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QUADRATURE FORMULAS OF RADAU TYPE ON (0, +o00)*
G. V. Milovanovié¢ and M. R. Milosevié

Abstract. In this paper we consider two classes of Radau type quadrature for-
mulas for integrals extended over the positive real axis, assuming given algebraic
behavior of the integrand at the origin and at infinity. The parameters of these
formulas are expressible in terms of Gauss-Jacobi quadratures. A numerical
example is included.

1. Introduction

For integrals on half-infinite intervals W. Gautschi [4] has developed two
types of quadrature formulas. One has maximum polynomial degree of ex-
actness, while the other has maximum rational degree of exactness. Here
we treat in a similar spirit the Radau type of integrals over the half-infinite
interval [0, 400) and integrands that have an algebraic singularity at the ori-
gin of type %, a > —1, and behave like 277, § > 1, as 2 — +0o. We show
that both types of formulas can be reduced to Gaussian quadratures relative
to appropriate Jacobi weight functions with different parameters like in [4].

We note that W. M. Harper [6] and S. Haber [5] have developed special
symmetric quadrature rules for integrals extended over the whole real line,
whose integrands go to zero like |¢|® when |2| — +o0, that integrate exactly
(1+2?)~P/2x f(z), for some types of rational functions f(z). R. Kumar and
M. K. Jain [7] have considered quadratures with the maximum “rational”
degree *of exactness. These formulas have not limitation on the allowed
numbers of quadrature points. Similar problems were also considered in
other papers (cf. [1], [3] and also [2, pp. 225-226] and [8, p. 52]).
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2. Gauss-Radau Quadrature Rules of Maximum
Algebraic Degree of Exactness

Let P,, be the set of algebraic polynomial of degree at most m. In this
section we wish to find a quadrature formula

(2.1) /0 @)y e = a0 f(0) + > axf(en)+ rra()

of Gauss-Radau type with weight function & — /(14 x)?.

In order to construct (2.1), we consider the following quadrature problem

n

> - "L.a Py — . >
(2.2,) /0 me de = Z(LkF(ILk) + 1 (F)

k=1

with F(z) = 2g(), such that Pnt1(F) = 0 whenever g € Pan-1.

In formula (2.2) we should find ax. @k (k= Ly o) Tr6I0
eo @ i .
(2.3) /0 m g(z)dz = gakmkg(mk)-{-u(g),
such that r,(g) = 0 for g(z) = A =0,1,....2n — 1. Thus, for the

new weight function z — a:"‘“/(l + ’L)/j formula (2.3) will be exact for all
g€ P?n—l

To assure integrability (2.3), we assume
(2.4) a>-1, pB-a>2n+l

Changing variables

—
|

8

—

. . -1
(2.5) Ty =t le, T= T3

we obtain

1
(2.6) / (1-t)M1+ )1 - 1)t (1 4 ¢)P 22 dt
-1

3 l—tk . R ; Qm—=A—1
:.;} 1 1—‘t~ A J. l Zn .
’ Z{ak(l-%-tk)z"}( k] (R S)
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Here we have set, in conformity with (2.5),

1 —ay 1=t
lk:tk. T = k

2.7 = ,
(2.7) = e =

Since {(1 —1)N(141)2n=A-1 [A=0,1,....2n— 1} forms a basis in Py, _q, '
it follows from (2.6) that

(2.8) T tp =1/, 2f3-1(1—tk)(1+tk)-2"ak:wg, k=1,...,n,
where
(29) 7l =" a+1,8—a-2n-2), of =wi(a+1,8-a—2n—-2)

are the n-point Gaussian nodes and weights relative to the Jacobi weight
function with parameters (¢ + 1,8 - a—2n - 2). Note, by assumption
(2.4) that both parameters are larger than —1, as required by the theory of
Gauss-Jacobi quadratures. In this way, (2.7) and (2.8) gives

, 1-7¢ (14 T',])')'nw"{
2.10 xp = —k c= kL Tk b,
( ) T 1+T;}] Ak 2/,3_1(1 ~ 7';}]) n

for the desired abscissas and weights in the quadrature formula (2.2).

Supposing that F(0) = 0 and let f(x) be given by F(z) = f(a) - f(0).
Then comparing (2.1) and (2.2) we obtain

, . g -
(211) ag = /0 m(ll - ; ay,

where ay is defined by (2.10).
Using the transformation (2.5) we find

oo l'a 1 1 /j
2.12 —_— dr = —— 1—-1)*(1+41)P~>"2 g
Q) [ b [ oo

1 —a=2
= R

28
_ e+ DI'(B-a-1)
- I(3) '
Finally, using (2.9), (2.11), and (2.12), we find that
5 10 _ e+ DIB-a-1) & (1+7)me
- (213) ap = B-DrE-T) —2“23_1(1_7_&])..

k=1
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We consider now a generalized Gauss-Radau quadrature rule with the
weight function 2 — /(1 + 2)? and point 0 of multiplicity m,

/0 Ty @ e = Kof O+ Eaf O+ -
(2.14)

+ Kot S0 + Y Arf(Xk) + Rogm(F),

k=1
where the remainder R,y (F) is zero whenever [ is a polynomial of degree
<2n+m-1.

In this case, we assume that the function F' is given by

el
Fz)= f(z)= Y £

!
[
1=0

In order to construct (2.14), we consider the corresponding quadrature prob-
lem

o @ ’ n
/o Ty W= E ARF(Xi) + Rogm(F),

for which Rpim(F) = 0 whenever g € Pan—1 and F(z) = z™g(z). Using
the same technique as before we obtain that
Ciomy, _(eTpeeigf
TivTl P esiu-T)m

(2.15)  Xi (k=1,...,n),

where
J _ (n) U e J_  (n) 9
T, =7, (a+m,f—a—2n—m 1), Qp=w, (a+m,f-a-2n-m 1)
are the parameters of n-point Gaussian quadrature formula with the Jacobi
weight function with parameters (o +m,3 —a —2n—m — 1).
Since
F(0)= F'(0)=--= F")(0) =0,
in a similar way as before we find the coefficients K; (1 =0,1,...,m— 1)in
the following form ~

n

Ig,i:l(F(a+i+1)1‘(ﬂ—a—i—1) ZAka;>,

i B-DrG-0 &

where A, and X are given in (2.15).
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3. Gauss-Radau Quadrature Rules of Maximum
Rational Degree of Exactness

In [4] Gautschi considered the quadrature rule

+oo %
(3.1) | 1@t de = 3 Aust@n) + Ra(h),
0 k=1
which is exact (i.e., R, (f) = 0) whenever
) = ! =0,1 2 1
f(l)—ma v=yu,l,...,2n — 1.

In the case a = 0, # = 2, such a quadrature rule has already been suggested
in Stroud and Secrest [8].

In this section we the corresponding Radau quadrature rule

+oo n
62) [ A dn = 40f0)+ 3 Ak @)+ Rua (),

k=1
which is exact whenever

(33) f((l?) = W, Vv = 0, ].,. .o ,QTL.

Here the assumptions needed for integrability are
a>-1, f—-a>1.

It is easy to see that the exactness of (3.2) for the rational functions (3.3)
is equivalent to
F('Lk)
(14 z4)B+2n-1

i a . .
e il ) du e gl A
/0 (1§ o)peen Fl@)de = AoF(0) + k; g
for F(z)=2" (v =0,1,...,2n).
Using the transformation of variables (2.5) and (2.7), the previous formula
becomes

1
/ (1 =)L +)P272(1 —t)*(1 + ¢)*" dt
1

1
= 2'B+2n—1A05u0 + -2— Z(l + tk)ﬁAk(l - tk)u(l - tk')i.’n—u’
k=1



62 G. V. Milovanovi¢ and M. R. Milosevi¢
forv =0,1,... .2n. (Here, é;; is the Kronecker’s delta.) In fact, these equal-

ities are conditions for the Radau quadrature formula with Jacobi weight
w e B=a=2) (1) = (1 —1)*(1+1)""*"2 on (—1,1) and fixed node at t = 1, i.e.,

-1
(3.4) / w72 (g (1) dt = Bog(l ZBAJ tr) (g € Pan),
-1

where 1
2/~ 4o = By, 5 Au(1+ i = E.

Taking ¢(t) = (1 — t)h(t), (3.4) reduces to the Gaussian formula

.1 n
/ “»’(‘H—1"1‘““_2)('[)/1(1)r[-[ _ Z Bi(1 — 'l‘vk)h(f;;),

k=1

—

where h € Py, —1. Thus,

Bi(1—t;) = A" =A@+ 1,8~ a - 2),
ty=7" =7 a+1,8-a-2),

where Tin) and /\(kn) are the n-point Jacobi nodes and weights corresponding

to parameters & + 1 and f — o — 2.
Now, we have
L — i D

Ty = , A= , k=1,....,n).
=TT, k A=)+ (r)? ( n)

Finally, putting g(¢) = 1 in (3.4) we find

1
Boz/ wleB—a=2) dz—ZBA

-1
l.e.,

Ag =

)i I'(B) 11—t

1 {2;’3—111(0—{—1)1“(/3——&—1)_ o A }
k=1

In applications we use formula (3.2) in the following form

. + o0 Qo
(3.5) /0 m o(z)dr = Cop(0 +;CM« (2k) + Rng1(p),
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where ¢(z) = (14 2)P f(z) and

/\(")
Co= 2k e X o

T (1 +zp)P 1—1,
and (n)
,_Te+D)IB-a-1) 5 AP
Co = —2 -7
’ I(5) ,{2 -1y

The remainder R,1i(¢) can be obtained in terms of the corresponding
remainder in Gauss-Jacobi formula.

4. Numerical Example

In this section we test formulas (3.1) and (3.2). Formulas with algebraic
degree of precision exist only for small values of n (see conditions (2.4)).
All computations were done on the MICROVAX 3400 computer using VAX
FORTRAN Ver. 5.3in D- and Q-arithmetic, with machine precision & 2.76 X
10717 and ~ 1.93 x 10734, respectively.

Consider integral from [4]

+00 4172 tanh 2
/ o do = 0.340388967504569561787042289001019 1072,
; (1 + 3))12'5

Here o = 1/2 and 8 = 12.5. Using Gaussian quadrature (3.1) and Radau
quadrature (3.2), i.e., (3.5) with ¢(z) = tanhz, we obtain results with the
associated relative errors which are presented in Table 4.1. (Numbers in
parentheses indicate decimal exponents.)

TABLE 4.1.
Relative errors in quadrature rules (3.1) and (3.2)

n (3.1) (3.2)

5 1.38(—6) 8.14(—7)
10 5.08(—11) 2.38(—11)
15 2.63(—15) 7.88(—15)
20 7.98(—18) 1.06(—17)
25 1.94(—19) 8.27(—20)
30 1.06(—21) 1.11(=21)
35 2.10(—23) 6.88(—24)
40 3.27(—25) 3.15(—25)
45 9.93(—27) 4.50(—27)
50 7.46(—29) 1.42(—28)
55 1.08(—29) 7.69(—30)
60 2.71(~31) 8.61(—32)
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The rational degree of exactness of the Gaussian formula (3.1) is 2n — 1.
Since ¢(0) = 0 the quadrature sum of (3.2) has also n nodes as the formula
(3.1), but its rational degree of exactness is 2n, which explains its slightly
better behavior in Table 4.1.
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