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Abstract: Applying Gauss—Seidel approach to the improve-
ments of two simultaneous methods for finding polynomial
zeros, presented in [9], two iterative methods with faster con-
vergence are obtained. The lower bounds of the R-order of
convergence for the accelerated methods are given. The im-
proved methods and their accelerated modifications are dis-
cussed in view of the convergence order and the number of
numerical operations. The considered methods are illustrated
numerically in the example of an algebraic equation.
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Consider a monic polynomial of degree n > 3

P(:)=TT(z-r),

i=1

with simple real or complex zeros r,...,r,. Let

z,...,z, be distinct reasonably close approxima-
tions of these zeros and let

Q(z2)= I—II(Z - z,).
Then, for z =2z, (k=1,...,n), we have
Q'(z)= I_Il (z¢—2,).

imk

Introduce 4, = —P(z,)/Q'(z,) for abbrevia-
tion. The following iterative method of the second
order for the simultaneous finding of polynomial
zeros has been the subject of many papers:

p=z,+4, (k=1,...,n),

or, in the form
P
z,’("=zk———n—(z—k)—— (k=1,...,n) (nH

H (z¢—2)

i=1

=k
where z} is new approximation to the zero r,. The
iterative formula (1) is classical result introduced
by Weierstrass [11, p. 258} in 1891, in connection
with a proof of the fundamental theorem of alge-
bra. Different derivations of this formula where
given much later by Docev [4], Kerner [7] and the
others.

Using the approximations z* =z, + 4, instead
of z, (i = k), Nourein [9] suggested the following
improvement of the methods (1) (called the im-
proved Durand-Kerner method ):

fo=z,—~ P(z,)
].—I(zk—zi_Ai)
2k
(k=1,...,n). (2)

The convergence order of this method is three (see
[9)). The price to be paid in order to achieve faster
convergence consists of the increased number of
numerical operations because of the additional
calculations of Q(z,) (k=1,...,n). As a result,
the iterative process (2) is relatively inefficient in
practical application.

Let us put
A= max |4,

I<ign

Assuming that 4 is small enough (in other words,
all starting approximations are taken to be suffi-
ciently close to the zeros), we shall have the devel-
opment:

I1(z-z-4)

i=1
i=k
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h

(- )(l—zk“_,)

i=1 i

A ]
+0(4%)].

i=1 T
ik

=0 (zk)l] -

Taking only the linear terms of A, in the above, it
follows from (2) that

1—)5 4, )—

(k=1,...,n). (3)
The convergence of method (3) remains cubic (see
(8.

Efficience of the iterative process (2) can be
increased, in certain degree, if calculating new
approximations 7, we use already calculated ap-
proximations %, (i < k) in the same iteration (the
so-called Gauss—Seidel approach). In this case we
obtain the accelerated iterative process

=2z, -4,

fo=z, — P(zk)
[ (- 2) T1 (am2)
(k=1,...,n). (4)

Let r=[r,...r,]T be the limit point (the vector
of the exact zeros) of the iterative process (4). We
shall now prove that the R-order of convergence of
the method (4), denoted by Og((4), r) (see [10]), is
at least 1+ o0,, where o, € (2, 3) is the unique
positive zero of the polynomial

n—1

flo)=0"—0— Y o~
k=0

The proof is essentially the same as in [2], and
some of its steps will be omitted.

Let m=0, 1,... be the iteration index and let
d = min|r, — r,
iJ
i=j
(m) (m)
A = 2 —

For simplicity, we shall omit the iteration index
always when it cannot cause confusion. We shall
write z, and Z, instead of z{™ and z{™*" respec-
tively. Let

wi(z )—H(Z—Z) l_[ (z=2F),

i=k+1

— _ * ok _ A2
‘Dk—Zk Fis vk-—zk Ty Up = 2y .

It can be proved that

k—1 \
6k=vk(La‘“’ + L Bf“v}“}
j J=k+1
holds, where
1 n
a= e T (5-1).
! (zj_zk)wli(z‘j) i=1 ! )
iwk j
1
B = H (z ),

(Z_;"= _zk)wl:(zj*) "’l
i=
n

* —
Up =0, Z a0,
J=1
Jj=k

n -
1 Z; =

a, =
Tk - P
ES R TR N PR #

i=k,j

Suppose that the initial conditions
d ) .
— (i=1,...,n) (5)

are satisfied. Put

o® <= =

g 2n

he=gqlody Bt =glofl, A= ql6,l.
Using the inequality

N T
2n—3 2n—3 Sh—1 "=

we can establish
i 1 k-1
h, < ———l—h { Y 4, E h*}
i=1 imk+1
(6)
ht < ——7hy Z h,.
Tk
According to (5), the inequalities
WO = glof < 1
hold for each k= 1,...

h= max h®
1g<kgn

then

h(l(0)<h<l

, n. If we put

(k=1,...,n).

Besides, we conclude that the iterative process (4)
is convergent. Further, we can write

RO < (k=1,...,ny;m=0,1,...).
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Defining the matrix 4 by

2 1 0
I 1 1

A=|: . _ ,
1 0 1
2 1 0

the vectors

T
ulm = [ w{™ ... u('")]

n

can be successively calculated by
V= gy (m=0,1,...),

starting with #@=[1 --. 1]7. The characteristic
polynomial of 4 is

n—1

AN =(A-1)"-(A-1D)-X¥ A-1"
k=0
Putting o = A — 1, we obtain

fle)=f(a+1)

n—1

=¢"—0- ) o*.

k=0
Since the spectral radius of matrix 4 is p(4)= 1+
o,, where g, € (2, 3) is the unique positive zero of
f,(0), we can prove, similarly as in |2], that the
lower bound of the R-order of the iterative method
(4) is given by

Or((4),r)=p(4)=1+ao,.

To compare the efficience of modifications (2),
(3) and (4) of Weierstrass’ formula (1), with regard
to the number of numerical operations, we present
Table 1 for an n-th degree polynomial P with all
real zeros. The number of calculations of the poly-
nomial values P(z,),..., P(z,) is the same for all
methods.

From Table 1 we can infer that the improved
method (2) requires two times more numerical
operations than the basic method (1). Thus, the

Table 1

n 2 3) 4

addition and

substraction n? 2n? n(3n—2) 2n®—-n
multiplica-

tion n(n—=2) 2n(n2) n(n—2) 2n’—5n+2
division n 2n n(n+1) 2n-1

method (2) is not quite applicable. The following
note confirms this conclusion: Using the same
number of operations (plus the additional calcula-
tions of the values P(3,),...,P(Z,)). the basic
method (1) can be applied successively two times
giving, in a certain sence, the process of the fourth
order. From Table 1 we also conclude that the
modified method (3) uses a lot of divisions. Fur-
ther, many numerical examples show the similar
behaviour of the methods (2) and (3) under the
same conditions. Finally, besides the faster conver-
gence, the iterative process (4) requires less
numerical operations and occupies less storage
space at digital computer (because of the use of
the previous calculated approximations in the same
iteration) in compared to the procedures (2) and
3).

Let 6, = ~P(z,)/P’(z,) be Newton’s correc-
tion. For the simultaneous determination of all
zeros of the polynomial P, the following modified
Newton method is well known (see Bdrsch-Supan
[3], Docev and Byrnev [5], Ehrlich [6], Aberth [1]):

-1
o
z‘k=zk+8k(l+8k}: P )

i=1 !

(k=1,...,n). (7)

For sufficiently good starting values z,,..., z,, the
method (7) converges cubically.

Taking Newton’s approximation z, + §, instead
of z, (i=k) in (7), Nourein [9] obtained the fol-
lowing modified method (called the improved
Ehrlich method ).

-1
2k=zk+5k(l+8kz —z—:g-)

i=1

(k=1,...,n). (8)

The convergence order of this method is four.
Contrary to the improved method (2), the accelera-
tion of convergence of the method (8) is attained
without the additional calculations since the al-

Table 2
o) ®) (&)
addition and
substraction n(2n-1) n(3n-2) n(Sn-3)/2
multiplication n® n? n?
division n n n
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Table 3

2) (4) (8) )
2 0.3226164 0.32261642 0.322546633902 0.322546633902
2 1.7458725 1.74578171 1.745765055593 1.745760941476
2" 4.5366340 4.53662649 4.536620461362 4.536620265610
2" 9.3950698 9.39507132 9.395070928986 9.395070912322

ready calculated Newton corrections §, (which ap-
pear in (7) too) are used Therefore, the iterative
method (8) is more suitable in practical realization
relative to the simultaneous methods (2), (3) and
(4). .

The convergence of Nourein's modification (8)
can be accelerated applying the Gauss-Seidel ap-
proach. If in determination of %, we use the al-
ready calculated approximations £, (i < k), which
are better than Newton’s approximations z; + §,,

we obtain

Zy=2z,+6.v
where

Yk=(1+6k(kil + E 5)\'
\ I

\i=17° Z; imk+1 Sk T 5T
(k=1,....n). (9)

For this method we can derive the following
relation:

h;(m+l)< — 1 h(m)( Z h(m+l)+ Z h(m) )

i=1 f=k 4+ /

The derivation is similar to that of the method (2)
(see also [2] and will be omitted. The correspond-

ing matrix is

2 2 0]
2 2
B= . .
0 2 2
12 2 ... o 2]

The spectral radius p( B) of this matrix determines
the lower bound of the R-order of the method (9).
Since p(B)=2(1 +1,), where 7,€(1, 2) is the
unique positive root of the equation 7" — 7 — 1 =0,

we have
0x((9),r)=p(B)=2(1+1,)>4.

The increase of the convergence order of the
method (9) is obtained without the additional

storage space and uses less numerical operations
than the method (8) (see Table 2).

By virtue of the previous, we conclude that the
accelerated simultaneous method (9) is more effec-
tive comparing to the other methods considered in
this paper. The following example illustrates this
conclusion,

Example. Consider Laguerre’s polynomial of the
fourth degree

- 16x3 + 72x% — 96x + 24.
Beginning with the initial approximations

240=45  z{0=9.36,

after the first iteration we obtained the values
presented in Table 3. The correct digits in the
table are printed boidface.
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