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ABSTRACT
In this short note we give some comments to recent paper by M.A. Bokhari,
A. Qadir, and H. Al-Attas, On Gauss-type quadrature rules. Numer. Funct. Anal.
Optime. 31 (2010), 1120-1134. Their polynomials are a special case of the Jacobi
polynomials on (0,1). In addition we construct orthogonal polynomials

n,(x),n=0,1,.., and the corresponding Gaussian quadrature rules with respect

to the linear B-spline (as a weight function) and give some numerical examples in
order to illustrate an application of such quadratures.
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1. Introduction. Recently Bokhari, Qadir, and Al-Attas [1] considered

Gauss-type quadrature rules based on polynomials p,(#) orthogonal on (0,1) with
respect to the linear weight function (#):=1-¢. They discussed a development of

P,(?) via Gaussian hypergeometric differential equation, narrated some of its
properties, derived the three-term recurrence relation for the monic polynomials

pml(t)=[t—%Jpn<t>—ﬁpn-l<t),n=o,1,--- iR

where p,(¢)=1 and p,(£)=0, and considered several numerical examples of such
kind of quadratures.
In this short note we show that these polynomials p,(¢) are a special case

of the well-known Jacobi polynomials on (0,1). In Section 3 we construct orthogonal

polynomials n,(x),2=0,1,..., and the corresponding Gaussian quadrature rules

with respect to the linear B-spline (as a weight function). Finally, in Section 4 we
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give some numerical examples to illustrate and application of such quadratures.

2. Jacobi Polynomials on (0,1). Let W(X)=(1—X)“(1+X)B,a,B>—1, and

{ﬂn“’ﬁ)(X)} be a sequence of the corresponding monic Jacobi polynomials, which

satisfy the three-term recurrence relation (cf. [8, pp. 131-140])

B ()= (-, B0 () B, B (x),m=0.1,..

n+l n" n-1

where f[’)(“’ﬁ) (x)= 1,1%‘1’3) (x)=0, and

. BZ_a2
0L”_(2.71+0L+B) 2n+o+B+2) (n20),

A 4n(n+o)(n+p)(n+o+p)

B 2n+oc+B) [(211+0c+B J

except when ; then .
By a change of variables x=27-1 we get the monic orthogonal polynomials

P (¢ )(= 27" PV (2¢ —1)) orthogonal on (0,1) with respect to the weight function

o(t):=(1- t) ,0, >—1. The coefficients in their three-term recurrence relation

P (¢)=(x—a,) B (¢)-B,p) (¢), n=0,1,.., (2.1)
are
o :1(1+ ) (211+0c+[3+1)2 —(120(2—132)(1120)’
2 2[(2n+a+pr1) -1
5. —iB n(ﬂ+oc)(2ﬂ+[3)(n+a+2[3) (nzl)
(2n+0+pB) [(2n+oc+ﬁ) —1]

For o =1 and B=0, this relation (2.1) gives orthogonal polynomials p, (t)
discussed in [1], which satisfy the relation (1.1).
Now, we list the parameters o, (2>0) and B,(2>1) for some other special
cases:
(a) a=0,p=1.
" - 2(11+1)2 _ n(n+1)
" (2n+1)(2n+3)"" 4(2,”1)2 ’




(b) a=1p=1.

(c) a=2,=0.

n’+3n+1 112(11+2)2

" 2(n+1)(n+2)"" 4(n+1) (20+1)(20+3)

(d) a=2,p=1.
_ 2(n+1)(n+3) _ n(n+3) .

%"= (2n+3)(2n+5)"" 4(2n+3)°
(e) a=2,=2.

1 n(n+4)
(XH:_7BH: >
2’7"~ 4(20+3)(2n+5)
®  a=3=0.
2n® +8n+3 122(11+3)2

ol P, = )
" (2n+3)(2n+5)""  4(n+1)(n+2)(20+3)’
(g) QZS’le'

(n+1)(n+4)

% = (nr2)(n+8)

n(n+1)(n+3)(n+4)
4(n+2) (20+3)(2n+5)

h)  a=p=-1/2.

1 1 1
a, 2’31 8’Bn 16(11 ), etc.

Remark 2.1. The relation (2.1) can be obtained taking W(X)Z‘X‘Y(].—Xz)a, with

and the corresponding generalized Gegenbauer polynomials , where , which were
introduced by Lasc¢énov [7] (see, also, [2, pp. 155-156] and [8, pp. 147-148]). Their
three-term recurrence relation is

Wleh) (X) — XWH(“’B) (X) _ BHWn(_al,ﬁ) (X),WO(“'B) (X) — 1,W_(1<x,ﬁ) (X) =0,

n+l

with recursion coefficients

B - n(n+o) B - (n+B)(n+o+B)
“ (2n+a+B)(2n+a+B+1) " (2n+a+B-1)(2n+0+B)’

except a+B=-1; then B, =f+1.



Since the weight function is even on (-1,1), using Theorems 2.2.11 and 2.2.12
from [8, pp. 102-103], we get (2.1) for polynomials orthogonal with respect to the

weight w(t)=w(ﬁ)/ﬁ=tﬁ(1—t)“, with o, =B, =(B+1)/(a+B+2), o, =B,, + By,
B,=8,,,B,,,n>1.

3. A Gaussian quadrature formula. Sometimes in applications it could
be of some interest to construct orthogonal polynomials nn(x),n =0,1,..., and the
corresponding Gaussian quadrature rules with respect to the linear B-spline (as a
weight function)

1+x, -1<x<0
W(X)IBl(X)= 1-x O<x<1
0, otherwise,

Jo () B () = [ £ (x)(1+|xl) i = 3 4,1 () 2, (1), @D

where R,(p)=0 for all polynomials p of degree at most 22-1.

This weight function is an even extension of o(#)=1-¢ from (0,1) to (-1,1).
The coefficients in the three-term recurrence relation for the corresponding monic
orthogonal polynomials =, (x),

T, (x)=xn,(x)-B,m,,(x),n=12,.
are
B, =1,B,=1/6,B, =7/30,p, =57/245 B, =683/2793,B, = 207725/ 856482,
Bs =286749501/1159331030,, = 286268318986 /1164429355245,
B =272609711230510 /1097298927604497, etc.

For example,

o () =L () = 3,7, () = 2 () = 6 = 2 () =

. 8lx* 19
49 490’

s 50x® 109x s 16825x* 2179x*> 5935
my(x)=x"———+—— m(x)=x°- + -
57 798 15026 7513 631092

, ete.
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In numerical construction we use our Mathematica Package “Orthogonal
Polynomials” [3]. In order to construct quadrature rules up to n points we need

the moment 1 =IHka31 (x)dx,k=0,1,..,2n-1, which are in our case given by
()
M (k1) (k+2)

By the mentioned Package, in this case, we can obtain the recursion coefficients,

>0.

o, (=0 in this symmetric case) and , in a symbolic form for a reasonable n:

{alpha, beta}=aChebyshevAlgorithm[moments, Algorithm->Symbolic];
taking, for example, the first 800 moments,

moments= Table [(1+(-1) ~k)/((1+k)(2+k)), {k,0,800}];

This enables us to construct parameters in Gaussian quadrature

Q. (1)=Y.4"f(x")
k=1
up to <400 nodes. For example, for =100, with Precision ->40, the statement

is the following
{n100,w100} =aGaussianNodesWeigths[100,alpha,beta,
WorkingPrecision->50, Precision->40];

where n100 and w100 are sequences of nodes %,”, k=1,..., n, and Christoffel numbers

A"k =1,.... n, respectively. The last command implements the wellknown Golub-

Welsch algorithm [6].

The corresponding software in Matlab was given by Gautschi [4], The first
FORTRAN package of routines ORTHPOL was also developed by Walter Gautschi
[5] in 1994.

4. Numerical results. In this section we consider three integrals

I = IRQ(X)BI(X)OIX,]{: 1,2,3,
for the functions £ (x)=cos(nx),

L + 1 d f;(X)z—z ,
3 1 9\ 1 & 2+sin(107x)
X+— | +— |x—-——| +—

( 10) 100 ( 10j 25

f(x)=

and then apply the quadrature formula (3.1) for their calculation. The first function
is smooth, the second is quasi-singular, and the last is an oscillatory function.

The graphics of integrands £, (x)B,(x),k=1,2, are displayed in Fig. 4.1, and the
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graphic of the oscillatory function £(x)B,(x) is presented in Fig. 4.2
Using our Mathematica Package “Orthogonal Polynomials” [5] we
constructed n-point Gaussian rules for n=5; 10(10)50; 100(50)400. Then, we applied

these rules to integrals 7,,£=1,2,3, and compared the obtained results with the

exact values
I, =4/ 72 =0.405284734569351085775517852838910555617435...

1, =22.3859074908351131640822746542985712503464...
1, =1.15470053837925152901829756100391491129520...

Figure 4.1. Graphics of function x — B,(x)f;(x) (left) and x — B,(x)f,(x) (right)

Figure 4.2. Graphics of the function x — B (x)£(x)

In Table 4.1 we give the relative error in Gaussian approximations



Qn(fk)_[k

k

REL, (n)= k=123

Numbers in parentheses indicate decimal exponents.
Table 4.1. Relative errors REL(n) in Gaussian approximations @, (£,) for £=1,2,3

n REL,(n) RELy(n) REL;(n)
5 2.89(-5) 3.33(-1) 1.39(-2)
10 4.01(-15) 1.25(-1) 2.97(-2)
20 1.01(-40) 1.81(-2) 7.79(-2)
30 2.50(-3) 1.39(-2)
40 3.26(-4) 3.69(-4)
50 4.05(-5) 3.32(-4)
100 4.22(-10) 2.68(-6)
150 2.28(-14) 1.05(-6)
200 9.20(-19) 3.63(-9)
250 4.38(-24) 3.79(-10)
300 6.49(-28) 1.49(-12)
350 1.99(-32) 1.81(-14)
400 3.40(-38) 7.64(-16)

As we can see in the case of a smooth function £ the convergence is very fast.

The relative error is about 10749 for =20 points. As we expected the convergence in

the last case is very slow. We must use 400 points in the quadrature rule in order to
obtain the so-called double precision result (with about 16 decimal digits).
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