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Abstract. In this paper we consider extremal problems of Markov-Bernstein type
for polynomials involving the classical results of Markov and Bernstein and their ex-
tensions in the uniform norm. Also, we treat the corresponding problems in Lr norm,
and problems in mixed norms. Finally, we investigate the Markov-Bernstein type in-
equalities for differential operators and connect them with the classical orthogonal
polynomials giving some new characterizations of these polynomials.

1. Introduction

The first result on the extremal problems of Markov and Bernstein-type was
connected with some investigations of the well-known Russian chemist Mendeleev
[35]. In mathematical terms, Mendeleev’s problem, after some reductions, was as
follows: If t 7→ P (t) is an arbitrary quadratic polynomial and |P (t)| ≤ 1 on [−1, 1],
how large can |P ′(t)| be on [−1, 1]? Mendeleev found that |P ′(t)| ≤ 4 on [−1, 1].
This result is the best possible because for P (t) = 1 − 2t2 we have P (t) ≤ 1 and
P ′(±1) = 4. The corresponding problem for polynomials of degree n was considered
by A. A. Markov [31]. An analogue of Markov’s theorem for the unit disk in the
complex plane instead of for the interval [−1, 1] was formulated by Bernstein [5].

Inequalities of Markov and Bernstein-type are fundamental for the proof of many
inverse theorems in polynomial approximation theory (cf. [15], [25], [34]). There
are many results on Markov’s and Bernstein’s theorems and their generalizations
in various metrics and restricted classes of polynomials. Several monographs and
papers have been published in this area (cf. [14], [37–38], [44], [46], [65]).

In this paper we consider such problems involving the classical results of Markov
and Bernstein in the uniform norm (Section 2). In Section 3 we treat important
special cases in L2 norm, in Section 4 the corresponding results in Lr norm, and in
Section 5 we deals with extremal problems in different norms. Finally, in Section 6
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we investigate the Markov-Bernstein type inequalities for differential operators and
connect them with the classical orthogonal polynomials giving some new character-
izations of these polynomials.

Taking some restricted polynomial classes, the corresponding Markov’s inequal-
ities can be improved. Here, such cases will not be considered.

2. Classical Results of Markov and Bernstein and Their Extensions

We begin this section by considering the following extremal problem: Let Pn be

the set of all algebraic polynomials P (6≡ 0) of degree at most n. For a given norm

‖.‖, determine the best constant An such that

‖P ′‖ ≤ An‖P‖ (P ∈ Pn), (2.1)

i.e.,

An = sup
P∈Pn

‖P ′‖
‖P‖ . (2.2)

The first result in this area appeared in the year 1889. It was the well-known
classical inequality of A. A. Markov [31]. For the maximum norm on [−1, 1], i.e.,
‖f‖ = ‖f‖∞ = max

−1≤t≤1
|f(t)|, Markov solved this extremal problem, giving a solution

of Mendeleev’s problem in a generalized form.

Theorem 2.1. In the maximum norm, we have the following:

‖P ′‖∞ ≤ n2‖P‖∞ (P ∈ Pn). (2.3)

The equality holds only at ±1 and only when P (t) = cTn(t), where Tn is the Cheby-

shev polynomial of the first kind of degree n and c is an arbitrary constant.

A natural question is how to get an upper bound for the k-th derivative of
P . Iterating Markov’s inequality (2.3) yields a crude result. The best possible
inequality for the k-th derivative was found by V. A. Markov [32] in 1892. A
version of this remarkable paper in German was published in 1916.

Theorem 2.2. For each k = 1, . . . , n, the inequality

‖P (k)‖∞ ≤ 1

(2k − 1)!!

k−1
∏

i=0

(n2 − i2)‖P‖∞ (P ∈ Pn) (2.4)

holds. The extremal polynomial is Tn.

We note that the best constant in (2.4) is equal to ‖T (k)
n ‖∞ = T

(k)
n (1). Thus the

inequality (2.4) can be written in the following form ‖P (k)‖∞ ≤ T
(k)
n (1)‖P‖∞.

Markov’s proof of this result is based on a complicated variational method. A
simple proof of Theorem 2.2 was given by Bernstein [5] and an elementary proof by
Mohr [40]. Recently Shadrin [51] gave an elegant short proof of this inequality.
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Another type of these inequalities goes back to Bernstein [3] in 1912, who consid-
ered the following problem: Let z 7→ P (z) be a polynomial of degree n and |P (z)| ≤ 1
in the unit disk |z| ≤ 1. Determine how large can |P ′(z)| be for |z| ≤ 1. In other
words, if we define ‖f‖ = max

|z|≤1
|f(z)|, this problem can be reduced to the inequality

(2.1). Thus, Bernstein’s theorem can be stated in the following form:

Theorem 2.3. Let P ∈ Pn, then ‖P ′‖ ≤ n‖P‖. The equality holds for P (z) =
czn, c = const.

This Bernstein’s theorem can be stated in several different forms:

Theorem 2.4. Let θ 7→ T (θ) be a trigonometric polynomial of degree n and

|T (θ)| ≤ M , then

|T ′(θ)| ≤ nM. (2.5)

The equality holds for T (θ) = γ sinn(θ − θ0), where |γ| = 1.

Theorem 2.5. Let P ∈ Pn and |P (t)| ≤ 1 (−1 ≤ t ≤ 1), then

|P ′(t)| ≤ n√
1− t2

, −1 < t < 1. (2.6)

The equality is attained at the points t = tν = cos (2ν−1)π
2n , 1 ≤ ν ≤ n, if and only

if P (t) = γTn(t), where |γ| = 1.

This result was proved by Bernstein [3] at the same time as Theorem 2.4, except
that in (2.5) he had 2n in place of n. Inequality (2.6) in the present form first
appeared in print in a paper of Fekete [1], who attributes the proof to Fejér [18].
Bernstein [4] attributes the proof to E. Landau.

Bernstein’s proof of Theorem 2.4 was based on a variational method. Simpler
proofs of this theorem have been obtained by M. Riesz [48], F. Riesz [47] and de la
Vallée Poussin [57].

Schaeffer and Duffin [49] gave a proof of (2.4), i.e.,

‖P (k)‖∞ ≤ n2(n2 − 12)(n2 − 22) · · · (n2 − (k − 1)2)

1 · 3 · 5 · · · (2k − 1)
. (2.7)

Also, Duffin and Schaeffer [13] proved that for this inequality to hold it is only
necessary to assume that |P (t)| ≤ 1 at n+ 1 selected points in [−1, 1].

Theorem 2.6. Let P ∈ Pn such that |P (cos νπ/n)| ≤ 1 (ν = 0, 1, . . . , n), then
inequality (2.7) is satisfied for k = 1, . . . , n. The equality occurs only if P (t) =
γTn(t), where |γ| = 1.

An interesting question is whether or not there are n + 1 other points in the
interval (−1, 1) satisfying the same property. Duffin and Schaeffer [13] gave a neg-
ative answer to this question. In fact, they showed that if E is any closed subset
of (−1, 1) which does not contain all the points τν = cos(νπ/n), then there is a
polynomial P ∈ Pn which is bounded by 1 in E but (2.7) is not satisfied. The
above refined inequality of Markov is known as Markov-Duffin-Schaeffer inequality

(cf. [45]).

According to Theorems 2.1 and 2.5, we can state the following result:
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Theorem 2.7. If P ∈ Pn then

|P ′(t)| ≤ min
{

n2,
n√

1− t2

}

‖P‖∞, −1 ≤ t ≤ 1.

Instead of the condition |P (t)| ≤ 1 on [−1, 1], Bernstein [5] used a more general
condition

|P (t)| ≤
√

H(t) (−1 ≤ t ≤ 1), (2.8)

where H is an arbitrary positive polynomial on [−1, 1] of degree s. If n ≥ s/2, the
polynomial H can be uniquely represented in the form

H(t) = Mn(t)
2 + (1− t2)Nn−1(t)

2, (2.9)

where Mn and Nn−1 are polynomials of degree n and n− 1, respectively, such that
all their zeros belong to (−1, 1) satisfying an interlacing property, and Mn(1) > 0,
Nn−1(1) > 0.

Theorem 2.8. Let P ∈ Pn. Under the condition (2.8), where H is given by

(2.9), the inequality |P ′(t)| ≤ |(Mn(t) + i
√
1− t2Nn−1(t))

′| holds, for −1 < t < 1.
The equality is attained for P (t) = γMn(t), where |γ| = 1.

Videnskĭı [61] proved the corresponding inequality for the k-th derivative of P ,

i.e., |P (k)(t)| ≤ |(Mn(t)+ i
√
1− t2Nn−1(t))

(k)|, where k = 1, . . . , n and −1 < t < 1,
with the same condition for the equality case. He also proved the following result
([62–63]):

Theorem 2.9. Let P ∈ Pn and |P (t)| ≤ |αt + i
√
1− t2| (α ≥ 0, −1 ≤ t ≤ 1).

Then, for k = 1, . . . , n and −1 ≤ t ≤ 1, we have that |P (k)(t)| ≤ M
(k)
n (1), where

Mn(t) =
1
2 (α+1)Tn(t) +

1
2 (α− 1)Tn−2(t). The equality is attained only for P (t) =

γMn(t) at the endpoints t = ±1, where |γ| = 1.

Several inequalities of this type were given by Videnskĭı [59–63], and others.

These inequalities can be considered as inequalities of Markov type for curved
majorants. In 1970 at a conference on Constructive Function Theory held in Varna,
Bulgaria, the late Professor Paul Turán asked the following question: Let P ∈ Pn

and |P (t)| ≤ ϕ(t) for −1 ≤ t ≤ 1, where the majorant ϕ is a nonnegative function.

How large can |P (k)(t)| be at a given point t = τ in [−1, 1]? In (2.8) we have that
√

H(t) = ϕ(t).

Defining ‖P‖ϕ = sup
−1<t<1

(

|P (t)|/ϕ(t)
)

(P ∈ Pn), where the majorant t 7→ ϕ(t)

is a nonnegative function on [−1, 1], and puting ‖P‖ = ‖P‖∞ = max
−1≤t≤1

|P (t)|,
Turán’s problem can be stated in the following form: If ‖P‖ϕ ≤ 1, how large can

‖P (k)‖ be?

In the case of the circular majorant
(

ϕ(t) =
√
1− t2

)

for k = 1 we have that
‖P ′‖ ≤ 2(n− 1) (see [43]). Notice that this result is a special case of Theorem 2.9
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for α = 0. Pierre and Rahman [41] considered a more general case when ϕ(t) =
(1−t)λ/2(1+t)µ/2, where λ, µ are non-negative integers. They solved the case when
(λ + µ)/2 ≤ k ≤ n. The case when 1 ≤ k < (λ + µ)/2, for (λ + µ)/2 > 1 was left
unresolved. An asymptotic estimate when n → +∞, for λ = µ = 2, was recently
considered by Pierre, Rahman and Schmeisser [42].

3. Extremal Problems in L2 Norm

In the L2 metric we mention the following result of Schmidt [50] and Turán [56]:

Theorem 3.1. (a) Let (a, b) = (−∞,+∞) and ‖f‖2 =
∫∞

−∞
e−t2f(t)2 dt. Then

the best constant in (2.2) is An =
√
2n. An extremal polynomial is Hermite’s

polynomial Hn.

(b) Let (a, b) = (0,+∞) and ‖f‖2 =
∫∞

0 e−tf(t)2 dt. Then An =
(

2 sin π
4n+2

)−1

.

The extremal polynomial is P (t) =
n
∑

ν=1
sin νπ

2n+1Lν(t), where Lν is Laguerre polyno-

mial.

Theorem 3.1 b), in this form, was formulated by Turán [56]. Schmidt [50] gave
only an asymptotic estimate.

Mirsky [39] considered the case of L2 metric with a weight function and found
an estimate for the best constant. Dörfler [12] considered the analogous problem
for derivatives of higher order and determined the best possible constant An,k in

‖P (k)‖ ≤ An,k‖P‖ as the largest singular value of an (n− k + 1)× (n+ 1)-matrix.

Milovanović [37] showed that the exact constant in (2.1) can be found as the
maximal eigenvalue of a matrix of Gram’s type. He considered a more general
case with a given nonnegative measure dλ(t) on the real line R, with compact or
infinite support, for which all moments µν =

∫

R
tν dλ(t), ν = 0, 1, . . . , exist and

are finite, and µ0 > 0. Then there exists a unique set of orthonormal polynomials
πν(·) = πν(·; dλ), ν = 0, 1, . . . , defined by

πν(t) = aνt
ν + lower degree terms, aν > 0,

and

(πν , πµ) =

∫

R

πν(t)πµ(t) dλ(t) = δνµ, ν, µ ≥ 0.

For each polynomial P ∈ Pn, with complex coefficients, we define

‖P‖ =
(

∫

R

|P (t)|2 dλ(t)
)1/2

and consider the extremal problem

An,k = An,k(dλ) = sup
P∈Pn

‖P (k)‖
‖P‖ (1 ≤ k ≤ n). (3.1)
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Theorem 3.2. The best constant An,k defined in (3.1) is given by

An,k = (λmax(Bn,k))
1/2 ,

where λmax(Bn,k) is the maximal eigenvalue of the matrix Bn,k =
[

b
(k)
i,j

]

k≤i,j≤n
,

whose elements are given by b
(k)
i,j =

∫

R
π
(k)
i (t)π

(k)
j (t) dλ(t) (k ≤ i, j ≤ n). An ex-

tremal polynomial is P ∗(t) =
n
∑

ν=k

cνπν(t), where [ck, ck+1, . . . , cn]
T
is an eigenvector

of the matrix Bn,k corresponding to the eigenvalue λmax(Bn,k).

In the Hermite case dλ(t) = e−t2dt, −∞ < t < +∞ we have πν(t) = Ĥν(t) =
(
√
π 2νν!)−1/2Hν(t), where Hν is a Hermite polynomial of degree ν. Then, we find

An,k = 2k/2
√

n!/(n− k)!. This result also can be found in the unpublished Ph. D.
thesis of Shampine [52] and [53]. For k = 1, this result reduces to the assertion (a)
in Theorem 3.1.

In the generalized Laguerre case dλ(t) = tse−tdt, 0 < t < +∞, when k = 1, we
find that Cn,1 = −Jn, where

Jn =



















α0

√

β1 O
√

β1 α1

√

β2

√

β2 α2
. . .

. . .
. . .

√

βn−1

O
√

βn−1 αn−1



















and α0 = −(1 + s), αν = −
(

2 + s/(ν + 1)
)

, βν = 1+ s/ν, ν = 1, . . . , n− 1. We see
that Jn is the Jacobi matrix for monic orthogonal polynomials {Qν}, which satisfy
the following three-term recurrence relation

Qk+1(t) = (t− αk)Qk(t)− βkQk−1(t), k = 0, 1, 2, . . .

Q−1(t) = 0, Q0(t) = 1.

The eigenvalues of Cn,1 are λν = −tν , where Qn(tν) = 0 for ν = 1, . . . , n.

The standard Laguerre case (s = 0) can be exactly solved. In that case, we
obtain the Turán result (Theorem 3.1 (b)). In the case when k = 2 and s = 0, we
obtain a five-diagonal symmetric matrix Cn,2 of the order n − 1 (see Milovanović
[37]). Using the minimal eigenvalue of such matrix, we obtain the best constant

An,2 = (λmin(Cn,2))
−1/2

. For n = 2 and n = 3 we have exact values: A2,2 = 1 and

A3,2 =
(

3 + 2
√
2
)1/2

respectively.

A case with a special even weight function, involving the Gegenbauer weight,
was considered by Milovanović [37], but exact constant is not yet known.
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4. Generalizations in Lr Norm

It is interesting to extend the inequalities of A. A. Markov and S. N. Bernstein

to Lr spaces, where ‖P‖ = ‖P‖r =
(

(b− a)−1
∫ b

a |P (t)|r dt
)1/r

(r ≥ 1). The case

r = 2 was considered in the previous section.

Let Tn denote the set of all trigonometric polynomials of degree at most n.
Zygmund [65] proved the following theorem:

Theorem 4.1. Let r ≥ 1, (a, b) = (0, 2π), and T ∈ Tn. Then ‖T ′‖r ≤ n‖T ‖r.
Taking r → +∞, this Zygmund’s inequality reduces to the Bernstein inequality.

Using the norm in the space Lr(0, 2π) of a function f , defined by

‖f‖r =
(

1

2π

∫ 2π

0

|f(θ)|r dθ
)1/r

(0 < r < +∞),

as well as limiting cases: for r → +∞ the uniform norm ‖f‖∞, and for r →
0 the quasi-norm of L0(0, 2π), defined by ‖f‖0 = exp

(

(2π)−1
∫ 2π

0
log |f(θ)| dθ

)

,

Golitschek and Lorentz [21] recently proved:

Theorem 4.2. If T ∈ Tn, then

∥

∥

1

n
T ′
∥

∥

r
≤ ‖T ‖r (0 ≤ r ≤ +∞). (4.1)

For 0 < r < 1, the inequality (4.1) is due to Máté and Nevai [33], but with an
extra factor (4e)1/r on the right hand side. Later, Arestov [2] proved this inequality
in the form (4.1), using subharmonic functions and Jensen’s formula. Golitschek
and Lorentz gave a new simpler proof of the inequality (4.1).

An important generalization of A. A. Markov’s inequality for algebraic polyno-
mials in an integral norm was given by Hille, Szegő, and Tamarkin [24], who proved
the following theorem:

Theorem 4.3. Let r > 1 and let P ∈ Pn. Then

(
∫ 1

−1

|P ′(t)|r dt
)1/r

≤ An2

(
∫ 1

−1

|P (t)|r dt
)1/r

, (4.2)

where the constant A = A(n, r) is given by

A(n, r) = 2(r − 1)1/r−1

(

r +
1

n

)(

1 +
r

nr − r + 1

)n−1+1/r

,

for r > 1, and A(n, 1) = 2 (1 + 1/n)n+1
.
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The constant A(n, r) in Theorem 4.3 is not the best possible. We can see that
A(n, r) ≤ 6 exp(1 + 1/e), for every n and r ≥ 1. Also,

A(n, r) →











2(1 + 1/(n− 1))n−1 < 2e (n fixed, r → +∞),

2e (r = 1, n → +∞),

2er(r − 1)(1/r)−1 (r > 1 fixed, n → +∞).

Some improvements of the constant A(n, r) have recently been obtained by Goet-

gheluck [20]. He found that A(n, 1) =
√

8/π
(

1 + 3/(4n)
)2
, as well as a very com-

plicated expression for r > 1.

5. Extremal Problems in Different Norms

There are several interesting results, including different norms. In the following
we will first discuss a few of those inequalities which involve the norms

‖f‖∞ = max
−1≤t≤1

|f(t)| and ‖f‖2 =
(
∫ 1

−1

w(t)|f(t)|2 dt
)1/2

,

where t 7→ w(t) is a given weight function.

In the case when w(t) = 1, Labelle [28] proved the following inequality

‖P (k)‖∞ ≤ (2k − 1)!!(n+ k + 1)
√

2(2k + 1)

(

n+ k

n− k

)

‖P‖2, (5.1)

with equality in (5.1) only for constant multiples of the polynomial

n−k
∑

i=0

(2i+ 2k + 1)

(

2k + i

i

)

Pk+i(t),

where Pµ(t) denotes the Legendre polynomial of degree µ.

Lupaş [30] investigated a more general case using the Jacobi weight w(t) =
w(t;α, β) = (1 − t)α(1 + t)β (α, β > −1). He obtained the best constant in the
following inequality

‖P (k)‖∞ ≤ An(k, α, β)‖P‖2 (P ∈ Pn). (5.2)

Theorem 5.1. Let P ∈ Pn and q = max(α, β) ≥ −1/2. Then the best constant

in inequality (5.2) is given by

An(k, α, β) =

(

k!

22k+α+β+1

n
∑

ν=k

C
(α,β)
ν,k

(

ν + α+ β + k

k

)(

ν + q

ν − k

)

)1/2

,
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where

C
(α,β)
ν,k =

ν!(2ν + α+ β + 1)Γ(ν + α+ β + k + 1)

Γ(ν + α+ 1)Γ(ν + β + 1)

(

ν + q

ν − k

)

.

Equality is attained for P (t) = C
n
∑

ν=k

C
(α,β)
ν,k P

(α,β)
ν (t), where C is a constant and

P
(α,β)
ν (t) is the Jacobi orthogonal polynomial of degree ν.

A general extremal problem was studied by Daugavet and Rafal’son [10] and
Konjagin [27], taking

‖f‖r,µ =

(
∫ 1

−1

|f(t)(1− t2)µ|r dt
)1/r

, 0 ≤ r < +∞,

= ess sup
−1≤t≤1

|f(t)|(1 − t2)µ, r = +∞,

where µ is a real number such that rµ > −1. (This condition, for r = +∞, should
be understood as µ ≥ 0.)

Konjagin [27] considered the following general extremal problem

An,k(r, µ; p, ν) = sup
P∈Pn

‖P (k)‖p,ν
‖P‖r,µ

. (5.3)

For example, the best constant in (2.4) is An,k(+∞, 0; +∞, 0). Also, the Bernstein’s
inequality (2.6) can be represented in the form ‖P ′‖∞,1/2 ≤ n‖P‖∞,0 (P ∈ Pn).
The case when p = r ≥ 1, µ = ν = 0, and k = 1 was considered by Hille, Szegő,
and Tamarkin [24] (see Theorem 4.3).

Bojanov [7] considered the problem (5.3) in the case when r = +∞, µ = ν = 0,
and 1 ≤ p < +∞.

Theorem 5.2. Let P ∈ Pn and r ∈ [1,+∞). Then ‖P ′‖r ≤ ‖T ′
n‖r‖P‖∞.

Equality is attained only for P (t) = ±Tn(t).

In two boundary cases we have ‖T ′
n‖∞ = n2 and ‖T ′

n‖1 = 2n. Recently, Ciesielski
[9] has given theoretical estimates for ‖T ′

n‖r in the whole range of the parameters
n and r and formulated a conjecture on the best estimates based on numerical cal-
culations. Theorem 5.2 is a particular case of the following more general assertion:

Theorem 5.3. Let Gn = {P ∈ Pn | ‖P‖∞ ≤ 1}. For every increasing convex

function x 7→ ϕ(x), for x > 0, the quantity sup
P∈Gn

∫ 1

−1 ϕ(|P ′(t)|) dt is attained only

for P (t) = ±Tn(t).

This result was proved by Bojanov [8]. Since x 7→ ϕ(x) = xp (1 < p < +∞) is
an increasing convex function on [0,+∞), Theorem 5.2 follows from Theorem 5.3.

For ϕ(x) =
√
1 +M2x2, Theorem 5.3 provides the solution of a conjecture on the

longest polynomial stated by Erdős [17] (see [6]).
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6. Markov-Bernstein Type Inequalities for Differential Operators

Using the interpolation in polynomial classes, in 1957 Stein [55] proved the fol-
lowing result:

Theorem 6.1. Let P ∈ Pn, n ≥ 1, and 1 ≤ r ≤ +∞. For the Legendre differ-

ential operator D = d
dt(1− t2) d

dt , there exists a positive constant depending only on

r such that ‖DP‖r ≤ Crn
2‖P‖r (1 ≤ r ≤ +∞), where ‖f‖r =

(

∫ 1

−1 |f(t)|r dt
)1/r

and ‖f‖∞ = max
−1≤t≤1

|f(t)|.

For r = +∞ and r = 2, we have C∞ = 2 and C2 = 1 + 1/n, respectively.

Taking Lr norm with the Jacobi measure, Stein [55] also proved the corresponding
results for the operator

Dα,β = (1− t)−α(1 + t)−β d

dt

[

(1 − t)α+1(1 + t)β+1 d

dt

]

.

Since Dα,βP
(α,β)
k (t) = −k(k+α+β+1)P

(α,β)
k (t) (α, β > −1), where P

(α,β)
k (t) is the

Jacobi polynomial of degree k, we see that the Jacobi polynomials are eigenfunctions
of the operator Dα,β. Recently, Džafarov [16] has considered similar problems for
operators which correspond to the classical orthogonal polynomials.

The classical orthogonal polynomials {Qn} on (a, b) can be specificated as the

Jacobi polynomials P
(α,β)
n (t) (α, β > −1) on (−1, 1), the generalized Laguerre poly-

nomials Ls
n(t) (s > −1) on (0,+∞), and finally as the Hermite polynomials Hn(t)

on (−∞,+∞). Their weight functions t 7→ w(t) on an interval of orthogonality
(a, b) satisfy the differential equation (A(t)w(t))′ = B(t)w(t), where the functions
t 7→ A(t) and t 7→ B(t) are defined as in Table 6.1.

Table 6.1

The Classification of the Classical Orthogonal Polynomials

(a, b) w(t) A(t) B(t) λn

(−1, 1) (1 − t)α(1 + t)β 1− t2 β − α− (α + β + 2)t n(n+ α+ β + 1)

(0,∞) tse−t t s+ 1− t n

(−∞,∞) e−t2 1 −2t 2n

The classical orthogonal polynomial t 7→ Qn(t) is a particular solution of the
following differential equation of the second order L[y] = A(t)y′′+B(t)y′+λny = 0,
where λn is given in Table 6.1.

Let (f, g) =
∫ b

a f(t)g(t)w(t) dt and ‖f‖2 = (f, f). Similarly to the well-known
Landau inequality ([29]) for continuously–differentiable functions and other gener-
alizations (cf. [11], [26], [36], [54]), Agarwal and Milovanović [1] stated the following
characterization of the classical orthogonal polynomials:
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Theorem 6.2. For all Pn ∈ Pn the inequality

(2λn +B′(0))‖
√
AP ′

n‖2 ≤ λ2
n‖Pn‖2 + ‖AP ′′

n ‖2

holds, with equality if only if Pn(t) = cQn(t), where Qn is the classical orthogonal

polynomial of degree n orthogonal to all polynomials of degree ≤ n−1 with respect to

the weight function t 7→ w(t) on (a, b), and c is an arbitrary real constant. λn, A(t)
and B(t) are given in Table 6.1.

The Hermite case was considered by Varma [58].

Recently Guessab and Milovanović [22] have considered a weighted L2-analogues
of the Bernstein’s inequality (2.6), which can be stated in the following form:

‖
√

1− t2P ′(t)‖∞ ≤ n‖P‖∞. (6.1)

Let w be the weight of the classical orthogonal polynomials (w ∈ CW ) and
t 7→ A(t) be given as in Table 6.1. Using the norm ‖f‖2w = (f, f), we consider the
following problem connected with the Bernstein’s inequality (6.1): Determine the

best constant Cn,m(w) (1 ≤ m ≤ n) such that the inequality

‖Am/2P (m)‖w ≤ Cn,m(w)‖P‖w (6.2)

holds for all P ∈ Pn.

At first, we note if w ∈ CW , then the corresponding classical orthogonal poly-
nomial t 7→ Qn(t) is a particular solution of the differential equation of the second
order

d

dt

(

A(t)w(t)
dy

dt

)

+ λnw(t)y = 0, (6.3)

where λn = −n
(

1
2 (n− 1)A′′(0) + B′(0)

)

. The k-th derivative of Qn is also the

classical orthogonal polynomial, with respect to the weight t 7→ wk(t) = A(t)kw(t),
and satisfies the following differential equation

d

dt

(

A(t)wk(t)
dy

dt

)

+ λn,kwk(t)y = 0, (6.4)

where λn,k = −(n− k)
(

1
2 (n+ k − 1)A′′(0) +B′(0)

)

. We note that λn,0 = λn.

Theorem 6.3. For all P ∈ Pn the inequality (6.2) holds, with the best constant

Cn,m(w) =
√

λn,0λn,1 · · ·λn,m−1. The equality is attained in (6.2) if and only if P
is a constant multiple of the classical polynomial Qn orthogonal with respect to the

weight function w ∈ CW .

Now, we give the special cases:
11



Corollary 6.4. Let w(t) = (1 − t)α(1 + t)β (α, β > −1). Then, for every

P ∈ Pn, the inequality

‖(1− t2)m/2P (m)‖w ≤
√

n!Γ(n+ α+ β +m+ 1)

(n−m)!Γ(n+ α+ β + 1)
‖P‖w,

holds, with equality if and only if P (t) = cP
(α,β)
n (t).

Corollary 6.5. Let w(t) = tse−t (s > −1) on (0,+∞). Then for every P ∈ Pn

we have ‖tm/2P (m)‖w ≤
√

n!/(n−m)! ‖P‖w , with equality if and only if P (t) =
cLs

n(t).

The Hermite case with the weight w(t) = e−t2 on (−∞,+∞) is the simplest.

Then the best constant is Cn,m(w) = 2m/2
√

n!/(n−m)!. This result was obtained
in Section 3.

Finally, we consider extremal problems of Markov’s type

Cn,m(dσ) = sup
P∈Pn

‖DmP‖dσ
‖Am/2P‖dσ

(6.5)

for the differential operator Dm defined by

DmP =
dm

dtm
[AmP ] (P ∈ Pn, m ≥ 1), (6.6)

where ‖P‖dσ =
(∫

R
|P (t)|2 dσ(t)

)1/2
.

Guessab and Milovanović [23] found the best constant Cn,m(dσ) in three following
cases:

1◦ The Legendre measure dσ(t) = dt on [−1, 1];

2◦ The Laguerre measure dσ(t) = e−t dt on [0,+∞).

3◦ The Hermite measure dσ(t) = e−t2 dt on (−∞,+∞).

Let P ∈ Pn, dσ(t) = w(t) dt on (a, b), and Dm be given by (6.6). An application
of integration by parts and Cauchy-Schwarz inequality gives

‖DmP‖2dσ ≤ ‖Am/2P‖dσ
(
∫ b

a

Am

w

(

[wDmP ](m)
)2

dt

)1/2

,

with equality if and only if FmP = (−1)mw−1[wDmP ](m) = λP (P ∈ Pn), where
λ is an arbitrary constant. Taking a norm with respect to the measure dσm(t) =
Amdσ(t) = Amw dt, we have

‖DmP‖dσ
‖Am/2P‖dσ

≤
(‖FmP‖dσm

‖P‖dσm

)1/2

, (6.7)

12



with equality if and only if FmP = λP . We are interested only in polynomial
solutions of this equation. If they exist, then from the eigenvalue problem and the
inequality (6.7), we can determine the best constant in the extremal problem (6.5).
Namely,

Cn,m(dσ) =
√

max
0≤ν≤n

|λν,m| ,

where λν,m are eigenvalues of the operator Fm. Then, the extremal polynomial is
the eigenfunction corresponding to the maximal eigenvalue.

Theorem 6.6. Let dσ(t) = dt on (−1, 1). Then Cn,m(dσ) =
√

(n+ 2m)!/n!.

The supremum in (6.5) is attained only if P (t) = γC
m+1/2
n (t), where Cµ

n is the

Gegenbauer polynomial of degree n, and γ (6= 0) is an arbitrary real constant.

Theorem 6.7. Let dσ(t) = e−t dt on (0,+∞). Then Cn,m(dσ) =
√

(n+m)!/n!.
The supremum in (6.5) is attained only if P (t) = γLm

n (t), where Lm
n is the gener-

alized Laguerre polynomial of degree n, and γ (6= 0) is an arbitrary real constant.

Finally, in the Hermite case when dσ(t) = e−t2 dt on the real line R, the extremal
problem (6.5) reduces to the corresponding problem (6.2).

References
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17. P. Erdős, An extremum-problem concerning trigonometric polynomials 9 (1939), 113–115.
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