; w) et +fn(—t;w) e—it) 7

where

n—1

Tttt N+ w 1
fu(t;w) = H t+i(oc— A)w t+i(oc — An)w .

(22)

v=0
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Then the Miintz-Legendre polynomials can be represented in the integral form

z° +o0
P,(z) = -77—/0 on(t;w) dt.

For real sequences A we get a useful result:

Theorem 12. Let A = {X, A1,...} be a real sequence such that A\ > —1/2
for every k > 0, fo(t;w) be defined by (22), and 0 < —1/2. Then, the
Miintz-Legendre polynomials have a computable representation

Pa(z) = St {La(fal30) + Lalfa-50))

where

1 m '
Laatso) =7 [ |3 falaty + 5= Diw)entD] ay,

k=1

+00
Ly(fa(+5w)) = (=)™ . Yn(y;w)e™ dy,

and Y (y;w) = ifn(a +iy;w), m > 1.

In the numerical implementation we use the Gauss-Legendre rule on (0,1)
and the Gauss-Laguerre rule for calculating Ly (fn(-;w)) and La(fn(-;w)),
respectively. Numerical experiments show that a convenient choice for the
parameter o iS Amin — 7/w, where Amin = min{Ag, A, ... }.

For evaluating the Miintz polynomials Q,(z), defined by (21), we can use
the same procedure with rational function (20).

4.2 Some remarks on an application in numerical integration

Let do(z) be a given nonnegative measure on [0, 1] and

{¢0(z),41(2), $2(2),...}  (z €[0,1]), (23)

be a system of linearly independent functions chosen to be complete in some
suitable space of functions. If the quadrature rule

1 n
/0 f(@)do(z) = 3 Axf(zk) + Ralf) (24)
k=1

is such that it integrates exactly the first 2n functions in (23), we call the rule
(24) Gaussian with respect to the system (23). The existence and uniqueness
of a Gaussian quadrature rule (24) with respect to the system (23), or shorter
a generalized Gaussian formula, is always guaranteed if the first 2n functions
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of this system constitute a Chebyshev system on [0, 1]. Then, all the weights
Ay,..., Ay in (24) are positive.

A numerical algorithm for the construction of generalized Gaussian quad-
ratures was investigated by Ma, Rokhlin and Wandzura [21]. They take a
Chebyshev system of functions {¢o, ¢1,... ,P2,—1} With certain conditions
on [0,1] and call it ertended Hermite (EH) system. Their algorithm is ill
conditioned.

Namely, in order to obtain the double precision results, the authors ([21])
performed the computations in an extended precision (Q-arithmetic - REAL*
16) for generating Gaussian quadratures up to order 20, and in MATEMATICA
(120 digits operations) for generating Gaussain quadratures of higher orders
(n < 40). In particular, the following important cases of EH systems:

{1,logz,z,zlogx,... ,z" 1 2" ogz} (25)

and

s s+1
{1,2°,z,2° ..

S S aiand (26)
for s =1/3, s =-1/3, s = —2/3, were considered in [21]. The case (25) was
also considered by Andronov [3].

Recently, we presented a stable numerical method for constructing the
generalized Gaussian quadratures for the Miintz polynomials {Pp, P, ... ,
Pyn—1}. Our constructive method [28] is based on an application of the or-
thogonal Miintz polynomials P, (z), as well as on a numerical procedure for
evaluation of such polynomials with a high-precision [27].

Notice that for

/\Zkzky /\2k+1:k+3 (k=0,1,...),

the Miintz polynomials {Po, P\, ..., Psp—1} reduces to (26). The case s = 0
corresponds to (25). Such algebraic-logarithmic polynomials are considered
in Subsection 3.2.
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