
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE

Nouvelle s�erie, tome 67(81) (2000), 1{6

THE �-POLYNOMIALS OF

COMPLETE GRAPHS ARE REAL

Xueliang Li, Ivan Gutman
and Gradimir V. Milovanovi�c

Communicated by Slobodan Simi�c

Abstract. A polynomial is said to be real if all its zeros are real. It has been
conjectured that the �-polynomials of all graphs are real. In this paper we show that
the conjecture is true for complete graphs. In fact, we obtain a more general result,
namely that certain linear combinations of Hermite polynomials are real.

Introduction

Polynomials whose all zeros are real-valued numbers are said to be real. Several
graphic polynomials are known to be real; among them the matching polynomial
plays a distinguished role [3,4,9].

Let G be a graph on n vertices. The matching polynomial of G is de�ned as [3]:

�(G; x) =
X
k�0

(�1)km(G; k)xn�2k

wherem(G; k) is the number of k-matchings of G , i.e., the number of ways in which
k mutually non-touching edges are selected in G ; m(G; 0) = 1 and m(G; 1) =
number of edges of G .

The fact that for all graphs, all zeros of the matching polynomial are real-valued
has been �rst established by Heilmann and Lieb [9]; see also [3,4].

Let C be a circuit contained in the graph G . The subgraph obtained by deleting
the vertices of C from G is denoted by G r C . The number of vertices of C will
be denoted by m . Then Gr C possesses n�m vertices.

If C is a Hamiltonian circuit, i.e., if m = n then, by de�nition, �(GrC; x) � 1 .
In certain considerations in theoretical chemistry [2,11,14,15], graphic polyno-

mials �(G;C; x) are encountered, de�ned as

(1) �(G;C; x) = �(G; x) � 2�(Gr C; x)
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and

(2) �(G;C; x) = �(G; x) + 2�(Gr C; x)

These have been named [2] circuit characteristic polynomials , but in this work we
call them simply �-polynomials . Formula (1) is used in the case of so-called H�uckel-
type circuits whereas formula (2) for so-called M�obius-type circuits; for more details
see [14].

For the success of the chemical theory in which �-polynomials occur, it is essen-
tial that these polynomials are real. Already in the �rst paper devoted to this topic
[2], Aihara mentioned that the zeros of the �-polynomials were real-valued, but
gave no argument to support his claim. In the meantime, for a number of classes of
graphs it was shown that �(G;C; x) is indeed a real polynomial [5,6,8,11,12,13,15].
In addition to this, by means of extensive computer searches not a single graph
with non-real �-polynomial could be detected. The following conjecture has been
put forward [5,6,8]:

Conjecture. For any circuit C contained in any graph G, the �-polynomials
�(G;C; x), equations (1) and (2), are real.

Up to the present moment this conjecture has neither been proved nor disproved
(although a prize is o�ered for its solution [8]). On the other hand, many results,
corroborating its validity, have been obtained. Thus, in particular, �(G;C; x) has
been shown to be real for:
� unicyclic graphs [8];
� bicyclic graphs [15];
� graphs in which no edge belongs to more than one circuit [15];
� graphs without 3-matchings (m(G; 3) = 0) [11];
� several (but not all) classes of graphs without 4-matchings (m(G; 4) = 0) [12].
Note that the aforementioned graphs have comparatively few edges. A natural

question is whether or not the conjecture is true for dense graphs. The extreme case
in this direction is the complete graph. In this work we show that the conjecture
is obeyed by complete graphs.

The main result

Theorem 1. Let Kn be the complete graph on n vertices and C any of its
circuits. Then �(Kn; C; x) , equations (1), (2), is a real polynomial.

Instead of Theorem 1 we demonstrate the validity of a stronger result, namely
Theorem 2. In order to state it we need some preparations.

If C is a circuit on m vertices, then Kn r C = Kn�m , implying that

(3) �(Kn; C; x) = �(Kn; x)� 2�(Kn�m; x)

Now, a well-known result from the theory of matching polynomial is [4,7,9,10]:

(4) �(Kn; x) = Hen(x)
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where Hen is one of the standard forms of the Hermite polynomial [1, p. 778].
Such (monic) Hermite polynomials are orthogonal on (�1;+1) with respect to

the weight function e�x
2=2 .

Bearing in mind equations (4) and (4) we de�ne a polynomial

(5) �(n;m; t; x) = Hen(x) + tHen�m(x);

where 1 � m � n and t is a real number. Clearly, for n � 3 , jtj = 2 and 3 � m � n ,
equation (5) is the �-polynomial of the complete graph on n vertices, pertaining to
a circuit with m vertices.

Theorem 2. For all (positive integer) values of n , for all m = 1; 2; . . . ; n and
for jtj � n� 1 the polynomial �(n;m; t; x) , equation (5), is real.

Obviously, Theorem 1 is a special case of Theorem 2. Therefore in what follows
we proceed towards proving Theorem 2. It should be noted that the right-hand
side of equation (5) is a sort of linear combination of Hermite polynomials.

Preparations

Some well known properties [1] of the Hermite polynomials are summarized in
Lemma 1.

Lemma 1. (i) The Hermite polynomials Hen(x) satisfy the three-term recur-
rence relation

Hen(x) = xHen�1(x)� (n� 1)Hen�2(x);

(ii) All zeros of Hen(x) are real and distinct;
(iii)

d

dx
Hen(x) = nHen�1(x)

and hence, Hen(x) has a local extreme xi if and only if Hen�1(xi) = 0 . So, the
extremes of Hen(x) are distinct.

Throughout this paper x1; x2; . . . ; xn�1 denote the distinct zeros of Hen�1(x) .
From equation (4) and Theorem 7 of [4], we have

Lemma 2. jxij < 2
p
n� 3 holds for all i = 1; 2; . . . ; n� 1 and n � 4 .

Lemma 3. If for all i = 1; 2; . . . ; n� 1 , the sign of

�(n;m; t; xi) = Hen(xi) + tHen�m(xi)

is the same as that of Hen(xi) , then �(n;m; t; x) is real.

Proof. From Lemma 1 (iii), we have that xi , i = 1; 2; . . . ; n�1 are the extremes
of Hen(x) . Since Hen(x) does not have multiple zeros (Lemma 1 (ii)), we know
that Hen(xi) 6= 0 for all i = 1; 2; . . . ; n� 1 , and that Hen(xi) and Hen(xi+1) have
di�erent signs, i = 1; 2; . . . ; n� 2 .

From the de�nition of �(n;m; t; x) and the condition of Lemma 3, we deduce
that �(n;m; t; x) has at least as many real zeros as Hen(x) , that is at least n real
zeros. On the other hand the degree of �(n;m; t; x) is n . �
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Lemma 4. If jHen(xi)j > (n � 1) jHen�m(xi)j for all i = 1; 2; . . . ; n � 1 , then
�(n;m; t; x) is real for jtj � n� 1 .

Proof. Since jHen(xi)j > (n � 1) jHen�m(xi)j � jtj jHen�m(xi)j for all i =
1; 2; . . . ; n� 1 , the sign of �(n;m; t; xi) = Hen(xi)+ tHen�m(xi) depends only on
the sign of Hen(xi) . Lemma 4 follows from Lemma 3. �

Proof of Theorem 2

Bearing in mind that Hen�1(xi) = 0 , from Lemma 4 we directly get

Lemma 5. The polynomial �(n; 1; t; x) is real for n � 1 and any real value of
the parameter t .

Lemma 5 implies the validity of Theorem 2 for m = 1 . What remains is to
consider the case m � 2 . Therefore, in what follows it will be assumed that
2 � m � n .

De�ne the auxiliary quantities an;m as

(6) an;m = max
1�i�n�1

����
Hen�m(xi)

Hen(xi)

����

Because of Lemma 5, if

(7) an;m � 1

n� 1

then �(n;m; t; x) is real for jtj � n� 1 . Therefore, in order to complete the proof
of Theorem 2 we only need to verify the inequality (7).

Using the well-known three-term recurrence relation for the Hermite polynomials
(Lemma 1), equation (6) reduces to

an;m =
1

n� 1
max

1�i�n�1

����
Hen�m(xi)

Hen�2(xi)

���� =
1

(n� 1)(n� 2)
max

1�i�n�1

����
xiHen�m(xi)

Hen�3(xi)

����

and we conclude immediately that

an;1 = 0 ; an;2 =
1

n� 1
(n � 2) ;

and

an;3 =
1

(n� 1)(n� 2)
max

1�i�n�1
jxij

8>><
>>:

=
1

n� 1
; n = 3;

<
2
p
n� 3

(n� 1)(n� 2)
� 1

n�1 ; n � 4:

Note that the relation an;1 = 0 provides another proof of Lemma 5. The upper
bound for an;3 follows from Lemma 2.
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The case when n � m � 4 can be veri�ed using a result of Tur�an [17] (see also
[16]). Namely, under the condition

n�2X
k=0

k! c2k < (n� 1)! c2n ;

Tur�an proved that the polynomial P (z) =
nP

k=0

ckHek(z) has n distinct real zeros.

Considering the �-polynomial given by (5), we conclude that it has all real zeros

if jtj <
p
(n� 1)!=(n�m)! . On the other hand, it is easily veri�ed that for n >

m � 4 the expression
p
(n� 1)!=(n�m)! is greater than n� 1 .

Notice that a4;4 = 1=3 .
By this, the proof of Theorem 2 has been completed. �
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