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ON MARKOV-DUFFIN-SCHAEFFER INEQUALITIES

GRADIMIR V. MILOVANOVIC*
AND
THEMISTOCLES M. RASSIAS

ABSTRACT.  In this survey paper we consider extremal problems for algebraic and
trigonometric polynomials in the uniform norm. We study the classical inequalities of
the brothers Markov, several variants of Bernstein inequality, as well as refinements of
these inequalities.

1. Introduction

The first result in the theory of extremal problems for polynomials was connected
with some investigations of the well-known Russian chemist Mendeleev [25]. In math-
ematical terms, Mendeleev’s problem was: If P(t) is an arbitrary quadratic polynomial

defined on an interval [a,b], with n}a.);] P(t) — n?ir})] P(t) = L, how large P'(t) can be
t€la, t€|a,

on [a,b]? This problem can also be stated for polynomials of degree n in the following
form: If P(t) is an arbitrary polynomial of degree n and |P(t)] < 1 on [=1,1], how
large can |P'(t)| be on [~1,1]? Such a problem was solved by A. A. Markov [22]. His
brother V. A. Markov [23] investigated the upper bound of |P(*)(t)|, where k < n.
An analogue of Markov’s theorem for the unit disk in the complex plane instead of
for the interval [~1,1] was investigated by Bernstein [2]. Markov’s and Bernstein’s
inequalities are fundamental for the proof of many inverse theorems in polynomial
approximation theory (see Dzyadyk [13], Lorentz [20], Meinardus [24], Ivanov [18)).
There are many results on Markov’s and Bernstein’s theorems and their generalizations
in various norms and restricted classes of polynomials. Several monographs and papers
have been published in this area (cf. Boas [6], Durand [12], Mamedhanov [21], Milo-
vanovi¢ [26], Milovanovi¢, Mitrinovié¢ and Rassias [27—28], Rahman and Schmeisser
[32], Rassias [34], Voronovskaja [47]).

In this paper we will give a short account of the classical results of the brothers
Markov and Bernstein and refinements of their inequalities.
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2. Classical inequalities

We begin by considering the following extremal problem: Let P, be the set of all
algebraic polynomials P (# 0) of degree at most n. For a given norm ||.||, determine
the best constant A, x such that

(2-1) PO < An il Pl (P € Pn),
e,
|PO|
2.2 Apk = sup .
(22) vE= S0 R

In 1889, A. A. Markov [22] solved this extremal problem in the uniform norm on
[_11 1]7

(2.3) 1A= 1flle = e £

Theorem 2.1. Let k = 1. In the uniform norm (2.3), we have A,, = n?. The
equality in (2.1) holds only at +1 and only when P(t) = cT,(t), where T, is the
Chebyshev polynomial of the first kind of degree n and c is an arbitrary constant.

The best possible constant for the k-th derivative was found by V. A. Markov (23]
in 1892. A German version of his remarkable paper was published in 1916.
Theorem 2.2. In the uniform norm (2.3), for each k = 1,... ,n, we have Ank =
T,(,k)(l). The extremal polynomial is T,,.

Without loss of generality, we can suppose that || P||o = 1.

Markov’s proof of this result is based on a complicated variational method. He
investigated a more general problem: If Ao, A\;,... , A, are given constants and P(t) =
> v—oat” satisfies the condition ||P|loo = 1, what is the precise bound for the lincar
form 3°)_ o a, A, ? By suitably choosing the constants A, the linear form can be made
equal to any derivative of P(t) at any preassigned point.

For fixed k suppose that ¢ — P(t) is an extremal polynomial, i.e., there exists
t* € [—-1,1] such that

|]5(k)(t')| = sup {|P(k)(t')| ! P € Pa; [|[Pllec= 1} g

It is easily shown that such a polynomial exists. Markov’s variational approach was to
show that | P(¥)(¢*)| must be equal to 1 at either n or n + 1 different points —1 < 1 <
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Ty < -+ <Tm <1 (m=norm=n+1). In the latter case £ P(t) is the Chebyshev
polynomial T),(t), whose derivatives satisfy

n?(n? — 12)(n? — 22)--- (n? — (k — 1)?)

(2.4) IPR()] < 135 ... (2k—1)

el S T,

In the former case it can be proved that the extremal polynomial satisfies a differential
equation of the form

PR 0 () Gar P

n%(t —a)?

where a, b, ¢ are real constants which depend upon one parameter. Markov thus proved
that derivatives of this class of polynomials satisfy also (2.4).

A simple proof of Theorem 2.2 was given by Bernstein [4] and an elementary proof
by Mohr [29].

Another type of these inequalities goes back to Bernstein [2] in 1912, who considered
the following problem: Let P(z) be a polynomial of degree n and |P(z)| < 1 in the
unit disk |z| < 1. Determine how large can |P'(z)| be for |z| < 1.

If we take ||f]| = Imlix |f(2)|, this problem can be reduced to the inequality (2.1)
z|<1
for k = 1. Thus, Bernstein’s theorem gives:
Theorem 2.3. A, ; = n. The extremal polynomial is P(z) = cz", ¢ = const.

Bernstein’s theorem 2.3 can be stated in several different forms. One of them is
known as Bernstein’s theorem for trigonometric polynomials:

Theorem 2.4. Let T(6) be a trigonometric polynomial of degree n and |T(0)| < 1,
then

(2.5) IT'(6)] < n.
The equality holds for T(6) = ysinn(6 — 6,), where |y| = 1.
A standard form of Bernstein’s theorem is as follows:

Theorem 2.5. Let P € P, and |P(t)| <1 (-1 <t <1), then

n
1—1¢2

(2.6) |P'(t)] < g -l1<t< 1.

The equality is attained at the pointst = t, = cos %1% 1 < v < n, if and only if
P(t) = yTu(t), where |y| = 1.

This result was proved by Bernstein [2] at the same time as Theorem 2.4, except
that in (2.5) he had 2n in place of n. Inequality (2.6) in the present form first appeared
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in print in a paper of Fekete [15] who attributes the proof to Fejér [14]. Bernstein (3]
attributes the proof to E. Landau.

Bernstein’s proof of Theorem 2.4 was based on a variational method. Simpler proofs
of this theorem have been obtained by M. Riesz [36], F. Riesz [35], and de la Vallée
Poussin [41]. Now, we give an adapted proof of de la Vallée Poussin (cf. Lorentz [20]).

A similar method can be used to show that under the condition of Theorem 2.4 a
sharper inequality

27 R2T(8)? + T'(6)? < n?

holds, where T(6) is assumed to be real. In the general case in which the polynomial
T(6) is a complex-valued function we cannot say that the sum of the absolute mag-
nitudes of the two terms on the left in (2.7) is less than n?. This is shown by the
example T(6) = e™?. Inequality (2.7) was first explicitly stated by van der Corput
and Schaake [7—8], although it is implicit in an earlier inequality due to Szego (cf.
Schaeffer [37]).

Iterating the Bernstein’s inequality (2.5) we can obtain the corresponding inequality
for the k-th derivative

|T®) ()| < n*.
This result can be stated in the following form:
Theorem 2.6. Let T() be a trigonometric polynomial of degree n. Then

(2.8) max |T™)(8)] < n* max ITO)] (k=1,2,...),

with equality only if T(8) = acosnb + bsinnf, where a and b are constants.

Using the forward-difference operator Ay, defined by
Anf(8) = f(6+h)—f(6)  (h>0),

Steckin [40] gave an interesting analogue of the Bernstein inequality (2.8):
Theorem 2.7. Let 0 < h < 27/n. Then

n

- nh
2sin :

k
(2.9) 1n51x|T(k)(9)| < ( ) mgxx|AflT(0)| (k=1,2,...),

where

k
ART(8) = Y (—1)F* (f) T(6 + vh).
v=0
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The equality in (2.9) is attained if and only if
T(6) = acosnb + bsinnb + c,
where a, b, c are constants.

For k = 1, Steckin inequality (2.9) reduces to
|T'(6)| < max |T(6 + h) —T(6)] (0 < nh < 2m).

n
2sin "Th
If h = m/n, inequality (2.9) becomes
k
(k) = k
(2.10) max|TW(8)] < () max|ak,, T()!

This result was also obtained by S. N. Nikol’skii at the same time, but with a different
method.

Since

max [k, T(0)] < 2 max|T(6),

using (2.10) we obtain the Bernstein’s inequality (2.8).

Bernstein’s result (2.6) can also be interpreted in the following way: If a polynomial
P(t) of degree n satisfies the inequality

[P| < 1= (Tu(t)? + Su(t)?) (-1<t<),

where Ty(t) = cos(narccost) and S,(t) = sin(n arccost), then

(Tu(t) +iSa(t)) ! (-1<t<1).

1/2

LI 4

Vi—z |t
Similarly, Schaeffer and Duffin [38] proved the corresponding inequality for the k-th

derivative of a polynomial P of degree n for which |P| < 1 on [—1,1]. Namely,

|P'(t)] <

k
PO@)] <| ST +isu0) | (-1<t<),

[PO@)? < Mi(t) (-1<t<1; k=1,...,n),

where §

d* Pold
Mi(t) = (m cosn@) + (Zi—tI smn0> ; t = coséb.
Using this result, Schaeffer and Duffin [38] obtained an elegant proof of V. A. Markov’s
inequality. Namely, for P € P, and such that ||P|lo < 1, they proved that
n?(n? —12)(n? = 22)--- (n? — (k —1)?)
1-3-5-...-(2k—1)
for k = 1,2,... ,n. The equality can occur only at ¢ = +1 and here only if P(t) =
YT (t), where |y| = 1.
Now, we give an interesting result of Schur [39].

(2.11) 1P®)loo <
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Theorem 2.8. Let () € P,y and
QI < M1 -7 (1<t <),

then

Q)| <Mn  (-1<t<1).

Using Bernstein’s and Schur’s theorems 2.5 and 2.8, we can give a simple proof of
Markov’s theorem 2.1. Namely, if P € P, and |P(¢)] <1 (=1 <t < 1), then |P'(t)| <
n(1 —t2)~1/2 and finally, by Theorem 2.8, we obtain |P'(t)] < n? (-1 <t < 1), ie.
An,l =

We can ask how large can |P'(t)| be, for a given ¢, when |P(t)] < 1 on [-1,1]?
Let this maximum be M, (t). It is easy to see that the function M, is even, i.e.
Mpu(—t) = My(2).

The problem of finding M, (t) was stated by Markov himself, and solved for n = 2
and n = 3. So he determined that

—_— U= s
M,(t) = 1-—-1¢
4t, 3 S5,
and
3(1 — 4t?), t € [to, t1],
V7 + 10
e tefty,t
9(1+t)’ e[17 2],
16t3
M3(t) = ET:W_—{Z—), t € [t2,t3],
77— 10
— t € [ts,t
S(1—1) " € [ts,t4],
3(4t% - 1), t € [ta,ts),

where tg = 0, t; = 1(v/7-2) 2 0.1076, t, = 1(2/7T—1) = 0.4768, t; = }(2VT+1) =
0.6991, t4 = §(v/7+2) = 0.7743, and t5 = 1.
The determination of M, (t), n > 4, is very complicated and it can be given by a

technique of Voronovskaja (see [47]). Using the same method, Gusev [16] found the
corresponding function M, () in the inequality

[PX(8)] < M k(t), 1<k<n.

Instead of the condition |P(¢)] < 1 on [—1,1], Bernstein [5] used a more general
condition

(2.12) PO < VHD)  (-1<t<1),
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where H is an arbitrary positive polynomial on [—1,1] of degree s. If n > s/2, the
polynomial H can be uniquely represented in the form

(2.13) H(t) = Ma(t)? + (1 — ) Naoa (8%,

where M, and N,_; are polynomials of degree n and n — 1, respectively, such that
all their zeros belong to (—1,1) satisfying an interlacing property, and M,(1) > 0,
Nn-1(1) > 0.

Theorem 2.9. Let P € P,. Under the condition (2.12), where H is given by (2.13),
the inequality

(2.14) |P'(t)| g‘ %(M,.(t) +ivV1— 12N, (1)) ' (-1<t<).

holds. The equality is attained in (2.14) for P(t) = yMy(t), where |y| = 1.
Videnskii [44] proved the corresponding inequality for the k-th derivative of P:

Theorem 2.10. Let P € P,,. Under the condition (2.12), where H is given by (2.13),
the following inequality

(2.15) |PX)(1)] 5‘ ;Tkk(Mn(t) +iV1 = 2N, _1(t) } (-1<t<1),

holds, for k = 1,... ,n. The equality is attained in (2.15) for P(t) = yMy(t), where
lvl=1.
Several inequalities of this type were given by Videnskii [42—46], and others.

3. Markov-Duffin-Schaeffer Inequalities

As we mentioned in the previous section, Schaeffer and Duffin [38] in 1938 found a
shorter proof of Theorem 2.2 due to V. Markov, proving the inequality (2.11). Duffin
and Schaeffer [11] proved also that for this inequality to hold it is only necessary
to assume that |P(t)] < 1 at n + 1 selected points in [—1,1]. This inequality is a
consequence of a more general inequality concerning Lagrange interpolation.

Let z — Q(z) be a polynomial of degree n with n distinct real zeros ¢, lying in the
real interval (a,b). Then

(3.1) Q) =AJ[z-¢) (4#0),
which implies

@)=Yy 2L
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Duffin and Schaeffer [11] studied the problem of determining the maximum of the

non-analytic function
n

te F(t) =)

v=1

Q)
t— Cu i

when ¢ belongs to the interval (a,b). In fact, by making the hypothesis
(3.2) [Q(t + is)] < Qb+ 1s)| (a<t<b, —c0<s<+00),

they obtained that
F@t)< Fb) =1Q'(t)] (e <t <)),

which is equivalent to the following statement: Suppose that z — P(z) is an arbitrary
polynomial of degree at most n, such that

(3.3) |[P'(t)] <|Q'(t)] wherever Q(t) =0
and let (3.2) be satisfied. Then

[P'(t) <|Q' (b))  (a<t<b).

The equivalence is a consequence of the Lagrange interpolation formula. Namely,

n

RN PG) Q)
PO=2 ge)r—¢

Thus, if t is an arbitrary point in (a,b) then

n

P'(t)| =
max [P/ =

v=1

|
t =G

Duffin and Schaeffer [11] proved the following results:

Theorem 3.1. Let Q be a polynomial of degree n with n distinct real zeros ¢, (v =
1,...,n), given by (3.1), and let P € P, satisfies (3.3). Then

IPB(2)] < 1QW(2)]

at the zeros of Q*~1)(z), where k = 1,... ,n.
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Theorem 3.2. Let ) be a polynomial of degree n with n distinct real zeros (, (v =
1,...,n) which lie to the left of the point b on the real axis and suppose that in a
strip of the complex plane, the polynomial () satisfies the inequality (3.2). If P € P,
is a polynomial with real coefficients satisfying (3.3), then the derivatives of P and @
must satisfy

|[PO(t +4s)| < QW (b+1is))  (k=1,...,n)
in the strip a <t < b, —00 < s < +00.
Theorem 3.3. The Chebyshev polynomials T,, satisfy the inequality
|Tn(t + 1) < |Tn(l + ts)| (-1<t<1, —00<s < +00).

According to Schur’s result given by Theorem 2.8, if a polynomial R of degree at
most n — 1 satisfies

(3.4) (1-t)'"2R@) <1 (-1<t<1),
then
(3.5) IR(t)| <n  (-1<t<1).

Using Theorem 3.2, with Q(t) = T,(t), where T}, is the Chebyshev polynomial of
degree n, we can see that if (3.4) is satisfied at the n points

t =71, =cos((2v — 1)7/(2n)) (r=1,...,n),

then (3.5) is still true. Indeed, when Ty (¢) = 0, T.(t) = n(1 — t2)~'/2 we may write
(in Theorem 3.2) P'(t) = nR(t). Therefore,

[nR(t)| < T,(1) =n*  (-1<t<1).
Theorem 3.4. Let P € P, be a polynomial with real coefficients such that
(3.6) |P(cosvm/n)| <1 (v=0,1,... ,n),

then
PRt 4 is)| < |TO(1 +is)] (~1<t<1, —00 <s < +00)
for k =1,2,... ,n. The equality holds only if P(z) = +T,(z).

In this theorem the restriction that P have real coefficients is essential. For points
on the real axis the same estimate holds for | P(¥)(z)| even if P has complex coefficients.

Under the same condition for P, it can be proved that
[PO(E+is)| < TP (b +is)]  (k=0,1,...,n),
when t,s,b are real and [t| < b, b > 1 (cf. Zinger [48—50] and Voronovskaja [47]).

In connection with the above inequalities, Kemperman [19] obtained the following
results:
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Theorem 3.5. Let P € P,, be a polynomial with real coefficients such that |P(t)| <1
for —1 <t < 1. Then, for all complex numbers z,

(3.7 IP(2)]* + (1 = P(2)*) < Tu(2")?,

where z* denotes the associated point on [1,+00), where the ellipse through z with
foci —1 and +1 intersects the positive real axis, 1.e. z* = coshv = %(|z + 1|+ |z —1]),
and z = cosu on [—1,1], where the hyperbola through z = cos(u + tv) with foci —1
and +1 intersects the real axis.

The equality holds in (3.7) when z € [—1,+1]. Otherwise, it can only hold when
P(z) = £T(z), for all complex z.

Theorem 3.6. Under the same conditions on P as in the above theorem, the following
inequality
[P'(2)] < T, (z")

holds, for all complex z. The equality occurs only when P(z) = £T,(z) and z = +z*.

Theorem 3.7. Let P € P, be a polynomial with real coefficients satisfying (3.6),

then
IPB(2)| < ITE(2) < TV (=),

for k = 0,1,...,n, provided |z| > [, where B, denotes the largest zero of
T V().

Regarding the Markov’s inequality, Duffin and Schaeffer [11] proved the following
refinement:

Theorem 3.8. Let P € P, such that (3.6) holds, then inequality

n?(n? —1?)(n? = 22)-.-(n? — (k- 1)?)
1-3.5-...-(2%k—1)

(3.8) |P®)|| o < TEK(1) =

is satisfied for k = 1,... ,n. The equality occurs only if P(t) = vT,(t), where |y| = 1.

An interesting question appears whether or not there are n + 1 other points in the
interval (—1,1) satisfying the same property. Duffin and Schaeffer [11] gave a negative
answer to this question. In fact, they showed that if E is any closed subset of (—1,1)
which does not contain all the points 7, = cos(vm/n), then there is a polynomial
P € P,, which is bounded by 1 in E, but (3.8) is not satisfied.

The above refined inequalities of Markov are known as Markov-Duffin-Schaeffer
inequalities. These inequalities have interesting applications in numerical analysis
(cf. Berman [1] and Haverkamp [17]). In particular one can use these inequalities
to construct optimally stable formulae for numerical differentiation of functions f
satisfying || f|lco < +00.
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The proof of Duffin and Schaeffer is based on continuation of the functions to
the complex plane and on using various techniques from complex analysis. Duffin
and Karlovitz [9] have given an elementary variational approach that, simultaneously,
proves the Markov inequalities and the Duffin-Schaeffer refinement as well as general-
izes the result to a larger class of functions. They have given explicit bounds on the
first and second derivatives. Their method can be extended to higher derivatives of
polynomials.

Recently, Rahman and Schmeisser [33] considered such a refinement of the inequali-
ties which is connected with a question that was posed by the late Professor Paul Turdn
in 1970 at a conference on Constructive Function Theory held in Varna, Bulgaria (cf.
Pierre and Rahman [30-31]).
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