
Filomat xx (2025), zzz–zzz
DOI

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Exploring the potential of inertial type algorithms in solving
coincidence point/value problems: Theoretical analysis and practical

applications

Ayşegül Keten Çopura, Emirhan Hacıoğlub, Faik Gürsoyc, Gradimir V. Milovanovićd,e

aDepartment of Mathematics and Computer Science, Necmettin Erbakan University, Konya, 42090, Türkiye
bDepartment of Mathematics, Trakya University, Edirne, 22030, Türkiye

cDepartment of Mathematics, Adıyaman University, Adıyaman, 02040, Türkiye
dSerbian Academy of Sciences and Arts, 11000 Belgrade, Serbia

eUniversity of Niš, Faculty of Sciences and Mathematics, P.O. Box 224, 18000 Niš, Serbia

Abstract. In this study, we present novel inertial type algorithms designed to address a research gap and
provide a solution to an open problem. We focus on a high-performing “Jungck normal-S inertial type
algorithm”, which we thoroughly examine for its convergence, stability and data dependency properties.
To substantiate our theoretical findings, we include thoughtfully selected numerical examples covering
both differential and integral equations. Furthermore, we show case the versatility of these algorithms
by employing them to create aesthetically pleasing polynomiographs, enhancing both the educational and
artistic dimensions of our work.

1. Introduction, basic concepts and some algorithms

A plethora of systematic methods, which can be broadly classified into iteration and direct methods, ex-
ists in the literature to solve a wide range of problems encountered in research fields. While direct methods
are limited in dealing with inherently nonlinear problems, iteration algorithms become indispensable for
approximating solutions to these problems. In recent years many algorithms have been introduced, aiming
for higher convergence rates and possessing various qualitative properties such as data dependency, stabil-
ity and convergence (see, [1, 11–13, 18, 19, 24]). As these algorithms find applications in diverse fields, the
demand for purpose-specific designs grows. When addressing challenges in research, existing algorithms
are refined or novel ones are designed to cater to unique problems. The chosen algorithm should adhere
to specific criteria, notably rapid and accurate computations, which hold significant importance in applied
and computational research domains. In this context, accelerating iteration algorithms can offer extensive
benefits across various domains, particularly in optimization, machine learning, numerical analysis and
scientific computing. They enhance efficient handling of increasingly complex problems, optimize compu-
tation time and resources, and facilitate real-time and large-scale applications. However, it is essential to

2010 Mathematics Subject Classification. Primary 47H09; Secondary 47H10, 47J25
Keywords. Convergence; Coincidence point/value; Data dependency; Inertial type algorithm; Stability; Polynomigrahy.

Communicated by (name of the Editor, mandatory)
Research of G.V.M. was partly supported by the Serbian Academy of Sciences and Arts (Project Φ-96).
Email addresses: aketen@erbakan.edu.tr (Ayşegül Keten Çopur), emirhanhacioglu@trakya.edu.tr (Emirhan Hacıoğlu),

fgursoy@adiyaman.edu.tr (Faik Gürsoy), gvm@mi.sanu.ac.rs (Gradimir V. Milovanović)

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 2

strike a balance between speed and accuracy, as overly accelerated algorithms may compromise precision
or convergence stability (see, e.g., [19]). To achieve efficient solutions for increasingly complex problems,
researchers have devised diverse acceleration techniques, such as relaxation, inertial type extrapolation,
and variants of accelerated gradient descent like Nesterov accelerated gradient. These techniques effec-
tively accelerate iteration algorithms (for a more compherensive understanding of acceleration techniques,
refer to [6]). However, it is essential to consider that not all methods may yield desired improvements
in every scenario, as their effectiveness depends on the nature of the problem and the characteristics of
the fixed point iteration algorithm being used. Hence, as always, experimentation and careful analysis
on their impact on convergence behavior are key to identfying the most effective approach to a specific
problem and achieve faster and more robust convergence. The objective of this paper is twofold: to fill a
gap in the literature by designing inertial type algorithms for the pairs of mappings in the context of the
coincidence point/value theory and thus addressing an problem in the literature in a positive manner. To
achieve this goal, we shall first provide an overview of inertial iteration algorithms and their formulations
within the context of coincidence point/value theory; second, we shall conduct a thorough analysis of their
convergence, stability and data dependency properties; finally, we shall demonstrate their effectiveness
through empirical evaluations on a range of challenging numerical problems.

Polyak [29] initially introduced an inertial extrapolation, relying on the principles of two-order time
dynamical system’s heavy-ball method, as an acceleration technique to address the challenge of smooth
minimization. His approach generates a sequence {xn}∞n=0 by the following algorithm

Polyak’s heavy-ball method
Input: An objective function f , initial points x−1, x0 and budget N.
1: for n = 0, 1, 2, . . . ,N do
2: xn+1 = xn − αn∇ f (xn) + βn (xn − xn−1)
3: end for
Output: Approximate solution xN

in which ∇ f denotes the gradient of the objective function f , xn represents the current iterate at iteration
n, βn (xn − xn−1) is the momentum term (also called inertial term), which enables the algorithm to maintain
a memory of previous iterations and incorporate their influence into the current update, facilitating faster
convergence and better solution quality, αn is the step size (learning rate) parameter at iteration n, which
determines the size of the gradient descent update, and βn is the momentum parameter at iteration n,
controlling the influence of the previous update xn − xn−1 on the current update.

In recent times, a considerable number of scholars have devised fast iteration algorithms through the
utilization of inertial extrapolation. These methods encompass the inertial proximal method [2, 27], the
inertial forward-backward algorithm [21], the inertial proximal ADMM [5], the fast iteration shrinkage
thresholding algorithm (FISTA) [3] and inertial KM-type algorithm [23].

Consider the following coincidence point/value problem:

Find (x, p) ∈ X′ ×X such that T1x = T2x = p, (1)

in which X′ 󲧰 ∅ is an arbitrary set, X is a Banach space, and T1,T2 : X′ → X are two mappings. A point
x ∈ X′ is called (i) a fixed point (provided that X′ = X) of T1 (or T2) if T1x = x (or T2x = x); (ii) a common
fixed point (provided that X′ = X) of the pair (T1,T2) if T1x = T2x = x; (iii) a coincidence point of the pair
(T1,T2) if T1x = T2x. If T1x = T2x = p for some x in X′, then p is called a coincidence value of (T1,T2). It is
obvious that finding the solutions of problems that can be modelled with equations of type (1), also called
coincidence point equations, is equivalent to finding the coincidence points of the corresponding pair of
mappings (T1,T2).

The following result demonstrates an equivalent relationship between a coincidence point problem of
the form (1) and a fixed point problem of the form

Find r∗ ∈ X′ such that Tr∗ = r∗, (2)

in whichT : X′ → X′ is a mapping. The set of all solutions of problems (1) and (2) are denoted by C (T1,T2)
⊂ X′ ×X and F (T), respectively.

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 3

Lemma 1.1 (see [26]). Let (X′,ρX′) and
󰀃
X,ρX

󰀄
be two metric spaces and T1,T2 : X′ → X be two mappings such

that T2(X′) ⊂ T1(X′) and T1 is an injective mapping. Then, T1 has a left inverse T−1
1,l : T1(X′) → X′. Define a

function F : X′ × T1(X′)→ X′ × T1(X′) by F
󰀃
x, y
󰀄
= (T−1

1,l (y),T2(x)). Then, F (F) = C (T1,T2).

An illustrative example, found in [17], demonstrates how this lemma establishes a connection between
fixed point and coincide point problems.

It appears that the initial investigations concerning the existence and uniqueness of the solution to
the coincidence point/value problem (1), using a constructive method similar to the Banach Contraction
Principle, were conducted by Machuca [22] in 1967. In the subsequent year, Goebel [9] further devel-
oped Machuca’s findings and applied them to derive solutions of some differential equations. Jungck [15]
extended Machuca’s method by incorporating the concept of commuting mappings, thereby generaliz-
ing the Banach contraction principle. These studies, considered fundamental in coincidence point/value
theory, have sparked numerous significant contributions from various researchers working with diverse
mathematical structures in this field.

In 2008, Olatinwo [28] designed the following Classical Jungck-Ishikawa algorithm for a pair of map-
pings that satisfy a general contractive condition, and obtained some theoretical results concerning the
strong convergence and stability of this algorithm:

Classical Jungck-Ishikawa algorithm (CJI algorithm)
Input: Two non-self mappings T1 and T2, initial point s0,

󰀋
ϕn
󰀌∞
n=0 ,
󰀋
ψn
󰀌∞
n=0 ⊂ [0, 1] and budget N.

1: for n = 0, 1, 2, . . . ,N do
2: T1rn =

󰀃
1 − ϕn

󰀄
T1sn + ϕnT2sn

T1sn+1 =
󰀃
1 − ψn

󰀄
T1sn + ψnT2rn

3: end for
Output: Approximate solution T1sN

CJI algorithm encompasses several noteworthy special cases: the Classical Jungck-Picard algorithm
(CJP algorithm) [15] when ϕn = 0 and ψn = 1 for all n ∈ N0 (N ∪ {0} = {0, 1, 2, . . .}), and the Classical
Jungck-Mann algorithm (CJM algorithm) [34] when ϕn = 0 for all n ∈N0.

In 2013, Hussain et al. [14] defined various iteration algorithms to investigate the distinct properties of
the coincidence points/values of the pairs of mappings satisfying certain contractive conditions. Among
these, the following extension of the original normal-S algorithm, introduced by Sahu [32], which has gained
significant attention from numerous researchers owing to its exceptional ability to approximate solutions
effectively across a diverse set of problems, stands out:

Classical Jungck normal-S algorithm (CJNS algorithm)
Input: Two non-self mappings T1 and T2, initial point s0, {ϕn}∞n=0 ⊂ [0, 1] and budget N.
1: for n = 0, 1, 2, . . . ,N do
2: T1rn =

󰀃
1 − ϕn

󰀄
T1sn + ϕnT2sn

T1sn+1 = T2rn
3: end for
Output: Approximate solution T1sN

It is straightforward to notice that CJNS algorithm is a special case of CJI algorithm. It stands indepen-
dently from the CJM algorithm and reduces to the CJP algorithm when ϕn = 0 for all n ∈N0.

To the best of our knowledge, there is no study in the literature that uses an inertial algorithm designed
for a pair of mappings to approximate solutions to the coincidence point/value problems given in (1). The
main motivation for the work [17] was primarily to fill this gap in the literature. During the preparation
of [17], the authors designed the following algorithm by incorporating a momentum (inertial) term into
the Jungck normal-S algorithm with the aim of accelerating it (however, as explained below, this algorithm

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 4

could not be used in [17]):

Jungck normal-S inertial type algorithm (JNSI algorithm, version 1)
Input: Two non-self mappings T1 and T2, initial points x−1, x0, {αn}∞n=0 ⊂ [0, 1] and budget N.
1: for n = 0, 1, 2, . . . ,N do
2: T1zn = T1xn + θn (T1xn − T1xn−1)
T1yn = (1 − αn)T1zn + αnT2zn
T1xn+1 = T2yn

3: end for
Output: Approximate solution T1xN

Here, the sequence {θn}∞n=0 has been modified as follows, inspired by the choosing in [33, p. 881].

0 ≤ θn ≤ θn :=

󰀻󰁁󰁁󰁁󰁁󰁁󰀿󰁁󰁁󰁁󰁁󰁁󰀽

min
󰀫

n
n + η

,
󰂃n

󰀂T1xn − T1xn−1󰀂

󰀬
, if T1xn 󲧰 T1xn−1,

n
n + η

, if T1xn = T1xn−1,
(3)

for some η ≥ 2 and {󰂃n}∞n=0 ⊂ (0,∞). However, as could be seen from numerous numerical experiments
(see also Table 4 in this paper), contrary to the expectations that the momentum term θn (T1xn − T1xn−1)
incorporated into CJNS would effectively speed up the iteration, it had a negligible effect, so that an
acceleration of the JNSI algorithm (version 1) in the work [17] was presented as an open problem. In
particular, the question remained whether it is possible to design an inertial Jungck-type iteration algorithm
that is more efficient in terms of convergence rate than its classical counterpart? In addition, how does
this algorithm behave in terms of data dependence and stability properties? We are now able to provide a
positive answer to this problem and as a result propose the following algorithm:

Jungck normal-inertial type algorithm (JNSI algorithm, version 2)
Input: Two non-self mappings T1 and T2, initial points x−1, x0, {αn}∞n=0 ⊂ [0, 1] and budget N.
1: for n = 0, 1, 2, . . . ,N do
2: T1zn = T2xn + θn (T2xn − T2xn−1)
T1yn = (1 − αn)T1zn + αnT2zn
T1xn+1 = T2yn

3: end for
Output: Approximate solution T1xN

in which the sequence {θn}∞n=0 is defined the following (We note that this sequence has been modified,
inspired by the choosing in [33, p. 881]),

0 ≤ θn ≤ θn :=

󰀻󰁁󰁁󰁁󰁁󰁁󰀿󰁁󰁁󰁁󰁁󰁁󰀽

min
󰀫

n
n + η

,
󰂃n

󰀂T2xn − T2xn−1󰀂

󰀬
, if T2xn 󲧰 T2xn−1,

n
n + η

, if T2xn = T2xn−1,
(4)

for some η ≥ 2 and {󰂃n}∞n=0 ⊂ (0,∞). Similar to JNSI algorithm (version 2) with (4), Jungck-Ishikawa inertial
type algorithm (JII algorithm version 2) for the pairs of mappings can be defined as follows.

Jungck-Ishikawa inertial type algorithm (JII algorithm, version 2)
Input: Two non-self mappings T1 and T2, initial points x−1, x0, {αn}∞n=0 ,

󰀋
βn
󰀌∞
n=0 ⊂ [0, 1] and budget N.

1: for n = 0, 1, 2, . . . ,N do
2: T1zn = T2xn + θn (T2xn − T2xn−1)
T1yn = (1 − αn)T1zn + αnT2zn
T1xn+1 =

󰀃
1 − βn

󰀄
T1zn + βnT2yn

3: end for
Output: Approximate solution T1xN

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 5

in which the sequence {θn}∞n=0 as in (4).
In this article, we are employing three distinct types of algorithms. To prevent any potential confusion,

we are categorizing these algorithms in the following manner:
(i) Algorithms that lack an inertial term will be denoted as classical algorithms.
(ii) Algorithms that incorporate an inertial term θn (T1xn − T1xn−1) will be identified as version 1 algo-

rithms.
(iii) Algorithms that incorporate an inertial term θn (T2xn − T2xn−1) will be referred to as version 2

algorithms.

Remark 1.1. LetX′ 󲧰 ∅ be an arbitrary set andX be a Banach space andT1,T2 : X′ → X be two mappings. If
the following conditions are satisfied, then JNSI algorithm (ver. 2) and JII algorithm (ver. 2) are well-defined.

(i) (1 + λ)T2(X′) − λT2(X′) ⊂ T2(X′), for all λ ∈ [0, 1]. In particular, if T2(X′) is a vector subspace in X,
then the condition is satisfied.

(ii) T2(X′) ⊂ T1(X′).
(iii) T1 is injective and T1(X′) is a convex set.

Remark 1.2. If the conditions (i)–(iii) in Remark 1.1 are satisfied by replacing T2 with T1 in the condition
(i), then JNSI algorithm (version 1) is well-defined. If the conditions (ii)–(iii) in Remark 1.1 are satisfied,
then CJI and CJNS algorithms are well-defined.

Remark 1.3. The following special cases of JII algorithm (ver. 2) are worth mentioning.
(i) When αn = 0 and βn = 1 for all n ∈ N0, it gives rise to a Jungck-Picard inertial type algorithm (JPI

algorithm, ver. 2).
(ii) When αn = 0 for all n ∈N0, it yields a Jungck-Mann inertial type algorithm (JMI algorithm, ver. 2).
(iii) When βn = 1 for all n ∈N0, it reduced to JNSI algorithm, ver. 2.

In general, the pair of mappings (T1,T2) in (1) is expected to satisfy certain contractive conditions so
that the coincidence point technique can be applied in order find solutions of (1), that is, coincidence points
of (T1,T2), and hence, the classes of mappings that satisfies various contractive conditions are important in
the studies of coincidence points. We shall recall some of them in the following.

Definition 1.1. A pair of mappings (T1,T2) with T1,T2 : X′→ X and C (T1,T2) 󲧰 ∅ is said to be
(i) a quasi contractive if there is a number δ ∈ [0, 1) satisfying
󰀐󰀐󰀐T2r − p

󰀐󰀐󰀐 ≤ δ
󰀐󰀐󰀐T1r − p

󰀐󰀐󰀐 ,

for all
󰀃
r,
󰀃
x, p
󰀄󰀄 ∈ X′ × C (T1,T2);

(ii) a quasi (L, δ)-contractive if there are the numbers δ ∈ [0, 1) and L ≥ 0 satisfying
󰀐󰀐󰀐T2r − p

󰀐󰀐󰀐 ≤ δ
󰀐󰀐󰀐T1r − p

󰀐󰀐󰀐 + L 󰀂T1r − T2r󰀂 ,

for all
󰀃
r,
󰀃
x, p
󰀄󰀄 ∈ X′ × C (T1,T2).

Keten Çopur et al. [17] obtained an inclusion relation between the pair of mappings in (i) and (ii) of
Definition 1.1 (for detail, see [17]).

We proceed with the following organization for the rest of the paper. In Section 2, we demonstrate
that JNSI algorithm (versions 2 and 1) converges to the coincidence value of the pair (T1,T2) of mappings
satisfying the quasi (L, δ)-contractive condition. Furthermore, we show that JNSI algorithm (ver. 2) is weakly
(T1,T2)-stable, and we construct a data dependency result related to the coincidence value of the pair (T1,T2)
of mappings satisfying the quasi (L, δ)-contractive condition. In Section 3, in order to evaluate the reliability,
accuracy and effectiveness of the previous theoretical findings and to demonstrate the superior performance
of JNSI algorithm (ver. 2) in solving complex problems, particularly when compared to various algorithms,
including its classical counterpart, we present academic numerical examples in infinite dimensional spaces.
In Section 4, additionally to Section 3, we present various examples related to integral and differential

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 6

equations, each of which can be considered as an application. Moreover, we use a variety of algorithms,
including JNSI algorithm (version 2), to create polynomigraphs that hold educational and artistic value and
are visually appealing.

The definitions and lemma given below play an important role in obtaining our results.

Definition 1.2 ([4]). Let {xn}∞n=0 be a sequence in a metric space (X, d). If for any k ∈N, there exists a ζ = ζ(k)
satisfying

(∀m ≥ k) d(xm, ym) ≤ ζ,

then, the sequence {yn}∞n=0 in X is called an approximate sequence of {xn}∞n=0.

Definition 1.3 ([35]). Consider a metric space (X, d), a non-empty setX′ and two mappingsT1,T2 : X′ → X.
Let T2(X′) ⊂ T1(X′) and p be a coincidence value of (T1,T2). Additionally, consider an iteration sequence
{T1xn}∞n=0 which is obtained by an algorithm in the form given below

x0 ∈ X′,
(∀n ∈N0) T1xn+1 = f (T1,T2, xn) , (5)

where f is a function and x0 is the initial approximation. If {T1xn}∞n=0 converges to p, and for any approximate
sequence {T1yn}∞n=0 of {T1xn}∞n=0, the condition lim

n→∞
d
󰀃
T1yn+1, f

󰀃
T1,T2, yn

󰀄󰀄
= 0 implies lim

n→∞
T1yn = p, then

(5) is called weakly stable with respect to (T1,T2) or, briefly, weakly (T1,T2)-stable.

Lemma 1.2 (see [20]). Let
󰁱
Φi

n

󰁲∞
n=0

, i = 1, 2, be two real sequences satisfying Φ1
n ≥ 0, Φ2

n ≥ 0, lim
n→∞
Φ2

n = 0 and

(∀n ∈N0) Φ1
n+1 ≤ 󰂄Φ1

n +Φ
2
n,

in which 󰂄 ∈ [0, 1) is a constant. Then, lim
n→∞
Φ1

n = 0.

2. Main results

In this section, we assume that X′ 󲧰 ∅ is an arbitrary set, X is a Banach space, T1,T2 : X′→ X is a pair
of quasi (L, δ)-contractive mappings such that Θ := (δ + L)/(1 − L) < 1 and the pair satisfies the conditions
(i)–(iii) of Remark 1.1. Also, we assume that p ∈ X is a coincidence value of (T1,T2).

Theorem 2.1. Let {T1xn}∞n=1 be the sequence generated by JNSI algorithm (version 2). If
∞󰁓

n=0
󰂃n < ∞, then {T1xn}∞n=1

converges to p.

Proof. By JNSI algorithm (ver. 2) and Definition 1.1 (ii), we obtain

(∀n ∈N0)
󰀐󰀐󰀐T1xn+1 − p

󰀐󰀐󰀐 ≤ (δ + L)
󰀐󰀐󰀐T1yn − p

󰀐󰀐󰀐 + L
󰀐󰀐󰀐p − T2yn

󰀐󰀐󰀐

and, thus for all n ∈N0
󰀐󰀐󰀐T1xn+1 − p

󰀐󰀐󰀐 ≤ Θ
󰀐󰀐󰀐T1yn − p

󰀐󰀐󰀐 . (6)

Also, by JNSI algorithm (version 2), we obtain the below inequalities
󰀐󰀐󰀐T1yn − p

󰀐󰀐󰀐 ≤ (1 − αn)
󰀐󰀐󰀐T1zn − p

󰀐󰀐󰀐 + αn

󰀐󰀐󰀐T2zn − p
󰀐󰀐󰀐 ,

󰀐󰀐󰀐T1zn − p
󰀐󰀐󰀐 ≤

󰀐󰀐󰀐T2xn − p
󰀐󰀐󰀐 + θn 󰀂T2xn − T2xn−1󰀂 . (7)

On the other hand, by Definition 1.1 (ii), we get, for all n ∈N0

󰀐󰀐󰀐T2zn − p
󰀐󰀐󰀐 ≤ Θ

󰀐󰀐󰀐T1zn − p
󰀐󰀐󰀐 and

󰀐󰀐󰀐T2xn − p
󰀐󰀐󰀐 ≤ Θ

󰀐󰀐󰀐T1xn − p
󰀐󰀐󰀐 . (8)

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 7

Combining (6)–(8), we obtain, for all n ∈N
󰀐󰀐󰀐T1xn+1 − p

󰀐󰀐󰀐 ≤ Θ2
󰀓
1 − αn (1 −Θ)

󰀔 󰀐󰀐󰀐T1xn − p
󰀐󰀐󰀐 +Θ

󰀓
1 − αn (1 −Θ)

󰀔
θn 󰀂T2xn − T2xn−1󰀂 . (9)

Since Θ [1 − αn (1 −Θ)] < 1, the inequality in (9) implies that
󰀐󰀐󰀐T1xn+1 − p

󰀐󰀐󰀐 ≤ Θ
󰀐󰀐󰀐T1xn − p

󰀐󰀐󰀐 + θn 󰀂T2xn − T2xn−1󰀂 (10)

for all n ∈ N. By the definition of {θn}∞n=0 in (4), the condition
∞󰁓

n=0
󰂃n < ∞ and the squeeze principle, we get

lim
n→∞
θn 󰀂T2xn − T2xn−1󰀂 = 0. Now, an application of Lemma 1.2 to (10) yields that T1xn → p as n→∞.

Remark 2.1. From the proof of Theorem 2.1, we observe that if the condition
∞󰁓

n=0
󰂃n < ∞ is replaced by

lim
n→∞
󰂃n = 0, then Theorem 2.1 remains true.

Remark 2.2. We observed with Example 3.1 that when the condition δ+2L < 1 is removed, the convergence
result in Theorem 2.1 may not be guaranteed.

Theorem 2.2. Let {T1xn}∞n=1 be the sequence generated by JII algorithm (version 2) with {θn}∞n=0 in (4). If
∞󰁓

n=0
󰂃n < ∞,

then {T1xn}∞n=1 converges to p.

Proof. The proof of this theorem is omitted as similar to Theorem 2.1.

By considering Remark 1.3 and Theorem 2.2 simultaneously, one can easily reach the following conclu-
sion.

Corollary 2.1. Under the assumptions of Theorem 2.2, each of the sequences generated by algorithms JPI (version 2)
and JMI (version 2) converges to p.

Theorem 2.3. Let a ∈ (0, 1] and {βn}∞n=0 be a sequence such that a ≤ βn ≤ 1, for all n ∈N and
∞󰁓

n=0
󰂃n < ∞. Then, the

sequence {T1xn}∞n=1 generated by JII algorithm (version 1) converges to p.

Proof. Using the definition of JII algorithm (version 1), by similar operations in Theorem 2.1, we obtain the
following inequality for all n ∈N

󰀐󰀐󰀐T1xn+1 − p
󰀐󰀐󰀐 ≤ 󰀅

1 − βn + βnΘ {1 − αn(1 −Θ)}󰀆
󰀐󰀐󰀐T1xn − p

󰀐󰀐󰀐
+
󰀅
1 − βn + βnΘ {1 − αn(1 −Θ)}󰀆θn 󰀂T1xn − T1xn−1󰀂

≤ 󰀅
1 − βn(1 −Θ) −Θαnβn(1 −Θ)

󰀆 󰀐󰀐󰀐T1xn − p
󰀐󰀐󰀐 +
󰀅
1 − βn(1 −Θ) −Θαnβn(1 −Θ)

󰀆
󰂃n

=
󰀅
1 − βn(1 −Θ)(1 +Θαn)

󰀆 󰀐󰀐󰀐T1xn − p
󰀐󰀐󰀐 +
󰀅
1 − βn(1 −Θ)(1 +Θαn)

󰀆
󰂃n. (11)

Since 1 − βn(1 −Θ2) ≤ 1 − βn(1 −Θ)(1 +Θαn) ≤ 1 − βn(1 −Θ) ≤ 1 − a(1 −Θ), for all n ∈ N, the inequality in
(11) implies that, for all n ∈N,

󰀐󰀐󰀐T1xn+1 − p
󰀐󰀐󰀐 ≤
󰀓
1 − a(1 −Θ)

󰀔 󰀐󰀐󰀐T1xn − p
󰀐󰀐󰀐 +
󰀓
1 − a(1 −Θ)

󰀔
󰂃n. (12)

Since 1 − a(1 − Θ) < 1 and
∞󰁓

n=0
󰂃n < ∞, an application of Lemma 1.2 to (12) yields that T1xn → p as

n→∞.

Considering Theorem 2.3 and the version 1 of Remark 1.3 simultaneously, one can easily reach the
following conclusion.

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 8

Corollary 2.2. Under the assumptions of Theorem 2.3, each of the sequences generated by algorithms JPI (version 1)
and JMI (version 1) and JNSI (version 1) converges to p.

Theorem 2.4. Let {T1xn}∞n=0 be the sequence generated by JNSI algorithm (version 2) under the conditions in Theorem
2.1 and {T1un}∞n=0 be an approximate sequence of {T1xn}∞n=0. We define a sequence {εn}∞n=1 ⊂ R+ as follows

εn = 󰀂T1un+1 − T2vn󰀂 ,
T1vn = (1 − αn)T1wn + αnT2wn, (13)

T1wn = T2un + 󰁨θn (T2un − T2un−1) ,

in which {αn}∞n=1 is as in Theorem 2.1 and

0 ≤ 󰁨θn ≤ 󰁨θn :=

󰀻󰁁󰁁󰁁󰁁󰁁󰀿󰁁󰁁󰁁󰁁󰁁󰀽

min
󰀫

n
n + η

,
󰁨󰂃n

󰀂T2un − T2un−1󰀂

󰀬
, if T2un 󲧰 T2un−1,

n
n + η

, if T2un = T2un−1,
(14)

for some η ≥ 2 and {󰁨󰂃n}∞n=1 ⊂ (0,∞). If
∞󰁓

n=1
󰁨󰂃n < ∞, then lim

n→∞
εn = 0 if and only if that lim

n→∞
T1un = p. In particular,

JNSI algorithm (version 2) is weakly (T1,T2)-stable.

Proof. Assume that lim
n→∞
εn = 0. We shall show that lim

n→∞
T1un = p. It follows from Definition 1.1 (ii), JNSI

algorithn (version 2) and (13), for all n ∈N,
󰀐󰀐󰀐T1un+1 − p

󰀐󰀐󰀐 ≤ εn +
󰀐󰀐󰀐T2vn − p

󰀐󰀐󰀐 +
󰀐󰀐󰀐p − T2yn

󰀐󰀐󰀐 +
󰀐󰀐󰀐T1xn+1 − p

󰀐󰀐󰀐

≤ εn + δ
󰀐󰀐󰀐T1vn − p

󰀐󰀐󰀐 + L
󰀐󰀐󰀐T2vn − T1vn

󰀐󰀐󰀐

+δ
󰀐󰀐󰀐T1yn − p

󰀐󰀐󰀐 + L
󰀐󰀐󰀐T2yn − T1yn

󰀐󰀐󰀐 +
󰀐󰀐󰀐T1xn+1 − p

󰀐󰀐󰀐 . (15)

On the other hand, by Definition 1.1 (ii), we have, for all n ∈N0,

󰀂T2vn − T1vn󰀂 ≤ κ
󰀐󰀐󰀐T1vn − p

󰀐󰀐󰀐 and
󰀐󰀐󰀐T2yn − T1yn

󰀐󰀐󰀐 ≤ κ
󰀐󰀐󰀐T1yn − p

󰀐󰀐󰀐 . (16)

in which κ = (δ + 1)/(1 − L). Inserting (16) into (15), we get, for all n ∈N,
󰀐󰀐󰀐T1un+1 − p

󰀐󰀐󰀐 ≤ εn +Θ
󰀓󰀐󰀐󰀐T1vn − p

󰀐󰀐󰀐 +
󰀐󰀐󰀐T1yn − p

󰀐󰀐󰀐
󰀔
+
󰀐󰀐󰀐T1xn+1 − p

󰀐󰀐󰀐 . (17)

Following the same lines as in the proof of Theorem 2.1, we obtain
󰀐󰀐󰀐T1yn − p

󰀐󰀐󰀐 ≤
󰀓
1 − αn (1 −Θ)

󰀔󰀓
Θ
󰀐󰀐󰀐T1xn − p

󰀐󰀐󰀐 + θn

󰀐󰀐󰀐T2xn − T2xn−1

󰀐󰀐󰀐
󰀔
,

󰀐󰀐󰀐T1vn − p
󰀐󰀐󰀐 ≤
󰀓
1 − αn (1 −Θ)

󰀔󰀓
Θ
󰀐󰀐󰀐T1un − p

󰀐󰀐󰀐 + 󰁨θn

󰀐󰀐󰀐T2un − T2un−1

󰀐󰀐󰀐
󰀔
. (18)

Substituting the inequalities in (18) into (17), we get, for all n ∈N,
󰀐󰀐󰀐T1un+1 − p

󰀐󰀐󰀐 ≤ εn +Θ
2
󰀓
1 − αn (1 −Θ)

󰀔󰀓󰀐󰀐󰀐T1un − p
󰀐󰀐󰀐 +
󰀐󰀐󰀐T1xn − p

󰀐󰀐󰀐
󰀔

+ Θ
󰀓
1 − αn (1 −Θ)

󰀔
󰁨θn 󰀂T2un − T2un−1󰀂

+ Θ
󰀓
1 − αn (1 −Θ)

󰀔
θn 󰀂T2xn − T2xn−1󰀂 +

󰀐󰀐󰀐T1xn+1 − p
󰀐󰀐󰀐 .

Then, using Θ < 1, [1 − αn (1 −Θ)] < 1, (4) and (14), we get
󰀐󰀐󰀐T1un+1 − p

󰀐󰀐󰀐 ≤ Θ
󰀐󰀐󰀐T1un − p

󰀐󰀐󰀐 +
󰀐󰀐󰀐T1xn − p

󰀐󰀐󰀐 +
󰀐󰀐󰀐T1xn+1 − p

󰀐󰀐󰀐 + εn + 󰂃n +󰁨󰂃n. (19)

By the hypotheses, since

lim
n→∞

󰀐󰀐󰀐T1xn − p
󰀐󰀐󰀐 = lim

n→∞
εn = lim

n→∞
󰂃n = lim

n→∞
󰁨󰂃n = 0,

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 9

by Lemma 1.2, we get lim
n→∞

󰀐󰀐󰀐T1un − p
󰀐󰀐󰀐 = 0, that is, {T1xn}∞n=1 is weakly (T1,T2)-stable.

Suppose on the contrary that lim
n→∞
T1un = p. We shall show that lim

n→∞
εn = 0. By (13), we get

εn ≤ 󰀂T1un+1 − T1xn+1󰀂 +
󰀐󰀐󰀐T2yn − p

󰀐󰀐󰀐 +
󰀐󰀐󰀐p − T2vn

󰀐󰀐󰀐 , for all n ∈N.
Following the same lines as in first part of the proof, we get for all n ∈N

εn ≤ 󰀂T1un+1 − T1xn+1󰀂 +Θ
󰀓󰀐󰀐󰀐T1yn − p

󰀐󰀐󰀐 +
󰀐󰀐󰀐T1vn − p

󰀐󰀐󰀐
󰀔

≤ 󰀂T1un+1 − T1xn+1󰀂 +Θ2
󰀓
1 − αn (1 −Θ)

󰀔 󰁱󰀐󰀐󰀐T1xn − p
󰀐󰀐󰀐 +
󰀐󰀐󰀐T1un − p

󰀐󰀐󰀐
󰁲

+Θ
󰀓
1 − αn (1 −Θ)

󰀔 󰀓
θn 󰀂T2xn − T2xn−1󰀂 + 󰁨θn 󰀂T2un − T2un−1󰀂

󰀔
.

Using (4), (14), Θ < 1, [1 − αn (1 −Θ)] < 1, we get, for all n ∈N

εn ≤ 󰀂T1un+1 − T1xn+1󰀂 +Θ2
󰁱󰀐󰀐󰀐T1xn − p

󰀐󰀐󰀐 +
󰀐󰀐󰀐T1un − p

󰀐󰀐󰀐
󰁲
+Θ
󰀓
󰂃n +󰁨󰂃n

󰀔
. (20)

By the hypotheses, since

lim
n→∞

󰀐󰀐󰀐T1xn − p
󰀐󰀐󰀐 = lim

n→∞

󰀐󰀐󰀐T1un − p
󰀐󰀐󰀐 = lim

n→∞
󰂃n = lim

n→∞
󰁨󰂃n = 0,

passing to the limit in (20), we get lim
n→∞
εn = 0.

Theorem 2.5. Let {T1xn}∞n=1 be the sequence generated by JNSI algorithm (version 2). Let 󰁨T1,󰁨T2 : X′→ X be two
mappings satisfying the conditions of (i)–(iii) of Remark 1.1, 󰁨p be a coincidence value of (󰁨T1,󰁨T2) and initial points
󰁨x−1,󰁨x0 ∈ X′ be given. We consider the sequence {󰁨T1󰁨xn}∞n=1 generated by

󰁨T1󰁨zn = 󰁨T2󰁨xn + 󰁨θn(󰁨T2󰁨xn − 󰁨T2󰁨xn−1),
󰁨T1󰁨yn = (1 − αn)󰁨T1󰁨zn + αn󰁨T2󰁨zn, (21)
󰁨T1󰁨xn+1 = 󰁨T2󰁨yn,

in which

0 ≤ 󰁨θn ≤ 󰁨θn :=

󰀻󰁁󰁁󰁁󰁁󰁁󰁁󰀿󰁁󰁁󰁁󰁁󰁁󰁁󰀽

min

󰀻󰁁󰁁󰀿󰁁󰁁󰀽
n

n + η
,

󰁨󰂃n󰀐󰀐󰀐󰁨T2󰁨xn − 󰁨T2󰁨xn−1

󰀐󰀐󰀐

󰀼󰁁󰁁󰁀󰁁󰁁󰀾 , if 󰁨T2󰁨xn 󲧰 󰁨T2󰁨xn−1,

n
n + η

, if 󰁨T2󰁨xn = 󰁨T2󰁨xn−1,

(22)

for some η ≥ 2 and {󰁨󰂃n}∞n=0 ⊂ (0,∞).
Suppose that all the hypotheses of Theorem 2.1 hold. In addition, if

(C1) there exist maximum admissible errors µ1, µ2 > 0 such that 󰀂T1r−󰁨T1r󰀂 ≤ µ1 and 󰀂T2r−󰁨T2r󰀂 ≤ µ2, for
all r ∈ X′,

(C2)
∞󰁓

n=0
󰁨󰂃n < ∞,

(C3) lim
n→∞
󰁨T1󰁨xn = 󰁨p,

then it holds that

󰀐󰀐󰀐󰁨p − p
󰀐󰀐󰀐 ≤

󰀓
µ2 +Θµ1

󰀔󰀓
Θ2 +Θ + 1

󰀔

1 −Θ2 . (23)

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 10

Proof. It follows from JNSI algorithm (version 2), (21) and (C1) that for all n ∈N0
󰀐󰀐󰀐󰁨T1󰁨xn+1 − T1xn+1

󰀐󰀐󰀐 ≤
󰀐󰀐󰀐󰁨T2󰁨yn − T2󰁨yn

󰀐󰀐󰀐 +
󰀐󰀐󰀐T2󰁨yn − T2yn

󰀐󰀐󰀐

≤ µ2 +
󰀐󰀐󰀐T2󰁨yn − p

󰀐󰀐󰀐 +
󰀐󰀐󰀐p − T2yn

󰀐󰀐󰀐 . (24)

Using Definition 1.1 (ii) and (C1) in (24), we get, for all n ∈N0,
󰀐󰀐󰀐󰁨T1󰁨xn+1 − T1xn+1

󰀐󰀐󰀐 ≤ µ2 +Θ
󰀓
󰀂T1󰁨yn − 󰁨T1󰁨yn󰀂 + 󰀂󰁨T1󰁨yn − p󰀂 + 󰀂T1yn − p󰀂

󰀔

≤ µ2 +Θµ1 +Θ
󰀓
󰀂󰁨T1󰁨yn − p󰀂 + 󰀂T1yn − p󰀂

󰀔
. (25)

On the other hand, by (21), (C1) and Definition 1.1 (ii), we have
󰀐󰀐󰀐󰁨T1󰁨yn − p

󰀐󰀐󰀐 ≤ (1 − αn) 󰀂󰁨T1󰁨zn − p󰀂 + αn󰀂󰁨T2󰁨zn − T2󰁨zn󰀂 + αn󰀂T2󰁨zn − p󰀂
≤ [1 − αn (1 −Θ)] 󰀂󰁨T1󰁨zn − p󰀂 + αnµ2 + αnΘµ1

≤ [1 − αn (1 −Θ)]
󰀓
µ2 + 󰀂T2󰁨xn − p󰀂 + 󰁨θn

󰀐󰀐󰀐󰁨T2󰁨xn − 󰁨T2󰁨xn−1

󰀐󰀐󰀐
󰀔
+ αn

󰀃
µ2 +Θµ1

󰀄

≤ [1 − αn (1 −Θ)]
󰀓
µ2 +Θ󰀂T1󰁨xn − p󰀂 + 󰁨θn󰀂󰁨T2󰁨xn − 󰁨T2󰁨xn−1󰀂

󰀔
+ αn

󰀃
µ2 +Θµ1

󰀄

≤ [1 − αn (1 −Θ)]Θ󰀂󰁨T1󰁨xn − p󰀂 + [1 − αn (1 −Θ)]
󰀅
µ2 +Θµ1

󰀆

+ [1 − αn (1 −Θ)]󰁨θn󰀂󰁨T2󰁨xn − 󰁨T2󰁨xn−1󰀂 + αn
󰀅
µ2 +Θµ1

󰀆
. (26)

Inserting (18) and (26) into (25) and using Θ < 1, αn < 1, [1 − αn (1 −Θ)] < 1, we get for all n ∈N0

󰀂󰁨T1󰁨xn+1 − T1xn+1󰀂 ≤ µ2 +Θµ1 +Θ
2 [1 − αn (1 −Θ)] 󰀂󰁨T1󰁨xn − p󰀂 +Θ [1 − αn (1 −Θ)]

󰀅
µ2 +Θµ1

󰀆

+ Θ [1 − αn (1 −Θ)]󰁨θn󰀂󰁨T2󰁨xn − 󰁨T2󰁨xn−1󰀂 +Θαn
󰀅
µ2 +Θµ1

󰀆

+ Θ2 [1 − αn (1 −Θ)] 󰀂T1xn − p󰀂 +Θ [1 − αn (1 −Θ)]θn 󰀂T2xn − T2xn−1󰀂

≤ µ2 +Θµ1 +Θ
2
󰀐󰀐󰀐󰁨T1󰁨xn − p

󰀐󰀐󰀐 + (Θ +Θ2)
󰀃
µ2 +Θµ1

󰀄

+ Θ󰁨󰂃n +Θ2
󰀐󰀐󰀐T1xn − p

󰀐󰀐󰀐 +Θ 󰂃n. (27)

Passing to the limit in (27) and utilizing conditions (C2) and (C3), we get

󰀐󰀐󰀐󰁨p − p
󰀐󰀐󰀐 ≤

󰀓
µ2 +Θµ1

󰀔󰀓
Θ2 +Θ + 1

󰀔

1 −Θ2 .

This completes the proof.

3. Numerical examples

In this section, we provide a range of intricate numerical examples that serve a dual purpose: reinforcing
the theoretical conclusions drawn in the preceding section and highlighting the performance superiority
of JNSI algorithm (version 2) in computational tasks compared to various algorithms, including its own
classical counterpart.

Unless otherwise stated throughout this section and Section 4.1, we take

(∀n ∈N0) αn = ϕn = ψn = βn =
n + 1
n + 2

, 󰂃n =
1

(n + 1)2 , θn =
1

(n + 1)10 + 1
θn,

and η = 2.
The following example demonstrates that the result in Theorem 2.1 might not hold true if the condition

Θ := (δ + L)/(1 − L) < 1 is omitted from the main assumptions.

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 11

Example 3.1. Let ℓ1 =
󰁱
{ξn}∞n=0 :

∞󰁓
n=0
|ξn| < ∞

󰁲
, with the norm 󰀂{ξn}n󰀂 =

∞󰁓
n=0
|ξn| and X′ = X = ℓ1. Define two

mappings T1, T2 : X′ → X by

T1

󰀓
{ξi}∞i=0

󰀔
= {ψi}∞i=0, ψi =

󰀻󰁁󰁁󰁁󰁁󰁁󰀿󰁁󰁁󰁁󰁁󰁁󰀽

ξi

2
, i = 0,

ξi

3
, i ≥ 1,

and

T2

󰀓
{ξi}∞i=0

󰀔
= {ρi}∞i=0, ρi =

󰀻󰁁󰁁󰁁󰁁󰁁󰀿󰁁󰁁󰁁󰁁󰁁󰀽

ξi

3
, i = 0,

ξi−1 + 2ξi

6
, i ≥ 1.

It can be easily seen that T1 and T2 are well-defined and T2 is linear. Thus, T2(X′) ⊂ X is a vector
subspace. It is clear that T1 is linear and injective. Hence, T1(X′) ⊂ X is a convex subspace.

Now, we show that T2(X′) ⊂ T1(X′), and therefore we take ξ ∈ T2(X′). Then, there exists a {ξ1
n}∞n=0 ∈ X′

such that ξ = T2

󰀓
{ξ1

n}∞n=0

󰀔
. If we choose the sequence {ξ2

n}∞n=0 as follows

ξ2
0 :=

2ξ1
0

3
and ξ2

n :=
ξ1

n−1 + 2ξ1
n

2
, for all n ≥ 1,

then,
󰁱
ξ2

n

󰁲∞
n=0
∈ X′ and ξ = T1

󰀓󰁱
ξ2

n

󰁲∞
n=0

󰀔
. Thus, T2(X′) ⊂ T1(X′). For x = {0, 0, . . .} ∈ X′, we have T1x = T2x.

Thus, p = {0, 0, . . .} ∈ X is the coincidence value of the pair (T1,T2). On the other hand, any x = {ξn}∞n=0 ∈ X′,
so we have

󰀐󰀐󰀐T2x − p
󰀐󰀐󰀐 = |ξ0|

3
+

∞󰁛

i=1

󰀏󰀏󰀏󰀏󰀏
ξi−1 + 2ξi

6

󰀏󰀏󰀏󰀏󰀏 , (28)

󰀐󰀐󰀐T1x − p
󰀐󰀐󰀐 = |ξ0|

2
+

∞󰁛

i=1

|ξi|
3

and 󰀂T2x − T1x󰀂 = 1
3
|ξ0| +

∞󰁛

i=1

|ξi|
6
. (29)

Utilizing (28) and (29), we get, for all x = {ξn}∞n=0 ∈ X′,
󰀐󰀐󰀐T2x − p

󰀐󰀐󰀐 ≤ |ξ0|
3
+

∞󰁛

i=0

|ξi|
6
+

∞󰁛

i=0

|2ξi+1|
6

=
1
2

󰀕 |ξ0|
3
+
|ξ1|
3
+
|ξ2|
3
+ · · ·

󰀖
+ 2
󰀕 |ξ0|

6
+
|ξ1|
6
+
|ξ2|
6
+ · · ·

󰀖

≤ 1
2

󰀳
󰁅󰁅󰁅󰁅󰁅󰁃
|ξ0|
2
+

∞󰁛

i=1

|ξi|
3

󰀴
󰁆󰁆󰁆󰁆󰁆󰁄 + 2

󰀳
󰁅󰁅󰁅󰁅󰁅󰁃
|ξ0|
3
+

∞󰁛

i=1

|ξi|
6

󰀴
󰁆󰁆󰁆󰁆󰁆󰁄 .

Thus, for all x ∈ X′,
󰀐󰀐󰀐T2x − p

󰀐󰀐󰀐 ≤ δ
󰀐󰀐󰀐T1x − p

󰀐󰀐󰀐 + L
󰀐󰀐󰀐T2x − T1x

󰀐󰀐󰀐, (30)

in which δ = 1/2 and L = 2. So, the (T1,T2) is a pair of quasi (L, δ)-contractive mappings. On the other
hand, inequality (30) is not satisfied for any numbers δ ≥ 0 and L ≥ 0 satisfying the condition δ + 2L < 1.
Indeed, let x =

󰁱
1/2i+1

󰁲∞
i=0

. In this case, x ∈ ℓ1 and

󰀐󰀐󰀐T2x − p
󰀐󰀐󰀐 = 1

2
,
󰀐󰀐󰀐T1x − p

󰀐󰀐󰀐 = 5
12

and
󰀐󰀐󰀐T2x − T1x

󰀐󰀐󰀐 = 1
4
.

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 12

Assume that inequality (30) is satisfied for any numbers δ ≥ 0 and L ≥ 0 satisfying the condition δ+ 2L < 1.
In this case, by (30), we have

1
2
≤ δ 5

12
+ L

1
4
.

That is, 6 ≤ 5δ + 3L. However, it cannot be 6 ≤ 5δ + 3L as δ + 2L < 1. Thus, inequality (30) is not satisfied
for δ + 2L < 1.

Now, we take x−1 = x0 = 1/3n+1, for all n ∈ N0. Hence, all conditions except the condition δ + 2L < 1
in Theorem 2.1 are satisfied. We see in Figure 1 that the sequence {T1xn}∞n=1 generated by JNSI algorithm
(version 2) does not converge to p. That is, if the condition δ+2L < 1 is removed from the main assumptions,
then convergence of {T1xn}∞n=1 to point p may not be guaranteed.

0 10 20 30 40 50 60 70 80 90 100

Number of iterations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
1051

JNSI Algor. (Ver. 2)

4 6 8 10
0

2000

4000

6000

8000

10000

Figure 1: Graph denotes the convergence state of JNSI algorithm (version 2) for n = 1, 2, . . . , 100

Now, we present an illustrative example that meets all the criteria outlined in Theorem 2.1, thereby
corroborating the theorem’s outcome.

Example 3.2. Let X′ = X = ℓ1. Define two mappings by

T1 : X′ −→ X

{ξn}∞n=0 −→
󰀝
ξ0

2
,
ξ1

2
,
ξ2

2
, . . .
󰀞

and

T2 : X′ −→ X

{ξn}∞n=0 −→
󰀝
ξ0

8
,
ξ1

8
,
ξ2

8
, . . .
󰀞
.

Following similar arguments as in Example 3.1, it can be easily shown that T1 and T2 are well-defined
and the conditions (i)–(iii) of Remark 1.1 are satisfied. For x = {0, 0, . . .} ∈ X′, p = {0, 0, . . .} ∈ X is the
coincidence value of the pair (T1,T2). On the other hand, for any x = {ξn}∞n=0 ∈ X′, we have

󰀐󰀐󰀐T2x − p
󰀐󰀐󰀐 = 1

8

󰀐󰀐󰀐{ξn}∞n=0

󰀐󰀐󰀐 ,
󰀐󰀐󰀐T1x − p

󰀐󰀐󰀐 = 1
2

󰀐󰀐󰀐{ξn}∞n=0

󰀐󰀐󰀐 (31)

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 13

and

󰀂T2x − T1x󰀂 = 3
8

󰀐󰀐󰀐{ξn}∞n=0

󰀐󰀐󰀐 . (32)

Utilizing (31) and (32), we get, for all x = {ξn}∞n=0 ∈ X′

󰀐󰀐󰀐T2x − p
󰀐󰀐󰀐 ≤ 9

40

󰀐󰀐󰀐{ξn}∞n=0

󰀐󰀐󰀐

=
1
5

󰀕1
2

󰀐󰀐󰀐{ξn}∞n=0

󰀐󰀐󰀐
󰀖
+

1
3

󰀕3
8
󰀂{ξn}∞n=0󰀂

󰀖

that is, for all x ∈ X′,
󰀐󰀐󰀐T2x − p

󰀐󰀐󰀐 ≤ δ
󰀐󰀐󰀐T1x − p

󰀐󰀐󰀐 + L 󰀂T2x − T1x󰀂 ,

in which δ = 1/5 and L = 1/3. So, the (T1,T2) is a pair of quasi (L, δ)-contractive mappings with δ + 2L =
13/15 < 1. We take x−1 = x0 = s0 = 1/3n+1, for all n ∈ N. Thus, all hypotheses in Theorem 2.1 are satisfied,
and the sequence {T1xn}∞n=1 generated by JNSI algorithm (ver. 2) converges to p. We see this case and
convergence state of some other algorithms in Figure 2.

0 2 4 6 8 10 12 14 16 18 20

Numbers of iteration

0

0.05

0.1

0.15
CJP Algor.

JPI Algor. (Ver. 2)

CJM Algor.

JMI Algor. (Ver. 2)

CJI Algor.

JII Algor. (Ver. 2)

CJNS Algor.

JNSI Algor. (Ver. 2)

2 3 4 5
0

0.02

0.04

0.06

Figure 2: Graphs show the convergence states of algorithms for n = 1, 2, . . . , 20

The subsequent example demonstrates that JNSI algorithm (version 2) is weakly (T1,T2)-stable.

Example 3.3. Let X′, X, T1, T2, x−1 and x0 be as in Example 3.2, and the sequence {T1xn}∞n=0 be generated
by JNSI algorithm (ver. 2). We take the sequence {T1un}∞n=0 in X as follows

(∀n ∈N) T1un =
󰁱
T1un

k

󰁲∞
k=0
, T1un

k =

󰀻󰁁󰁁󰁁󰁁󰀿󰁁󰁁󰁁󰁁󰀽

0, if k < n,

1
(k + 1)4 + log(k + 1)

, if k ≥ n.

The sequence {T1un}∞n=0 is an approximate sequence of {T1xn}∞n=0 as can be seen in Figure 3 (a). We also see
in Figure 3 (b) that limn→∞T1un = p if and only if limn→∞ εn = 0. In particularly, JNSI algorithm (ver. 2) is
weakly (T1,T2)-stable.

In the following example, we illustrate the data dependency between the values p and󰁨p in Theorem 2.5.
The example shows the practical application of the estimate mentioned in (23).

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 14

0 100 200 300 400 500 600 700 800 900 1000

Numbers of iteration (for n = 0,1,2,...,1000).

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4
0

0.05

0.1

990 995 1000
0

0.5

1

1.5
10-12

0 100 200 300 400 500 600 700 800 900 1000

Numbers of iteration (for n = 0,1,2,...,1000).

0

0.002

0.004

0.006

0.008

0.01

0.012

V
a
lu

e
s

o
f
(a

)
a
n
d
 (

b
)

0 20 40
0

0.005

0.01

960 980 1000
0

1

2

10-11

Figure 3: Graphs show that values of 󰀂T1xn − T1un󰀂, εn generated by (13) and 󰀂T1un − p󰀂

Example 3.4. Let X′, X, T1, T2, x−1 and x0 be as in Example 3.2. Define the following mappings

󰁨T1 : X′ → X

{ξn}∞n=0 → 󰁨T1

󰀓
{ξn}∞n=0

󰀔
=
󰀝
ξn

2
+

1
10n+1

󰀞∞

n=0

and

󰁨T2 : X′ → X

{ξn}∞n=0 → 󰁨T2

󰀓
{ξn}∞n=0

󰀔
=
󰀝
ξn

8
+

1
10n+1

󰀞∞

n=0
.

It can be easily seen as in Example 3.2 that 󰁨T1 is injective, 󰁨T1(X′) is a convex set and 󰁨T2(X′) ⊂ 󰁨T1(X′)
and (1 + λ)󰁨T2(X′) − λ󰁨T2(X′) ⊂ 󰁨T2(X′).

For x = {0, 0, . . .}, 󰁨T1x = 󰁨T2x =
󰁱
1/10n+1

󰁲∞
n=0
= 󰁨p. Thus, 󰁨p is the unique coincidence value of (T1,T2). An

easy computation yields that

󰀂T1x − 󰁨T1x󰀂 = 󰀂T2x − 󰁨T2x󰀂 =
∞󰁛

i=0

1
10i+1

=
1
9
= µ1 = µ2,

for all x = {ξn}∞n=0 ∈ X′.
The sequence {󰁨T1󰁨xn}∞n=1 generated by (21) with x̃−1 = x̃0 = 1/3n+1, 󰂃̃n = 1/(n + 1)2, for all n ∈N, converges

to󰁨p as we can see in Figure 4. Now, by (23), we have

󰀐󰀐󰀐p −󰁨p
󰀐󰀐󰀐 = 1

9
≤

󰀓
1
9 +

4
5 .

1
9

󰀔 󰀓
16
25 +

4
5 + 1

󰀔

1 − 16
25

=
61
45

.

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 15

0 10 20 30 40 50 60 70 80 90 100

Numbers of iterations (for n = 1,2,...,100).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

V
a
lu

e
s

o
f
(a

),
 (

b
)

a
n
d
 (

c)

80 85 90 95 100
0

0.05

0.1

Figure 4: Graphs denote that values of the 󰀂󰁨T1󰁨xn󰀂, 󰀂󰁨T1󰁨xn − p̃󰀂 and 󰀂p̃󰀂

4. Applications

In this section, practical applications of the results obtained in this study are provided as examples, not
only by testing the hypotheses but also by providing examples of how the iteration algorithms defined in
this study can be useful in solving problems directly without testing the hypotheses.

4.1. Applications to integral and differential equations
Example 4.1. Let us contemplate the integral equation provided as

2(t + 1)x (t) + t2 =

t󰁝

0

(1 − s2)x(s) ds, (33)

which has a solution

z(t) = −e−(t−1)2/4

t + 1

󰀝√
π
󰀗
erfi
󰀕1

2

󰀖
+ erfi

󰀕 t − 1
2

󰀖󰀘
+ 2e(t−1)2/4 − 2 4√e

󰀞
,

where

erfi(z) = −i erf(iz) and erf(z) =
2√
π

z󰁝

0

e−t2
dt.

It is a well-known fact that the set of real-valued continuous functions on the closed interval [0, 1], denoted
as C[0, 1], is a Banach space with the norm 󰀂x󰀂 = max

t∈[0,1]
|x (t)|. Let X = X′ = (C[0, 1], 󰀂 · 󰀂). If we define the

operators T1,T2 : X′ → X as

T1(x) = (t + 1) x (t) +
t2

2
, T2(x) =

1
2

t󰁝

0

(1 − s2)x(s) ds

subsequently, we can satisfy all the conditions stated in Theorem 2.1. In fact,

i) Since T1 is bijective on X′, we have T2(X′) ⊂ T1(X′).

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 16

ii) Since T2 is linear, T2(X′) is a subspace in X.

iii) It is readily apparent that T1(X′) forms a closed and convex subset of X.

iv) Let T2 (z (t)) = T1 (z (t)) = p (t). Since 1 − s2 ≤ 1 + s for s ≥ 0 then, for any L > 0 and δ = 1/2, we have

󰀐󰀐󰀐T2x − p
󰀐󰀐󰀐 ≤ 1

2

󰀐󰀐󰀐T1x − p
󰀐󰀐󰀐 + L

󰀐󰀐󰀐T1x − T2x
󰀐󰀐󰀐.

Let choose T2(x−1(t)) = T2(1) and T2(x0(t)) = T2(1.001). Then, by Theorem 2.1, the sequence {T1xn}∞n=1
generated by JNSI algorithm (version 2) converges to p (t) = T2 (z (t)) = T1 (z (t)). Moreover, the sequence
{T1xn}∞n=1 generated by JNSI algorithm (ver. 2) converges faster than algorithms CJP, JPI (ver. 2), CJM, JMI
(ver. 2), CJI, JII (ver. 2), and CJNS. This can be easily verified in Tables 1, 2, 3 and Figure 5.

Table 1: The errors
󰀏󰀏󰀏T1(x1) − p(t)

󰀏󰀏󰀏

t CJP JPI (Ver.2) CJM JMI (Ver.2) CJI JII (Ver.2) CJNS JNSI (Ver.2)0.0 0. 0. 5.01×10-1 0. 5.01 ×10-1 0. 0. 0.0.1 5.00×10-2 1.17×10-3 5.78×10-1 2.56×10-2 5.66 ×10-1 2.53 ×10-2 2.56 ×10-2 5.93 ×10-4
0.2 9.93×10-2 4.32×10-3 6.61×10-1 5.18×10-2 6.37 ×10-1 5.08 ×10-2 5.18 ×10-2 2.22 ×10-3
0.3 1.47×10-1 8.93×10-3 7.48×10-1 7.82×10-2 7.13 ×10-1 7.60 ×10-2 7.82 ×10-2 4.65 ×10-3
0.4 1.93×10-1 1.45×10-2 8.39×10-1 1.04×10-1 7.95 ×10-1 1.01 ×10-1 1.04 ×10-1 7.60 ×10-3
0.5 2.36×10-1 2.04×10-2 9.35×10-1 1.28×10-1 8.81 ×10-1 1.23 ×10-1 1.28 ×10-1 1.08 ×10-2
0.6 2.75×10-1 2.61×10-2 1.03 1.50×10-1 9.71 ×10-1 1.44 ×10-1 1.50 ×10-1 1.39 ×10-2
0.7 3.07×10-1 3.12×10-2 1.13 1.69×10-1 1.07 1.62 ×10-1 1.69 ×10-1 1.67 ×10-2
0.8 3.33×10-1 3.52×10-2 1.24 1.84×10-1 1.16 1.76 ×10-1 1.84 ×10-1 1.89 ×10-2
0.9 3.50×10-1 3.77×10-2 1.34 1.94×10-1 1.26 1.85 ×10-1 1.94 ×10-1 2.03 ×10-2
1.0 3.56×10-1 3.86×10-2 1.44 1.97×10-1 1.36 1.88 ×10-1 1.97 ×10-1 2.08 ×10-2

Table 2: The errors
󰀏󰀏󰀏T1(x3) − p(t)

󰀏󰀏󰀏

t CJP JPI (Ver.2) CJM JMI (Ver.2) CJI JII (Ver.2) CJNS JNSI (Ver.2)0.0 0. 0. 4.17×10-2 0. 4.17×10-2 0. 0. 0.0.1 1.83×10-5 5.60×10-11 5.91×10-2 7.83×10-7 5.03×10-2 7.48×10-7 8.18×10-7 5.68×10-12
0.2 1.28×10-4 1.89×10-10 7.78×10-2 5.91×10-6 5.98×10-2 5.43×10-6 6.05×10-6 5.31×10-11
0.3 3.70×10-4 2.32×10-9 9.72×10-2 1.82×10-5 7.00×10-2 1.62×10-5 1.85×10-5 8.22×10-11
0.4 7.47×10-4 1.47×10-8 1.17×10-1 3.84×10-5 8.07×10-2 3.32×10-5 3.89×10-5 2.06×10-10
0.5 1.22×10-3 4.53×10-8 1.37×10-1 6.52×10-5 9.17×10-2 5.53×10-5 6.59×10-5 1.23×10-9
0.6 1.74×10-3 9.76×10-8 1.56×10-1 9.57×10-5 1.03×10-1 7.98×10-5 9.67×10-5 3.25×10-9
0.7 2.24×10-3 1.66×10-7 1.73×10-1 1.26×10-4 1.14×10-1 1.04×10-4 1.27×10-4 6.09×10-9
0.8 2.66×10-3 2.35×10-7 1.89×10-1 1.51×10-4 1.24×10-1 1.24×10-4 1.53×10-4 9.10×10-9
0.9 2.93×10-3 2.87×10-7 2.02×10-1 1.69×10-4 1.34×10-1 1.37×10-4 1.70×10-4 1.14×10-8
1.0 3.03×10-3 3.07×10-7 2.13×10-1 1.75×10-4 1.43×10-1 1.42×10-4 1.76×10-4 1.23×10-8

It is obvious that the newly defined inertial step increases the accuracy, as well as the convergence
speeds of Jungck type algorithms. However, the classical inertial step has no affect on convergence speeds
of Junck type algorithms (see Table 4 for errors in the iterations of the algorithms CJNS and JNSI (ver. 1)
for n = 1, 2, 3, 4).

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 17

Table 3: The errors
󰀏󰀏󰀏T1(x5) − p(t)

󰀏󰀏󰀏

t CJP JPI (Ver.2) CJM JMI (Ver.2) CJI JII (Ver.2) CJNS JNSI (Ver.2)0.0 0. 0. 1.39×10-3 0. 1.39×10-3 0. 0. 0.0.1 2.05×10-9 1.98×10-19 2.72×10-3 2.97×10-12 1.81×10-3 2.72×10-12 3.20×10-12 5.93×10-22
0.2 5.08×10-8 2.65×10-17 4.32×10-3 8.42×10-11 2.29×10-3 7.17×10-11 8.76×10-11 1.00×10-19
0.3 2.94×10-7 2.75×10-16 6.12×10-3 5.36×10-10 2.82×10-3 4.30×10-10 5.51×10-10 1.49×10-18
0.4 9.26×10-7 5.68×10-16 8.04×10-3 1.82×10-9 3.39×10-3 1.39×10-9 1.87×10-9 7.79×10-18
0.5 2.07×10-6 2.12×10-15 1.00×10-2 4.34×10-9 3.96×10-3 3.17×10-9 4.42×10-9 2.17×10-17
0.6 3.68×10-6 1.49×10-14 1.19×10-2 8.10×10-9 4.54×10-3 5.74×10-9 8.24×10-9 3.85×10-17
0.7 5.53×10-6 4.42×10-14 1.36×10-2 1.26×10-8 5.08×10-3 8.73×10-9 1.28×10-8 4.63×10-17
0.8 7.27×10-6 8.66×10-14 1.50×10-2 1.70×10-8 5.57×10-3 1.16×10-8 1.73×10-8 3.81×10-17
0.9 8.50×10-6 1.26×10-13 1.60×10-2 2.03×10-8 5.98×10-3 1.36×10-8 2.06×10-8 2.15×10-17
1.0 8.95×10-6 1.42×10-13 1.65×10-2 2.14×10-8 6.31×10-3 1.44×10-8 2.17×10-8 1.31×10-17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.895 0.9 0.905 0.91 0.915

-0.23

-0.225

-0.22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.90426 0.9043

-0.22568

-0.22567

-0.22566

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.9 0.9000000001

-0.22409497452

-0.22409497451

-0.2240949745

-0.22409497449

Figure 5: Comparisons of the convergence of JNSI algorithm (ver. 2) with others, for n = 1, 3, and 5

Table 4: The errors
󰀏󰀏󰀏T1(x1) − p(t)

󰀏󰀏󰀏 in the iterations of the algorithms CJNS and JNSI (ver. 1) for n = 1, 2, 3, 4

Iter. n=1 n=2 n=3 n=4t CJNS JNSI (Ver.1) CJNS JNSI (Ver.1) CJNS JNSI (Ver.1) CJNS JNSI (Ver.1)0.0 0 0 0 0 0 0 0 00.1 2.56×10-2 2.56×10-2 2.04×10-4 2.02×10-4 8.18×10-7 8.06×10-7 1.98×10-9 1.94×10-9
0.2 5.18×10-2 5.18×10-2 7.85×10-4 7.81×10-4 6.05×10-6 6.00×10-6 2.81×10-8 2.78×10-8
0.3 7.82×10-2 7.82×10-2 1.68×10-3 1.67×10-3 1.85×10-5 1.84×10-5 1.23×10-7 1.22×10-7
0.4 1.04×10-1 1.04×10-1 2.79×10-3 2.79×10-3 3.89×10-5 3.87×10-5 3.29×10-7 3.27×10-7
0.5 1.28×10-1 1.28×10-1 4.02×10-3 4.01×10-3 6.59×10-5 6.57×10-5 6.59×10-7 6.55×10-7
0.6 1.50×10-1 1.50×10-1 5.25×10-3 5.24×10-3 9.67×10-5 9.63×10-5 1.09×10-6 1.08×10-6
0.7 1.69×10-1 1.69×10-1 6.36×10-3 6.35×10-3 1.27×10-4 1.27×10-4 1.56×10-6 1.55×10-6
0.8 1.84×10-1 1.84×10-1 7.25×10-3 7.23×10-3 1.53×10-4 1.52×10-4 1.98×10-6 1.97×10-6
0.9 1.94×10-1 1.94×10-1 7.82×10-3 7.80×10-3 1.70×10-4 1.70×10-4 2.28×10-6 2.27×10-6
1.0 1.97×10-1 1.97×10-1 8.01×10-3 8.00×10-3 1.76×10-4 1.76×10-4 2.38×10-6 2.37×10-6

Since we have confirmed the validity of Theorems 2.1, we can now verify Theorems 2.4 and 2.5. Let us
begin with Theorem 2.4.

Let {un}∞n=0 be
󰁱
z(t)
󰀓

n10+1
n10+2

󰀔󰁲∞
n=0

and {εn}∞n=0 be the sequence generated by (13). Then, Table 5 indicates that
lim
n→∞
εn = 0 and it is obvious that the sequence {T1un}∞n=1 converges to T2 (z (t)) = T1 (z (t)) = p (t). Hence,

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 18

JNSI algorithm (ver. 2) is weakly (T1,T2)-stable.

Table 5: The errors εn = 󰀂T1un+1 − T2vn󰀂

n 1 2 3 4 5 10 20

εn 3.77 × 10−4 8.54 × 10−6 4.93 × 10−7 5.32 × 10−8 8.61 × 10−9 5.22 × 10−11 3.13 × 10−14

In conclusion, let us confirm the validity of Theorem 2.5 by examining the following integral equation

2(t + 1)x (t) + t2 + τ =

t󰁝

0

󰁫󰀓
1 − s2

󰀔
x (s) + τ

󰁬
ds (34)

where τ is a sufficiently small real number. The solution to equation (34) is given by

󰁨z(t) =
e−(t−1)2/4

2(t + 1)

󰀝√
π (τ − 2)

󰀗
erfi
󰀕 t − 1

2

󰀖
+ erfi

󰀕1
2

󰀖󰀘
− 4√e(τ − 4) − 4e(t−1)2/4

󰀞
.

Define the following operators

󰁨T1(x) = (t + 1)x(t) +
t2 + τ

2
, 󰁨T2 (x) =

1
2

t󰁝

0

󰁫󰀓
1 − s2

󰀔
x(s) + τ

󰁬
ds

then, we have

󰀐󰀐󰀐T1(x) − 󰁨T1 (x)
󰀐󰀐󰀐 = max

t∈[0,1]

󰀏󰀏󰀏󰀏
τ
2

󰀏󰀏󰀏󰀏 =
|τ|
2
= µ1, for all x ∈ X′,

and

󰀐󰀐󰀐T2(x) − 󰁨T2(x)
󰀐󰀐󰀐 = max

t∈[0,1]

󰀏󰀏󰀏󰀏󰀏−
τt
2

󰀏󰀏󰀏󰀏󰀏 =
|τ|
2
= µ2, for all x ∈ X′.

Assuming τ taken as 10−6, Table 6 illustrates that the sequence
󰁱
󰁨T1󰁨xn

󰁲∞
n=1

, generated by (21), with
󰁨T2
󰀃󰁨x−1 (t)

󰀄
= 󰁨T2 (−τ/2) and 󰁨T2

󰀃󰁨x0 (t)
󰀄
= 󰁨T2 (−τ/2 + 0.001), converges to󰁨p (t) = 󰁨T2

󰀃󰁨z (t)
󰀄
= 󰁨T1

󰀃󰁨z (t)
󰀄
. Hence,

󰀐󰀐󰀐p(t) −󰁨p(t)
󰀐󰀐󰀐 =
√
π erfi

󰀓
1
2

󰀔
+ 1 − 4

√
e

2000000
= 4.02974395839751 . . . × 10−7.

On the other hand, without knowing the value of 󰁨p(t) (or without computing it), by (23), we have the
following

󰀐󰀐󰀐󰁨p(t) − p(t)
󰀐󰀐󰀐 = 4.03 × 10−7 < 1.06 × 10−5 =

󰀓
µ2 +

󰀕
δ + L
1 − L

󰀖
µ1

󰀔󰀓󰀕δ + L
1 − L

󰀖2
+
󰀕
δ + L
1 − L

󰀖
+ 1
󰀔

1 −
󰀕
δ + L
1 − L

󰀖2 .

Remark 4.1. For solving the integral equation (33) (or its perturbed form (34)), we can use discrete versions
of the operators T1 and T2, with high precision methods presented in [25].

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 19

Table 6: The errors
󰀏󰀏󰀏󰁩T1(󰁨xn) −󰁨p(t)

󰀏󰀏󰀏 for n = 1, 2, . . . , 6

Iter. t=0 t=0.1 t=0.2 t=0.3 t=0.4 t=0.5 t=0.6 t=0.7 t=0.8 t=0.9 t=1n=1 0 1.05×10-6 8.60 ×10-6 3.23×10-5 8.12×10-5 1.59×10-4 2.62×10-4 3.76×10-4 4.84×10-4 5.61 ×10-4 5.89×10-4
n=2 0 1.82×10-10 8.42 ×10-10 2.76×10-10 7.10×10-9 2.88×10-8 6.92×10-8 1.25×10-7 1.84×10-7 2.29 ×10-7 2.46×10-7
n=3 0 7.51×10-15 1.30 ×10-13 5.76×10-13 1.04×10-12 3.31×10-14 4.97×10-12 1.49×10-11 2.79×10-11 3.92 ×10-11 4.37×10-11
n=4 0 1.03×10-19 6.17 ×10-18 5.99×10-17 2.48×10-16 5.87×10-16 8.66×10-16 7.45×10-16 1.09×10-16 6.86 ×10-16 1.05×10-15
n=5 0 6.51×10-25 1.38 ×10-22 2.70×10-21 1.88×10-20 7.09×10-20 1.74×10-19 3.12×10-19 4.41×10-19 5.24 ×10-19 5.51×10-19
n=6 0 2.21×10-30 1.70 ×10-27 6.65×10-26 7.42×10-25 3.99×10-24 1.31×10-23 2.98×10-23 5.11×10-23 6.91 ×10-23 7.62×10-23

Example 4.2. We are tasked with solving the following second-order differential equation (DE) subject to
homogeneous Dirichlet boundary conditions:

x′′(t) = x(t) + t3 − 2t2 + 2t − 7, t ∈ [0, 1],

x(0) = x(1) = 0.

󰀼󰁁󰁁󰁀󰁁󰁁󰀾 (35)

To proceed with solving equation (35), we require an appropriate function space. Let X = C[0, 1].
Additionally, let X′ be the subset of X defined as X′ :=

󰁱
x (t) ∈ C2[0, 1] : x(0) = x(1) = 0

󰁲
with norm 󰀂x󰀂c,

in which C2[0, 1] is the space of real functions with continuous second derivatives on [0, 1] and 󰀂x󰀂c =
max
󰁱
󰀂x󰀂 , 󰀂x′󰀂 , 󰀂x′′󰀂

󰁲
. It has been established in [7] that for all x ∈ X′, the inequalities

󰀂x󰀂 ≤ 1
2
󰀂x′󰀂 ≤ 1

2
󰀂x′′󰀂

hold. Define operators T1,T2 : X′ → X as

T1(x) = x′′, T2 (x) = x (t) + t3 − 2t2 + 2t − 7.

It is worth noting that T1 is an injective map and the inverse of T1 can be expressed in the form

T−1
1 (x) =

1󰁝

0

G(t, s) x(s) ds,

where G(t, s) is the Green’s function corresponding to the boundary value problem. Thus, in this case,

G(t, s) =

󰀻󰁁󰁁󰀿󰁁󰁁󰀽
s(t − 1), 0 ≤ s ≤ t,

t(s − 1), t < s ≤ 1,

and

T−1
1 (x) = (t − 1)

t󰁝

0

s x(s) ds + t

1󰁝

t

(s − 1)x(s) ds.

Also, the exact solution is

z(t) = −t3 + 2t2 − 8t +
(4 − 11e)e1−t + (11 − 4e)et

e2 − 1
+ 11,

as well as

p(z) = T1(z) = T2(z) =
(4 − 11e)e1−t + (11 − 4e)et

e2 − 1
− 6t + 4.

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 20

Furthermore, it can be established that T2(X′) ⊂ T1(X′) (for more details, refer to [7]).
Given the inequality
󰀏󰀏󰀏T2 (x) − T2

󰀃
y
󰀄󰀏󰀏󰀏 ≤
󰀏󰀏󰀏x − y

󰀏󰀏󰀏 ,

we can apply [7, Lemma 4.4] to deduce

󰀐󰀐󰀐T2(x) − T2(y)
󰀐󰀐󰀐 ≤ 1

2

󰀐󰀐󰀐T1(x) − T1(y)
󰀐󰀐󰀐 .

Consequently, all the assumptions of Theorem 2.1 are met. Therefore, by selectingT2 (x−1(t)) = T2(t(1−t))
andT2 (x0(t)) = T2

󰀓
t(1−t2)

󰀔
, the sequence {T1 (xn)}∞n=1 generated by JNSI algorithm (ver. 2) not only converges

toT2 (z (t)) = T1 (z (t)) = p (t), but also demonstrates a significantly higher convergence rate when compared
to the algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2), CJI, JII (ver. 2) and CJNS. This comparison is detailed
in Tables 7, 8, 9, as well as in Figure 6.

Table 7: The errors
󰀏󰀏󰀏T1(x1) − p(t)

󰀏󰀏󰀏

t CJP JPI (Ver.2) CJM JMI (Ver.2) CJI JII (Ver.2) CJNS JNSI (Ver.2)0.0 0. 0. 3.50 0. 3.50 0. 0. 0.0.1 1.71×10-1 1.24×10-2 2.89 7.92×10-2 2.94 8.26×10-2 7.92×10-2 5.61×10-3
0.2 2.82×10-1 2.31×10-2 2.36 1.29×10-1 2.43 1.36×10-1 1.29×10-1 1.04×10-2
0.3 3.43×10-1 3.11×10-2 1.90 1.56×10-1 1.99 1.65×10-1 1.56×10-1 1.40×10-2
0.4 3.63×10-1 3.56×10-2 1.50 1.64×10-1 1.60 1.73×10-1 1.64×10-1 1.60×10-2
0.5 3.49×10-1 3.66×10-2 1.15 1.56×10-1 1.25 1.66×10-1 1.56×10-1 1.64×10-2
0.6 3.08×10-1 3.40×10-2 8.52×10-1 1.37×10-1 9.37×10-1 1.47×10-1 1.37×10-1 1.53×10-2
0.7 2.48×10-1 2.85×10-2 5.92×10-1 1.10×10-1 6.61×10-1 1.17×10-1 1.10×10-1 1.27×10-2
0.8 1.73×10-1 2.04×10-2 3.67×10-1 7.61×10-2 4.16×10-1 8.18×10-2 7.61×10-2 9.13×10-3
0.9 8.85×10-2 1.06×10-2 1.71×10-1 3.89×10-2 1.96×10-1 4.19×10-2 3.89×10-2 4.76×10-31.0 0. 0. 0. 0. 0. 0. 0. 0.

Table 8: The errors
󰀏󰀏󰀏T1(x3) − p(t)

󰀏󰀏󰀏

t CJP JPI (Ver.2) CJM JMI (Ver.2) CJI JII (Ver.2) CJNS JNSI (Ver.2)0.0 0. 0. 2.92×10-1 0. 2.92×10-1 0. 0. 0.0.1 1.17×10-3 1.16×10-6 2.11×10-1 2.49×10-5 2.37×10-1 4.22×10-5 2.47×10-5 2.30×10-8
0.2 2.22×10-3 2.20×10-6 1.48×10-1 4.71×10-5 1.90×10-1 8.00×10-5 4.67×10-5 4.38×10-8
0.3 3.04×10-3 3.03×10-6 1.00×10-1 6.43×10-5 1.51×10-1 1.09×10-4 6.38×10-5 6.03×10-8
0.4 3.56×10-3 3.56×10-6 6.46×10-2 7.48×10-5 1.18×10-1 1.28×10-4 7.42×10-5 7.09×10-8
0.5 3.72×10-3 3.75×10-6 3.91×10-2 7.79×10-5 8.99×10-2 1.34×10-4 7.73×10-5 7.46×10-8
0.6 3.52×10-3 3.56×10-6 2.15×10-2 7.33×10-5 6.60×10-2 1.26×10-4 7.28×10-5 7.09×10-8
0.7 2.98×10-3 3.03×10-6 1.01×10-2 6.19×10-5 4.56×10-2 1.07×10-4 6.14×10-5 6.03×10-8
0.8 2.16×10-3 2.20×10-6 3.46×10-3 4.47×10-5 2.81×10-2 7.72×10-5 4.43×10-5 4.38×10-8
0.9 1.13×10-3 1.16×10-6 4.51×10-4 2.34×10-5 1.30×10-2 4.05×10-5 2.32×10-5 2.30×10-81.0 0. 0. 0. 0. 0. 0. 0. 0.

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 21

Table 9: The errors
󰀏󰀏󰀏T1(x5) − p(t)

󰀏󰀏󰀏

t CJP JPI (Ver.2) CJM JMI (Ver.2) CJI JII (Ver.2) CJNS JNSI (Ver.2)0.0 0. 0. 9.72×10-3 0. 9.72×10-3 0. 0. 0.0.1 1.18×10-5 1.22×10-10 5.84×10-3 2.43×10-9 7.66×10-3 1.29×10-8 2.41×10-9 2.37×10-14
0.2 2.25×10-5 2.32×10-10 3.18×10-3 4.62×10-9 5.99×10-3 2.45×10-8 4.58×10-9 4.52×10-14
0.3 3.09×10-5 3.19×10-10 1.42×10-3 6.35×10-9 4.65×10-3 3.38×10-8 6.30×10-9 6.21×10-14
0.4 3.63×10-5 3.75×10-10 3.27×10-4 7.46×10-9 3.55×10-3 3.97×10-8 7.40×10-9 7.31×10-14
0.5 3.82×10-5 3.95×10-10 2.95×10-4 7.83×10-9 2.65×10-3 4.17×10-8 7.77×10-9 7.68×10-14
0.6 3.63×10-5 3.75×10-10 5.80×10-4 7.43×10-9 1.92×10-3 3.96×10-8 7.37×10-9 7.31×10-14
0.7 3.09×10-5 3.19×10-10 6.31×10-4 6.31×10-9 1.30×10-3 3.37×10-8 6.26×10-9 6.21×10-14
0.8 2.24×10-5 2.32×10-10 5.20×10-4 4.58×10-9 7.92×10-4 2.45×10-8 4.54×10-9 4.52×10-14
0.9 1.18×10-5 1.22×10-10 2.99×10-4 2.41×10-9 3.63×10-4 1.29×10-8 2.39×10-9 2.37×10-141.0 0. 0. 0. 0. 0. 0. 0. 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 0.51 0.52 0.53

0.721

0.722

0.723

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 0.5000005 0.500001

0.72385834

0.72385835

0.72385836

0.72385837

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 0.500000001

0.7238583702

0.72385837021

0.72385837022

Figure 6: Comparisons of the convergence of JNSI algorithm (ver. 2) with others, for n = 1, 3 and 5

Remark 4.2. In certain instances, verifying conditions in the hypothesis of Theorem 2.1 may pose significant
challenges. Nonetheless, it is feasible to identify examples where the practical utility of the result from
Theorem 2.1 is not hindered. In the example given below, convergence can be attained using the JNSI
algorithm (ver. 2) without the need to explicitly validate the conditions stipulated in Theorem 2.1.

Example 4.3. Consider the following first-order nonlinear DE:

3x2(t)x′(t) = x3(t) + (t2 + 1)et + t, t ∈ [0, 1],

x (0) = 1.

󰀼󰁁󰁁󰁀󰁁󰁁󰀾 (36)

The exact solution for this equation is given by

z(t) =
󰀥󰀣

2 + t +
t3

3

󰀤
et − t − 1

󰀦1/3
.

Equation (36) can be transformed into the integral equation given below,

x3 (t) = 1 +

t󰁝

0

󰁫
x3(s) + (s2 + 1)es + s

󰁬
ds, t ∈ [0, 1] .

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 22

Let X = C [0, 1]. We define X′ ⊂ X as X′ :=
󰁱
x (t) ∈ C [0, 1] : x (t) ≥ 0

󰁲
and the operators T1,T2 : X

′ → X
as follows

T1 (x) = x3, T2(x) = 1 +

t󰁝

0

󰁫
x3(s) + (s2 + 1)es + s

󰁬
ds.

If we take T2 (x−1 (t)) = T2 (1) and T2 (x0 (t)) = T2 (1.001), then by observing the data in Table 10, 11, 12
and Figure 7, it is evident that the sequence {T1 (xn)}∞n=1 generated by JNSI algorithm (ver. 2) converges to
T2 (z (t)) = T1 (z (t)) = p (t). Notably, this convergence is characterized by a faster rate compared to several
other algorithms (CJP, JPI (ver. 2), CJM, JMI (ver. 2), CJI, JII (ver. 2) and CJNS).

Table 10: The errors
󰀏󰀏󰀏T1(x1) − p(t)

󰀏󰀏󰀏

t CJP JPI (Ver.2) CJM JMI (Ver.2) CJI JII (Ver.2) CJNS JNSI (Ver.2)0.0 0. 0. 1.50×10-3 0. 1.50×10-3 0. 0. 0.0.1 1.04×10-2 3.36×10-4 1.14×10-1 5.37×10-3 1.12×10-1 5.28×10-3 5.37×10-3 1.72×10-4
0.2 4.52×10-2 2.89×10-3 2.66×10-1 2.41×10-2 2.56×10-1 2.34×10-2 2.41×10-2 1.52×10-3
0.3 1.10×10-1 1.04×10-2 4.62×10-1 6.01×10-2 4.37×10-1 5.77×10-2 6.01×10-2 5.56×10-3
0.4 2.10×10-1 2.60×10-2 7.10×10-1 1.18×10-1 6.64×10-1 1.12×10-1 1.18×10-1 1.43×10-2
0.5 3.54×10-1 5.39×10-2 1.02 2.04×10-1 9.46×10-1 1.92×10-1 2.04×10-1 3.01×10-2
0.6 5.51×10-1 9.87×10-2 1.41 3.25×10-1 1.30 3.04×10-1 3.25×10-1 5.63×10-2
0.7 8.12×10-1 1.66×10-1 1.89 4.89×10-1 1.73 4.54×10-1 4.89×10-1 9.65×10-2
0.8 1.15 2.64×10-1 2.48 7.06×10-1 2.26 6.52×10-1 7.06×10-1 1.56×10-1
0.9 1.58 3.99×10-1 3.20 9.89×10-1 2.91 9.09×10-1 9.89×10-1 2.40×10-1
1.0 2.12 5.83×10-1 4.09 1.35 3.71 1.24 1.35 3.56×10-1

Table 11: The errors
󰀏󰀏󰀏T1(x3) − p(t)

󰀏󰀏󰀏

t CJP JPI (Ver.2) CJM JMI (Ver.2) CJI JII (Ver.2) CJNS JNSI (Ver.2)0.0 0. 0. 1.25×10-4 0. 1.25×10-4 0. 0. 0.0.1 8.18×10-6 1.56×10-11 1.18×10-2 3.77×10-7 1.00×10-2 3.50×10-7 3.82×10-7 2.65×10-13
0.2 1.41×10-4 4.36×10-9 3.30×10-2 7.28×10-6 2.46×10-2 6.30×10-6 7.32×10-6 1.74×10-10
0.3 7.50×10-4 8.49×10-8 6.63×10-2 4.31×10-5 4.51×10-2 3.51×10-5 4.32×10-5 4.06×10-9
0.4 2.49×10-3 6.78×10-7 1.16×10-1 1.57×10-4 7.35×10-2 1.22×10-4 1.58×10-4 3.59×10-8
0.5 6.36×10-3 3.38×10-6 1.85×10-1 4.41×10-4 1.12×10-1 3.25×10-4 4.42×10-4 1.93×10-7
0.6 1.38×10-2 1.26×10-5 2.81×10-1 1.04×10-3 1.64×10-1 7.38×10-4 1.05×10-3 7.71×10-7
0.7 2.69×10-2 3.83×10-5 4.09×10-1 2.20×10-3 2.32×10-1 1.50×10-3 2.20×10-3 2.50×10-6
0.8 4.81×10-2 1.01×10-4 5.79×10-1 4.25×10-3 3.21×10-1 2.80×10-3 4.26×10-3 7.00×10-6
0.9 8.08×10-2 2.38×10-4 7.99×10-1 7.69×10-3 4.37×10-1 4.93×10-3 7.70×10-3 1.75×10-5
1.0 1.29×10-1 5.13×10-4 1.08 1.32×10-2 5.85×10-1 8.26×10-3 1.32×10-2 3.99×10-5

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 23

Table 12: The errors
󰀏󰀏󰀏T1(x5) − p(t)

󰀏󰀏󰀏

t CJP JPI (Ver.2) CJM JMI (Ver.2) CJI JII (Ver.2) CJNS JNSI (Ver.2)0.0 0. 0. 4.17×10-6 0. 4.17×10-6 0. 0. 0.0.1 2.61×10-9 2.12×10-19 5.62×10-4 4.36×10-12 3.62×10-4 3.75×10-12 4.44×10-12 1.36×10-21
0.2 1.80×10-7 6.16×10-16 2.01×10-3 3.69×10-10 9.74×10-4 2.76×10-10 3.72×10-10 4.05×10-19
0.3 2.15×10-6 7.40×10-14 4.89×10-3 5.27×10-9 1.95×10-3 3.49×10-9 5.31×10-9 1.15×10-16
0.4 1.25×10-5 1.96×10-12 9.99×10-3 3.65×10-8 3.46×10-3 2.17×10-8 3.67×10-8 3.84×10-15
0.5 4.96×10-5 2.43×10-11 1.83×10-2 1.69×10-7 5.71×10-3 9.11×10-8 1.70×10-7 5.54×10-14
0.6 1.53×10-4 1.88×10-10 3.12×10-2 6.09×10-7 9.00×10-3 3.00×10-7 6.11×10-7 4.87×10-13
0.7 4.00×10-4 1.06×10-9 5.05×10-2 1.84×10-6 1.37×10-2 8.35×10-7 1.84×10-6 3.07×10-12
0.8 9.22×10-4 4.75×10-9 7.83×10-2 4.86×10-6 2.03×10-2 2.06×10-6 4.87×10-6 1.53×10-11
0.9 1.93×10-3 1.78×10-8 1.17×10-1 1.16×10-5 2.95×10-2 4.61×10-6 1.16×10-5 6.32×10-11
1.0 3.77×10-3 5.81×10-8 1.72×10-1 2.57×10-5 4.20×10-2 9.60×10-6 2.57×10-5 2.27×10-10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

0.5 0.51 0.52 0.53

1.395

1.4

1.405

1.41

1.415

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0.5 0.50000005 0.5000001

1.39084158

1.3908416

1.39084162

1.39084164

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0.5 0.50000000001

1.390841561422

1.390841561424

1.390841561426

1.390841561428

1.39084156143

CJM Algor.

Figure 7: Comparisons of the convergence of JNSI algorithm (ver. 2) with others, for n = 1, 3, and 5

4.2. Applications for Finding Roots of Complex Polynomials and Creating Image Polynomiography
Polynomiography is a unique mathematical and artistic technique developed by Kalantari in the late

1990s (cf. [16]). It involves visually representing complex polynomial equations in a two-dimensional plane,
showcasing the roots of these equations as points. These points convey both the real and imaginary parts of
the roots, while factors like color and size offer additional insights into the polynomial’s properties. Poly-
nomiography stands as a remarkable intersection where mathematics and artistic expression intertwine.
Rooted in the art and science of visualizing the zeros of complex polynomials, polynomiography employs
mathematical iteration functions and fractal imagery to unlock a realm of both scientific exploration and
creative artistry. This discipline encapsulates a dual purpose: it serves as a tool for approximating poly-
nomial roots, shedding light on a fundamental mathematical problem, while simultaneously offering a
canvas for artists and enthusiasts to craft intricate and mesmerizing visual representations. The synergy
between mathematics and computer technology inherent in polynomiography not only transforms how we
perceive complex equations but also forges an innovative path that enriches both the scientific and artistic
landscapes. We can mention [8], [10], [30], [36] for various studies on polynomiography.

Example 4.4. Let us consider the equation P(z) = z3−2z−1 = 0, where P(z) represents a complex polynomial.
If we take

T2(z) = z3 − 1 and T1 (z) = 2z,

then we can establish the equivalence:

P(z) = 0 ⇔ T2(z) = T1(z).

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 24

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 23

4.2. Applications for Finding Roots of Complex Polynomials and Creating Image Polynomiography
Polynomiography is a unique mathematical and artistic technique developed by Kalantari in the late

1990s (cf. [16]). It involves visually representing complex polynomial equations in a two-dimensional plane,
showcasing the roots of these equations as points. These points convey both the real and imaginary parts of
the roots, while factors like color and size offer additional insights into the polynomial’s properties. Poly-
nomiography stands as a remarkable intersection where mathematics and artistic expression intertwine.
Rooted in the art and science of visualizing the zeros of complex polynomials, polynomiography employs
mathematical iteration functions and fractal imagery to unlock a realm of both scientific exploration and
creative artistry. This discipline encapsulates a dual purpose: it serves as a tool for approximating poly-
nomial roots, shedding light on a fundamental mathematical problem, while simultaneously offering a
canvas for artists and enthusiasts to craft intricate and mesmerizing visual representations. The synergy
between mathematics and computer technology inherent in polynomiography not only transforms how we
perceive complex equations but also forges an innovative path that enriches both the scientific and artistic
landscapes. We can mention [9], [11], [29], [35] for various studies on polynomiography.

Example 4.4. Let us consider the equation P(z) = z3−2z−1 = 0, where P(z) represents a complex polynomial.
If we take

T2(z) = z3 − 1 and T1 (z) = 2z,

then we can establish the equivalence:

P(z) = 0 ⇔ T2(z) = T1(z).

For any value of ω ! −1, specifically chosen such that ω = −T′1(z)/T′2(z), we can deduce

of iters. : 30 and Time : 2.7167

10

20

30

40

50

60

70

80

of iters. : 14 and Time : 3.0921

5

10

15

20

25

30

35

40

of iters. : 63 and Time : 6.0237

20

40

60

80

100

120

140

of iters. : 22 and Time : 4.8827

10

20

30

40

50

60

of iters. : 32 and Time : 4.5905

10

20

30

40

50

60

70

of iters. : 15 and Time : 3.8762

5

10

15

20

25

30

35

40

of iters. : 18 and Time : 2.4263

5

10

15

20

25

30

35

40

45

50

of iters. : 13 and Time : 3.5976

5

10

15

20

25

30

35

Figure 8: Example 4.4 (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII (ver. 2), CJNS,
JNSI (ver. 2) (second line)

ωT2(z) = ωT1(z) ⇔ T1(z) = Tω2 (z) = T2(z) =
ωT2(z) + T1(z)
ω + 1

(as detailed in [30]). To determine all the roots of P(z) and generate polynomiographs as shown in Figure
8, we adopt αn = α1

n = α
2
n = α

3
n = 0.5, θ = 10−6, an accuracy of eps = 10−7, and confine the range to the

area n[−5, 5]2. As depicted in Figure 8, it is evident that the inertial type algorithm are faster then original
algorithms and the sequence {T1xn}∞n=1 generated by JNSI algorithm (ver. 2) converges faster than any other
algorithms.

Figure 8: Example 4.4 (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII (ver. 2), CJNS,
JNSI (ver. 2) (second line)

For any value of ω 󲧰 −1, specifically chosen such that ω = −T′1(z)/T′2(z), we can deduce

ωT2(z) = ωT1(z) ⇔ T1(z) = Tω2 (z) = T2(z) =
ωT2(z) + T1(z)
ω + 1

(as detailed in [31]). To determine all the roots of P(z) and generate polynomiographs as shown in Figure 8,
we adopt αn = α1

n = α
2
n = α

3
n = 0.5, θ = 10−6, an accuracy of eps = 10−7, and confine the range to the

area [−5, 5]2. As depicted in Figure 8, it is evident that the inertial type algorithm are faster then original
algorithms and the sequence {T1xn}∞n=1 generated by JNSI algorithm (ver. 2) converges faster than any other
algorithms.

Example 4.5. Consider the problem of solving P(z) = z5+2x− i+1 = 0, where P(z) is a complex polynomial.
A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 25

faster convergence compared to all other algorithms.

of iters. : 261 and Time : 31.4186

200

400

600

800

1000

1200

of iters. : 161 and Time : 46.9746

100

200

300

400

500

600

700

800
of iters. : 649 and Time : 88.338

500

1000

1500

2000

2500

3000

of iters. : 314 and Time : 95.326

200

400

600

800

1000

1200

1400

of iters. : 325 and Time : 67.5069

200

400

600

800

1000

1200

1400

1600

of iters. : 146 and Time : 52.8315

100

200

300

400

500

600

700

of iters. : 283 and Time : 53.286

200

400

600

800

1000

1200

1400

of iters. : 127 and Time : 47.6025

100

200

300

400

500

600

Figure 10: Example 4.5 (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII (ver. 2), CJNS,
JNSI (ver. 2) (second line)

Example 4.6. Let us consider the problem of solving P(z) = z7 + 2z4 + z3 − 4z2 + 2z + 1 = 0, where P(z) is a
complex polynomial. We define the following transformations:

T2(z) = z7 + 2z4 − 4z2 + 2z, T1(z) = −z3 − 1.

Similar to the previous example, we iterate Tω2 (z) as well. In order to determine all the roots of P(z)
and to obtain polynomiographs as shown in Figure 11, we set αn = α1

n = α
2
n = α

3
n = 0.9, θ = 10−6,

accuracy eps = 10−7, and the region of interest as [−5, 5]2. From Figure 11, it is evident that the inertial type
algorithms are faster then original algorithms. The sequence {T1xn}∞n=1 generated by JNSI algorithm (ver. 2)
demonstrates faster convergence in comparison to all the other algorithms.

of iters. : 26 and Time : 5.6472

20

40

60

80

100

120

140

of iters. : 13 and Time : 7.5406

10

20

30

40

50

60

70

of iters. : 63 and Time : 14.4978

50

100

150

200

250

of iters. : 18 and Time : 10.5643

10

20

30

40

50

60

70

80

90

100

of iters. : 32 and Time : 12.4129

20

40

60

80

100

120

140

of iters. : 14 and Time : 10.3556

10

20

30

40

50

60

70

of iters. : 16 and Time : 6.807

10

20

30

40

50

60

70

80

90
of iters. : 11 and Time : 8.6081

10

20

30

40

50

60

Figure 11: Example 4.6 (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII (ver. 2), CJNS,
JNSI (ver. 2) (second line)

Figure 9: Example 4.5 (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII (ver. 2), CJNS,
JNSI (ver. 2) (second line)

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 25

We define the following transformations:

T2(z) = z5 − i + 1 and T1(z) = −2z.

Similar to the previous example, we then apply Tω2 (z). To determine all the roots of P(z) and generate
polynomiographs shown in Figure 9, we select parameters as follows:

αn = α
1
n = α

2
n = α

3
n = 0.9, θ = 10−6,

accuracy eps = 10−7 and domain [−5, 5]2. As seen in Figure 9, it is evident that the inertial type algorithms
are faster then original algorithms and the sequence {T1xn}∞n=1 generated by JNSI algorithm (ver. 2) exhibits
faster convergence compared to all other algorithms.

Example 4.6. Let us consider the problem of solving

P(z) = z7 + 2z4 + z3 − 4z2 + 2z + 1 = 0,

where P(z) is a complex polynomial.

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 25

of iters. : 26 and Time : 5.6472

20

40

60

80

100

120

140

of iters. : 13 and Time : 7.5406

10

20

30

40

50

60

70

of iters. : 63 and Time : 14.4978

50

100

150

200

250

of iters. : 18 and Time : 10.5643

10

20

30

40

50

60

70

80

90

100

of iters. : 32 and Time : 12.4129

20

40

60

80

100

120

140

of iters. : 14 and Time : 10.3556

10

20

30

40

50

60

70

of iters. : 16 and Time : 6.807

10

20

30

40

50

60

70

80

90
of iters. : 11 and Time : 8.6081

10

20

30

40

50

60

Figure 10: Example 4.6 (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII (ver. 2), CJNS,
JNSI (ver. 2) (second line)

of iters. : 100 and Time : 6.6104

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 19.9553

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 7.456

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 21.4333

50

100

150

200

250

300

350

400

450

500

of iters. : 100 and Time : 13.6669

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 27.5778

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 13.5132

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 29.7389

50

100

150

200

250

300

350

400

450

500

Figure 11: Example 4.7 for αn = α1
n = α

2
n = α

3
n = 0.5 for all n ∈N0 and i = 1, 2, 3, θ = 0.9, accuracy eps = 1, the area being [−20, 20]2, the

iteration count fixed at 100 and ω = 0.009i: (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms
CJI, JII (ver. 2), CJNS, JNSI (ver. 2) (second line)

Figure 10: Example 4.6 (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII (ver. 2), CJNS,
JNSI (ver. 2) (second line)

We define the following transformations

T2(z) = z7 + 2z4 − 4z2 + 2z and T1(z) = −z3 − 1.

Similar to the previous example, we iterate Tω2 (z) as well. In order to determine all the roots of P(z) and
to obtain polynomiographs as shown in Figure 10, we set

αn = α
1
n = α

2
n = α

3
n = 0.9, θ = 10−6,

accuracy eps = 10−7, and the region of interest as [−5, 5]2.
From Figure 10, it is evident that the inertial type algorithms are faster then original algorithms. The

sequence {T1xn}∞n=1 generated by JNSI algorithm (ver. 2) demonstrates faster convergence in comparison to
all the other algorithms.

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 26

In the following example, we show the affect of parameters to the images.

Example 4.7. Consider the polynomials P(z), T2(z), T1(z), and Tω2 (z) as defined in Example 4.4.
To observe the effects of various parameters on polynomiographs, we generated, images which are

shown in Figures 11 – 14, using different parameter values without concerning ourselves with the conver-
gence of iterations.

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 26

of iters. : 100 and Time : 10.7272

100

200

300

400

500

600

700

of iters. : 100 and Time : 30.5077

100

200

300

400

500

600

700

of iters. : 100 and Time : 10.1083

100

200

300

400

500

600

700

of iters. : 100 and Time : 35.799

100

200

300

400

500

600

700

of iters. : 100 and Time : 18.5792

100

200

300

400

500

600

700

of iters. : 100 and Time : 47.2839

100

200

300

400

500

600

700

of iters. : 100 and Time : 28.0028

100

200

300

400

500

600

700

of iters. : 100 and Time : 52.0915

100

200

300

400

500

600

700

Figure 13: Example 4.7 for αn = α1
n = α

2
n = α

3
n = 0.1 for all n ∈ N0, θ = 0.9, accuracy eps = 1, the area being [−20, 20]2, the iteration

count fixed at 100 and ω = 0.009i: (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII
(ver. 2), CJNS, JNSI (ver. 2) (second line)

of iters. : 100 and Time : 8.658

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 21.1339

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 10.2985

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 22.3839

50

100

150

200

250

300

350

400

450

500

of iters. : 100 and Time : 16.6524

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 31.1252

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 14.9748

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 27.3827

50

100

150

200

250

300

350

400

450

500

Figure 14: Example 4.7 for αn = α1
n = α

2
n = α

3
n = 0.5 for all n ∈N0, θ = 0.5, accuracy eps = 1, the area being [−6, 6]2, the iteration count

fixed at 100 and ω = −0.0001 − 0.08i: (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII
(ver. 2), CJNS, JNSI (ver. 2) (second line)

Figure 11: Example 4.7 for αn = α1
n = α

2
n = α

3
n = 0.5 for all n ∈N0 and i = 1, 2, 3, θ = 0.9, accuracy eps = 1, the area being [−20, 20]2, the

iteration count fixed at 100 and ω = 0.009i: (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms
CJI, JII (ver. 2), CJNS, JNSI (ver. 2) (second line)

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 25

Similar to the previous example, we iterate Tω2 (z) as well. In order to determine all the roots of P(z)
and to obtain polynomiographs as shown in Figure 10, we set αn = α1

n = α
2
n = α

3
n = 0.9, θ = 10−6,

accuracy eps = 10−7, and the region of interest as [−5, 5]2. From Figure 10, it is evident that the inertial type
algorithms are faster then original algorithms. The sequence {T1xn}∞n=1 generated by JNSI algorithm (ver. 2)
demonstrates faster convergence in comparison to all the other algorithms.

In the following example, we show the affect of parameters to images.

Example 4.7. Consider the polynomials P(z), T2(z), T1(z), and Tω2 (z) as defined in Example 4.4. To observe
the effects of various parameters on polynomiographs, we generated, images which are shown in Figures
11 – 14, using different parameter values without concerning ourselves with the convergence of iterations.

of iters. : 100 and Time : 6.6104

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 19.9553

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 7.456

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 21.4333

50

100

150

200

250

300

350

400

450

500

of iters. : 100 and Time : 13.6669

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 27.5778

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 13.5132

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 29.7389

50

100

150

200

250

300

350

400

450

500

Figure 11: Example 4.7 for αn = α1
n = α

2
n = α

3
n = 0.5 for all n ∈N0 and i = 1, 2, 3, θ = 0.9, accuracy eps = 1, the area being [−20, 20]2, the

iteration count fixed at 100 and ω = 0.009i: (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms
CJI, JII (ver. 2), CJNS, JNSI (ver. 2) (second line)

of iters. : 100 and Time : 11.2187

100

200

300

400

500

600

700

of iters. : 100 and Time : 31.1944

100

200

300

400

500

600

700

of iters. : 100 and Time : 15.503

100

200

300

400

500

600

700

of iters. : 100 and Time : 37.6982

100

200

300

400

500

600

700

of iters. : 100 and Time : 29.9842

100

200

300

400

500

600

700

of iters. : 100 and Time : 50.7095

100

200

300

400

500

600

700

of iters. : 100 and Time : 30.1184

100

200

300

400

500

600

700

of iters. : 100 and Time : 49.0197

100

200

300

400

500

600

700

Figure 12: Example 4.7 for αn = α1
n = α

2
n = α

3
n = 0.9 for all n ∈ N0, θ = 0.5, accuracy eps = 1, the area being [−20, 20]2, the iteration

count fixed at 100 and ω = 0.009i: (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII
(ver. 2), CJNS, JNSI (ver. 2) (second line)

Figure 12: Example 4.7 for αn = α1
n = α

2
n = α

3
n = 0.9 for all n ∈ N0, θ = 0.5, accuracy eps = 1, the area being [−20, 20]2, the iteration

count fixed at 100 and ω = 0.009i: (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII
(ver. 2), CJNS, JNSI (ver. 2) (second line)

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 27

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 26

of iters. : 100 and Time : 10.7272

100

200

300

400

500

600

700

of iters. : 100 and Time : 30.5077

100

200

300

400

500

600

700

of iters. : 100 and Time : 10.1083

100

200

300

400

500

600

700

of iters. : 100 and Time : 35.799

100

200

300

400

500

600

700

of iters. : 100 and Time : 18.5792

100

200

300

400

500

600

700

of iters. : 100 and Time : 47.2839

100

200

300

400

500

600

700

of iters. : 100 and Time : 28.0028

100

200

300

400

500

600

700

of iters. : 100 and Time : 52.0915

100

200

300

400

500

600

700

Figure 13: Example 4.7 for αn = α1
n = α

2
n = α

3
n = 0.1 for all n ∈ N0, θ = 0.9, accuracy eps = 1, the area being [−20, 20]2, the iteration

count fixed at 100 and ω = 0.009i: (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII
(ver. 2), CJNS, JNSI (ver. 2) (second line)

of iters. : 100 and Time : 8.658

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 21.1339

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 10.2985

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 22.3839

50

100

150

200

250

300

350

400

450

500

of iters. : 100 and Time : 16.6524

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 31.1252

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 14.9748

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 27.3827

50

100

150

200

250

300

350

400

450

500

Figure 14: Example 4.7 for αn = α1
n = α

2
n = α

3
n = 0.5 for all n ∈N0, θ = 0.5, accuracy eps = 1, the area being [−6, 6]2, the iteration count

fixed at 100 and ω = −0.0001 − 0.08i: (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII
(ver. 2), CJNS, JNSI (ver. 2) (second line)

Figure 13: Example 4.7 for αn = α1
n = α

2
n = α

3
n = 0.1 for all n ∈ N0, θ = 0.9, accuracy eps = 1, the area being [−20, 20]2, the iteration

count fixed at 100 and ω = 0.009i: (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII
(ver. 2), CJNS, JNSI (ver. 2) (second line)

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 26

of iters. : 100 and Time : 10.7272

100

200

300

400

500

600

700

of iters. : 100 and Time : 30.5077

100

200

300

400

500

600

700

of iters. : 100 and Time : 10.1083

100

200

300

400

500

600

700

of iters. : 100 and Time : 35.799

100

200

300

400

500

600

700

of iters. : 100 and Time : 18.5792

100

200

300

400

500

600

700

of iters. : 100 and Time : 47.2839

100

200

300

400

500

600

700

of iters. : 100 and Time : 28.0028

100

200

300

400

500

600

700

of iters. : 100 and Time : 52.0915

100

200

300

400

500

600

700

Figure 13: Example 4.7 for αn = α1
n = α

2
n = α

3
n = 0.1 for all n ∈ N0, θ = 0.9, accuracy eps = 1, the area being [−20, 20]2, the iteration

count fixed at 100 and ω = 0.009i: (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII
(ver. 2), CJNS, JNSI (ver. 2) (second line)

of iters. : 100 and Time : 8.658

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 21.1339

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 10.2985

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 22.3839

50

100

150

200

250

300

350

400

450

500

of iters. : 100 and Time : 16.6524

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 31.1252

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 14.9748

50

100

150

200

250

300

350

400

450

500
of iters. : 100 and Time : 27.3827

50

100

150

200

250

300

350

400

450

500

Figure 14: Example 4.7 for αn = α1
n = α

2
n = α

3
n = 0.5 for all n ∈N0, θ = 0.5, accuracy eps = 1, the area being [−6, 6]2, the iteration count

fixed at 100 and ω = −0.0001 − 0.08i: (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII
(ver. 2), CJNS, JNSI (ver. 2) (second line)

Figure 14: Example 4.7 for αn = α1
n = α

2
n = α

3
n = 0.5 for all n ∈N0, θ = 0.5, accuracy eps = 1, the area being [−6, 6]2, the iteration count

fixed at 100 and ω = −0.0001 − 0.08i: (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII
(ver. 2), CJNS, JNSI (ver. 2) (second line)

5. Conclusion

In this study, we would investigate the convergence of algorithms, assuming that the inertial algorithms
available in the literature for the fixed point problem will work effectively for the pairs of mappings that
satisfy quasi (L, δ)-contractive condition, with the intention of adapting them to the coincidence point
problem. However, as we delved deeper into the study, we saw that, surprisingly, these were not effective
in accelerating the classical Jungck algorithms due to their generally accepted structure in the literature.
We were able to overcome this difficulty by defining an iteration with a somewhat contradictory inertial
step (θn(T2xn − T2xn−1)). We defined and studied effective algorithms in terms of convergence speed
for the coincidence point problem called “Jungck inertial type algorithms”. These algorithms offered a
different structural approach compared to classical inertial algorithms, resulting in increased performance
and efficiency. In this context, we observed with examples that the inertial step in the proposed new

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 28

structure also accelerates the classical Jungck-Picard, classical Jungck-Mann and classical Jungck-Ishikawa
algorithms. We obtained extensive analyzes of the convergence of new inertial type algorithms and
demonstrated the stability and data dependency properties for one of these algorithms. We tested the
obtained theoretical results with non-obvious examples in finite dimensional spaces. Finally, in order to
reveal how these theoretical results can be applied practically, we used them to find approximate solutions
to the solutions of integral equations and differential equations, as well as to approximately find the roots
of complex polynomials and obtained polynomiographs to turn them into visual art. We believe that
the demonstrated advantages of these algorithms will facilitate their broader adoption and offer valuable
insights for future developments in the field of fixed/coincidence point theory and related research areas.

References

[1] F. Ali, J. Ali, Convergence, stability, and data dependence of a new iterative algorithm with an application, Comput. Appl. Math.
39(4) (2020) Paper No. 267, 15 pp.

[2] F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator
with damping, Wellposedness in optimization and related topics (Gargnano, 1999) Set-Valued Anal. 9, no. 1-2 (2001) 3–11.

[3] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci. 2 (2009)
183–202.

[4] V. Berinde, Iterative Approximation of Fixed Points, Springer, Berlin–Heidelberg, 2007.
[5] C. Chen, R.H. Chan, S. Ma, J. Yang, Inertial proximal ADMM for linearly constrained separable convex optimization, SIAM J.

Imaging Sci. 8(4) (2015) 2239–2267.
[6] A. D’aspremont, D. Scieur, A. Taylor, Acceleration Methods, Foundations and Trends in Optimization 5, No. 1-2 (2021), pp. 1–245;

DOI:10.1561/2400000036.
[7] J. Garcia-Falset, O. Muñiz-Pérez, K. Sadarangani, Coincidence problems under contractive type conditions, Fixed Point Theory

18(1) (2017) 213–222.
[8] K. Gdawiec, W. Kotarski, A. Lisowska, On the robust Newton’s method with the Mann iteration and the artistic patterns from

its dynamics, Nonlinear Dynam. 104 (2021) 297–331.
[9] K. Goebel, A coincidence theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968) 733–735.

[10] I. Gościniak, K. Gdawiec, One more look on visualization of operation of a root-finding algorithm, Soft. Comput. 24 (2020)
14135–14155.

[11] F. Gürsoy, A.R. Khan, M. Ertürk, V. Karakaya, Weak w2-stability and data dependence of Mann iteration method in Hilbert
spaces, Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Mat. RACSAM, 113 (2019) 11–20.

[12] F. Gürsoy, A.R. Khan, M. Ertürk, V. Karakaya, Coincidences of nonself operators by a simpler algorithm. Numer. Funct. Anal.
Optim. 41(2) (2020) 192–208.

[13] E. Hacıoğlu, F. Gürsoy, S. Maldar, Y. Atalan, G.V. Milovanović, Iterative approximation of fixed points and applications to
two-point second-order boundary value problems and to machine learning, Appl. Numer. Math. 167 (2021) 143–172.

[14] N. Hussain, V. Kumar, M.A. Kutbi, On the rate of convergence of Jungck-type iterative schemes, Abstr. Appl. Anal. 2013, Art. ID
132626, 15 pp.

[15] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 83(4) (1976) 261–263.
[16] B. Kalantari, Polynomial Root-Finding and Polynomiography, World Scientific, Singapore, 2009.
[17] A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, New insights on a pair of quasi-contractive operators in Banach spaces: Results on

Jungck type iteration algorithms and proposed open problems, Math. Comput. Simulation 215 (2024) 476–497.
[18] A.R. Khan, F. Gürsoy, V. Karakaya, Jungck-Khan iterative scheme and higher convergence rate, Int. J. Comput. Math. 93(12)

(2016) 2092–2105.
[19] A.R. Khan, F. Gürsoy, V. Kumar, Stability and data dependence results for the Jungck-Khan iterative scheme. Turkish J. Math.

40(3) (2016) 631–640.
[20] Q.-H. Liu, A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings, J. Math. Anal. Appl.

146(2) (1990) 301–305.
[21] D.A. Lorenz, T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision 51(2) (2015)

311–325.
[22] R. Machuca, A coincidence theorem, Amer. Math. Monthly 74(5) (1967) 569 https://doi.org/10.2307/2314896.
[23] P.E. Maingé, Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math. 219 (2008) 223–236.
[24] S. Maldar, Iterative algorithms of generalized nonexpansive mappings and monotone operators with application to convex

minimization problem, J. Appl. Math. Comput. 68(3) (2022) 1841–1868.
[25] S. Micula, G. V. Milovanović, Iterative processes and integral equations of the second kind, In: Matrix and Operator Equations

and Applications (M. S, Moslehian, ed.), pp. 661–711, Springer, Cham, 2023; https://doi.org/10.1007/16618 2023 59.
[26] O. Mleşniţe, Existence and Ulam-Hyers stability results for coincidence problems, J. Nonlinear Sci. Appl. 6(2) (2013) 108–116.
[27] A. Moudafi, M. Oliny, Convergence of a splitting inertial proximal method formonotone operators, J. Comput. Appl. Math. 155(2)

(2003) 447–454.
[28] M.O. Olatinwo, Some stability and strong convergence results for the Jungck-Ishikawa iteration process, Creative Math. Inform.

17 (2008) 33–42.

A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, G. V. Milovanović / Filomat xx (2025), zzz–zzz 29

[29] B.T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys. 4(5) (1964)
1–17.

[30] S. Qureshi, I.K. Argyros, A. Soomro, K. Gdawiec, A.A. Shaikh, E. Hincal, A new optimal root-finding iterative algorithm: local
and semilocal analysis with polynomiography, Numer. Algorithm 25(4) (2024) 1715–1745.

[31] A. Rafiq, M. Tanveer, W. Nazeer, S.M. Kang, Polynomiography via modified Jungck, modified Jungck Mann and modified Jungck
Ishikawa iteration schemes, PanAmer. Math. J. 24(4) (2014) 66–95.

[32] D.R. Sahu, Applications of the S-iteration process to constrained minimization problems and split feasibility problems, Fixed
Point Theory 12 (2011) 187–204.

[33] Y. Shehu, A. Gibali, S. Sagratella, Inertial projection-type methods for solving quasi-variational inequalities in real Hilbert spaces,
J. Optim. Theory Appl. 184(3) (2020) 877–894.

[34] S.L. Singh, C. Bhatnagar, S.N. Mishra, Stability of Jungck-type iterative procedures, Int. J. Math. Math. Sci. 19 (2005) 3035–3043.
[35] I. Timiş, V. Berinde, Weak stability of iterative procedures for some coincidence theorems, Creat. Math. Inform. 19(1) (2010) 85–95.
[36] G.I. Usurelu, A. Bejenaru, M. Postolache, Newton-like methods and polynomiographic visualization of modified Thakur pro-

cesses, Int. J. Comput. Math. 98(5) (2021) 1049–1068.

