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A b s t r a c t - - A  review of shape preserving approximation methods and algorithms for approxi- 
mating univariate functions or discrete data is given. The notion of 'shape' refers to the geometrical 
behavior of a function's or approximant's graph, and usually includes positivity, monotonicity, and/or 
convexity. But, in the recent literature, the broader concept of shape also includes symmetry, gen- 
eralized convexity, unimodality, Lipschitz property, possessing peaks or discontinuities, etc. Special 
stress is put on shape preserving interpolation methods by polynomials and splines. Of course, this 
text has no pretensions to be complete. 

g e y w o r d s - - S h a p e  preserving approximation, Approximation of univariate functions, Approxima- 
tion of discrete data, Shape preserving interpolation, Polynomial, Spline, Positivity, Monotonicity, 
Convexity, Generalized convexity, Unimodality, Lipschitz property. 

1. I N T R O D U C T I O N  

In many  different problems from engineering and science, one of demands is tha t  approximation 
methods represent physical reality as accurately as possible. For example, one wants to represent 
some more complicated quanti tat ive information A by the less complicated one B, so tha t  B 
reproduces some qualitative properties of A. Typically, A are some data  tha t  are monotone 
and /o r  convex, and B is some simple function (polynomial, spline, rational) tha t  fits the da ta  
and preserves their 'shape, '  i.e., it is also monotone and/or  convex. Usually the da ta  are discrete 
data,  as a result of measurement.  This kind of approximation is referred to as a shape preserving 
approximation or (rarely) an isogeometric approximation. The problems of such type arose 
in chemistry, VLSI, CAD/CAM,  robotic, etc. In this paper, we give a survey of some shape 
preserving approximation methods. 

The  outline of this paper  is the following: interpolation by polynomials and splines tha t  preserve 
monotonicity of da ta  is presented in Section 2. Convexity preserving interpolation by splines is the 
topic of Section 3. Rational splines tha t  preserve monotonicity and/or  convexity are considered in 
Section 4. The various approximating methods, like approximation by positive linear operators,  
tha t  have capabili ty of preserving even generalized convexity or other more complex ' shape '  of 
the da ta  or function being presented in Section 5. I t  also includes some methods for preserving 
moments  by splines. 

In further text,  we adopt  the following notation. The real sequence ~t~} is convex of order 
k (> 2) or k-convex i f A k t i  > 0, w h e r e A  k = A (A~- I ) ,  Al t i  = At~ = t~+l-- t~ .  I fA~t~ < 0, 
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the sequence is concave of order k (k-concave}. If the above inequalities are strict, we said that  
{ti} is strictly k-convex (strictly k.concave). It is customary to use terms (strictly) increas- 
ing/decreasing, instead of (strictly) 1-convex/concave, and (strictly) convex/concave instead of 
(strictly) 2-convex/concave. If the sequence is increasing or decreasing it is called monotone. 
The sequence is polynomial of order n - 1 if it is both n-convex and n-concave. 

If the data  {xi, Yi}~=0 are given, and the sequence {Yi} is increasing (convex, etc.) we say that  
the data  (xi,  Yi) are increasing (convex, etc.). 

2 .  M O N O T O N I C I T Y  P R E S E R V I N G  I N T E R P O L A T I O N  

The existence of interpolating polynomials that  are monotone in the same sense as the data  
being interpolated is established by Wolibner in 1949 and published in 1951 [1]. Independently, 
the same result was gained by Kammerer [2] and Young [3]. 

THEOREM 2.1. (See [1].) Let {(xi,Yi)}n=o be a set of data such that Xo < xl  < . . .  < xn and 
Yi ~ Yi+l, i = 0 , 1 , . . . , n -  1, then there exists an algebraic polynomial p with the following 
properties: 

p(xi) = Yi, i = O, 1 , . . . ,  n, (2.1) 

sgn (p'(x)) = sgn (Ay i ) ,  x ~ [Xi, Xi+I], i = 0, 1 , . . . , n  - 1, (2.2) 

where Ayi = Yi+l -- Yi. 

A polynomial with properties (2.1) and (2.2) is said to preserve monotonicity of the data. In 
this case, we speak about  piecewise monotone interpolation (PMI), or if {Yi}~=0 does not change 
monotonicity, about monotonicity preserving (MP) interpolation. 

Let Pm be the set of all algebraic polynomials of degree at most m defined on [a, b]. For 
polynomials defined on R, we put  only Pn. The following two statements are direct consequences 
of the Wolibner's Theorem. 

COROLLARY 2.1. (See [4].) Let f E C[a, hi. For every e > 0 there exists a polynomial p such 
that 

(a) p(xi)  = f ( x i ) ,  i = O, 1 , . . . , n ;  
(b) [ [ f - p ] [  < e; 
(c) [[p[[ = [[f[[. 

COROLLARY 2.2. (See [5].) Let f E C[a, b]. There exists the number mo E N and a polynomial 
p E Pm that for ali m > too; 

(a) p(xi)  = f ( x i ) ,  i = O, 1 , . . . , n ;  
(b) [If - PI] < 2 infqep,, Hf - ql[. 

In both statements, II " I[ denotes the Chebyshev norm. Thus, the theorem of Wolibner leads 
to the important  class of norm preserving polynomial interpolation. For further generalizations 
of these results see [6]. 

Wolibner's Theorem is an existence-type theorem, which means that it does not provide any 
information on the polynomial p (degree, coefficients) except its existence. On the other hand. 
it is clear that  there must exist a polynomial with smallest degree v which still preserves the 
monotonicity of the data  {(xi, Yi)}i~o. The degree v is called degree of PMI.  

The first concrete result concerning v is given by Rubinstein [7], but only for n -- 2 and 
Y0 < Yl < Y2. An estimation of the degree of PMI, v is given in the following theorem [8]. 

THEOREM 2.2. (See [8].) I f  the sequence {Yi)~=o is strictly increasing, then there exists a con- 
stant  K such that 
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m a x  IAi[ 
v _< K 0<i<n-I 

min [Ayi[' 
O<~i<n-1 

where As = Ay~/Axi ,  0 <_ i <_ n - 1. 

This result is generalized by Passow in [9]. Another estimation in a more restricted case: 
xi = i /n ,  Ayi > 0, Y0 = 0, Yn = 1 is given in [10]. 

THEOREM 2.3. (See [10].) I f  Ay4 >_ c m  -a with real a satisfying 1 < ~ < m for m > ce 4 
(c is a constant), then there exists the monotone interpolant p E 7~m with m = 0 (c~n Inn).  This 
estimation cannot be improved. 

Let the mesh of knots X = {x0, xl  . . . .  , Xn} be given. With SJm = Sire(X), we denote the set 
of splines of degree m with deficiency m - j ,  0 < j <_ m - 1. This means that  if f E S~,  then 
f e 7~m[X~, xi+l] and f E CJ[xo, Xn]. The question of existence and estimation of the degree of 
PMI approximation with splines has been a subject of many papers. The existence of PMI splines 
(also called PMI scheme) is established by Passow [9]. The improved version of his theorem is 
given by de Boor and Swartz [11]. 

THEOREM 2.4. (See [9,11].) For a given data {(xi, yi)}in_-0, there always exists piecewise mono- 
tone interpolant Hm E S~trn+ l • 

In [12], the result of this theorem was extended to S~m by adding extra knots xi = (xi+l +x i ) /2 ,  
!)i = (Y~+I + y~)/2, i = 1 , . . . ,  n. 

Note that  the class S~m+l contains three important subclasses: S°--l inear,  S~--cubic, and 
S52--quintic splines. Also, in [9], a special attention was payed to the particular spline interpolates, 
which are flat of order m at each interior interpolation knot, i.e., 

H(mJ)(xi) = 0, j = l , . . . , m ,  i = 1 , . . . , n -  1. 

In [11], de Boor and Swartz gave a more general definition of piecewise monotone interpolation, 
and put  their considerations in a more constructive frame. 

DEFINITION 2.1. (See [11].) Let X = {x4}~=0 and Y = {Yi}~=0 be two sequences. Let X be 
strictly increasing and I = [x0, xn]. A map p(Y, .) from R n÷l into the linear space M ( I )  of a11 
bounded real-valued functions on I is a PMI scheme (for X )  if  

(i) R(Y, z~) = Yi, i = O, 1 . . . .  , n; 
(ii) p(Y, .) is monotone on [xi-1, xi], i = 1 . . . .  ,n. 

THEOREM 2.5. (See [11].) Let I = I x _ l ,  Xn.fl ]. A linear map p(Y, .) : R k+l --. M( I )  is a PMI 
scheme if  and only i f p (Y , x )  = ~-~i~oY4~i for all Y e R n+l, and for some {~4}in=o, ~4 E M ( I ) ,  
with 

(i) supp ¢4 C (x~-l, Xi+l), i = 0 , 1 , . . . , n ;  
(ii) ¢~ is monotone increasing on [xi-1, xi], i = 1 , . . . ,  n; 

(iii) ¢ i - l ( x )  + ¢i(x)  = 1, x e [x4-1, xi], i = 1 , . . . , n .  

In particular, a linear PMI scheme is local, i.e., the form of interpolant over the subinterval 
[x4, xi+l] depends on the small number of data that  are located nearby the interval [xi, xi+l]. If, 
also p(Y, .) maps N n+l into Cu(I), then ¢4 E C ~, i = 0, 1 , . . .  ,n,  hence, ¢4 vanishes (u + 1)-fold 
at x4-1, i = 2 , . . . , n ,  and at Xi+l, i = 0 , 1 , . . . , n  - 2. This means that  p(J)(Y, xi) = 0, for 
j = 1 , . . . , m ,  i = 1 , . . . , n -  1. Thus, i fp(Y,.)  also maps R n+l into S~m+I(X ), then p(Y,x)  on 
Ix4, xi+l] agrees with the unique polynomial from 7)2~+1, which takes on the value Yi (u + 1)-fold 
at xj ,  j = i, i + 1. Consequently, p(Y, .) = H~ on [Xl, Xn-1], and in this case the PMI is uniquely 
defined on [xl, xn-1]. But, in Ix0, Xl] and [Xn-1, xn], p(Y, ") is not uniquely defined. 

On the other hand, if p(Y, .) is not linear mapping into S~m+I(X), there is no uniqueness, 
except on intervals [xi, X4+l] for which Ayi = 0. If, for example, v = 2 and for some i, Ay4 > 0, 
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and Ayi+t > 0, then we can replace Hv on [x~-1, xi+1], by any of the infinitely many piece- 
wise cubics f which have a double knot at xi, interpolates the points (xi-x, Y~-I), (xi, Yi), and 
(Xi-l ,  Yi-1), satisfy f t ( x i -1 )  = fl(Xi+l) ~- 0 and 

0 < f ( x i )  _< 3 min {A~_I, A~}, (2.3) 

where Ai = A y J A x i .  Inequalities (2.3) define the square area in the (a, B)-plane, with a = 
f ' ( x i - 1 ) / A i ,  /~ = f ' ( x i ) / A i ,  called de Boor-Swartz box. 

Lets consider the degree of approximation of linear PMI schemes. As it is shown in [11], the 
spline interpolant Hm = Hm(f)  (m > 1) fails to provide a good approximation of the function f ,  
no matter  how smooth it might be. Let h = maxi(Ax~} and y~ = f (x i ) ,  i = O, 1 . . . . .  n. It is 
known that  H0 (piecewise linear function) provides O(h2)-approximation to f from a Sobolev 
space L 2 ( I ) .  In fact, in this case 

h 2 
IIH0(f) - fll <- -~  IIf"ll , 

(see, for example, [13,14]), so the approximation is the second-order accurate. But the spline Hm 
(m _> 1) provides only the first-order accurate approximation, or more generally, the following 
theorem. 

THEOREM 2.6. (See [11].) Let p(Y, .) be a linear PMI  scheme in sense of Definition 2.1, where 
Yi = f(x~),  i = O, 1 , . . . ,  n. Then, i f  f E L I ( I ) ,  then 

IIf - p(Y,-)11 -< wf(Az~). 

It follows that,  for m > 1, IIHm(f) - f l l  = O(h) also for smooth f .  The failure is par- 
ticularly striking when m ~ oo. With the notation xi-1/~ = (xi-1 + z~)/2, (x~, xi+l/2) for 
i = 0, 1/2, 1 , . . . ,  k - 1/2 are half intervals, where Hm converges monotonely to the piecewise 
constant interpolant Hoo given by (see [11]) 

= ~ Yi, Xi_l/2 < x < xi+1/2, 
Hoo(x) 

L Yi-1/2, x ~ X i _ l / 2 .  

It is easy to see that  the spline Hm, defined over the interval [x0, xn] is given by 

ix- /X,+l- x) 
Hm(x)  = yid?m \ Axi  / + Yi+lCm k -Axi ' x e [xi, Xi+x] , 

where era(t) = (1 - t) m+l ~-~.im__0 ( m + l )  t i, is actually the special case of Hermite basis function. 

The PMI method with Hm splines is called zero-d method (after zero-derivative, [15]). Beside 
its slow convergence to the function being interpolated, the scheme introduces the inflection 
points although the data  do not suggest their existence. Such points are known as extraneous 
inflection points. But, zero-d method may find an application in computer-aided design, where 
in cooperation with interpolation by factual functions can be used for modelling mountain ranges 
of specific profiles as the following example illustrates. 

EXAMPLE 2.1. The data  

yi 0.5 1.2 4.7 7.5 2.5 0.7 0.2 

are interpolated by the cubic spline H1, and by the spline of ninth degree//4. The corresponding 
C-functions are ¢1(t) = (1 - t)2(1 + 2t) and ¢4(t) = (1 - t)4(1 + 5t + 15t 2 + 35t a + 70t4). The 
graphs of interpolates are displayed in Figure 1. 
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Figure 1. PMI splines H1 E S] and H4 E $9 4. 

F i t s c h - C a r l s o n  M e t h o d  

In [16], Manni gives the conditions for the existence of monotonicity preserving (MP) splines 
of arbitrary degree m with preassigned smoothness k ~ 2, where 3 _< 3k < 2m - 1. 

But, the most interesting case for applications is the spline H1 E S~, i.e., Cl-piecewise cubic 
spline interpolates. Fritsch and Carlson gave a class of algorithms that  allow to calculate H1 
spline having the MP property. 

The algorithm is based on the necessary and sufficient conditions for monotonicity of a C 1- 
cubic interpolant to the data  {(xi, Yi)}i~0, which are monotone (i.e., Ayi _~ 0 or <_ 0, for all i) 
given by Ferguson and Miller [17], and independently, by Fritsch and Carlson [15,18]. 

Let the cubic segment be represented in the Hermite form for x E [x~, xi+l], i.e., 

p(x)  : yiho(t) + d ih l ( t )  + d~+lh2(t) + yi+lh3(t) ,  t = x - x_____~ (2.4) 
hi ' 

where dj = p ' (x j ) ,  h0(1 - t) = h3(t) -- t2(3 - 2t), hi(t)  = -h2(1 - t) = t(1 - t) 2. 

THEOREM 2.7. NECESSARY CONDITIONS. Let  p be an arbitrary monotone  C 1 interpolant  to 
the data  {(xi, y~)}, hi = A x i ,  and A~ = Aye~hi, i = 0 ,1 , . . .  ,n  - 1. Then 

sgn (p'(x~)) = sgn (p'(x~+l)) = sgn (A~). (2.5) 

Further, i f  A i  = 0 then p is monotone  (i.e., constant)  i f  and only  i f  p~(xi) = p ' (x i+l)  = O. 

THEOREM 2.8. SUFFICIENT CONDITIONS. Let p be a cubic interpolant to the data  {(xi, y~)}. 
Let  

p ' (x i )  P'(Xi+l) 
a ~ =  Ai , /~i= A ~ '  i = 0 , 1 , . . . , n - - 1 ,  (2.6) 

where we use the convention 0 /0  = 0 and a/O = co for a 7t O. I f  (2.4) is valid, and 

2 2 c~ i + f~ + a~/~i - 6a~ - 6/~i + 9 _< 0, (2.7) 

~ +Hi -< 3, i = 0 , 1 , . . . , n -  1, (2.8) 

then p is monotone  on [x0, xn]. 

PROOF. (After [19].) Let 93 be the linear space of real polynomials of degree < 3. Since any 
p E :P3 defined on [xi, xi+l] can be mapped on [0, 1] by a linear transformation, it is enough to 
consider H E Pa such that  H = {p 6 93 I p(0) = 0, p(1) = 1}. The monotonic i ty  region M is 
defined as {p E H I p'(t)  >_ 0, t E (0, 1)}. M is closed and convex; since sup0<t<l Ip(t)l = 1, M is 
bounded, and hence, compact. Since the interior of M relative to H is {p E H I p'(t)  > 0}, i fp  is 
on the boundary of M relative to H,  then either p~(0) -- 0 or p~(1) -- 0, or the discriminant of p~ 
is zero. The monomial form of the cubic polynomial from H is (c~ + f~-  2)t3+ ( 3 -  2c~- f~)t 2 + c~t, 
where c~ = p'(0), ~ = p'(1), and the discriminant of its derivative is 4(3-2(~-f~) 2 -12c~(a+B-2 ) .  
Equaling it with zero, one gets 

a 2 -I- f~2 ÷ c~/~ - 6a - 6/3 + 9 = O, 
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which is an ellipse in (a,/3)-plane with the center at (2, 2) and the axes a = /3  and a +/3 = 4. 
Since a > 0 and /3 > 0, the only compact, convex set with a nonempty interior is the area 
obtained by the convex combination of this ellipse and the origin (0, 0) (see Figure 2 (left)). In 
other words, M is the union of the domains 

a2 +/32 + c~/3 - 6a - 613 + 9 _< 0 (elliptical area), 

and 
a + / 3 _ < 3 ,  a>_O, /3>_0 (triangular area), 

which after inverse linear transformation from [0, 1] to [xi, xi+x], becomes equivalent to (2.5), 
(2.7), and (2.8). | 

3 

i;Iii 
. . . .  z l~ '  N N  

[ ]  - 

- ' ~  3 o~ ~ 0 1 

Figure 2. Monotonicity region and nonmonotone interpolant. 

REMARK 2.1. So, the cubic p, given by (2.4) is monotone in [xi, xi+l] if and only if (ai,/3~) E M. 

REMARK 2.2. General question of piecewise polynomial MP interpolant of degree r leads to 
interesting results. With freedom to vary the higher-order derivatives, the points (ai,/3i) must 
be contained within one of a nested sequence of regions bounded by the coordinate axes and 
ellipses if r is odd, or line segments otherwise. More precisely, the monotonicity region for r = 2k 
is triangular with vertices (0, 0), (n 2 + n, 0), (0, n 2 + n) and for r = 2k + 1, k E N, it is the 
convex hull of the origin with the ellipse (see [19,20]) 

(k 2 - 1) (x + y -  k2) 2 + ( x -  y)2 = 1. 

Note that  Theorems 2.7 and 2.8 are valid for both increasing or decreasing data. In the sequel, 
we shall consider only increasing data. 

EXAMPLE 2.2. This example illustrates the relationship of a nonmonotone interpolant and the 
monotonicity region M. The data 

xi ] 10 I 1 1 1  12 I 12.5 I 13 I 14 ] 
yl 0.42 0.55 1.52 4.64 4.64 4.64 

are the subset of the interpolation data from Rice's book [21, p. 109]. These data  are interpolated 
by Cl-piecewise cubic spline using Hermite osculatory interpolation. Cubic segments are joined 
at the knots, so to fit the first derivative estimated by two-point difference formula (2.9). For the 
above data, this estimation gives the sequence 

d ~ { i}i=0 = {0.13, 0.55, 2.7266, . . . ,  3.12, 0, 0}, 

of derivatives which yields the spline interpolant P8 as shown in Figure 2 (right). Note that  P8 
is not monotone. Actually, three pairs (ai,/3i) out of five, lie inside the monotonieity region: 
(al,/31) = (0.567, 2.8109), (a2,/32) = (0.4369, 0.5), and (a4,/34) = (0, 0) (numbers are rounded 
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to four digits), and two outside of it: (s0,/~0) = (1, 4.2308) and (~3, ~3) -- (+oc, 0). These points 
are marked by the index number in Figure 2 (left). Also, A3 = 0 but d3 = 3.12 ~ 0. Therefore, 
neither the necessary nor sufficient conditions for monotonicity are fulfilled for segments 01 and 34, 
i.e., they are not monotone. 

Based on Theorems 2.7 and 2.8, Fritsch and Carlson [15] gave an effective algorithm for con- 
structing the monotone piecewise cubic interpolant to the data  {(xi, Yi)}:~0. 

ALGORITHM 2.1. (Fritsch and Carlson) 

Step 1. Initialize derivatives di, i = 0, 1 , . . .  ,n, such that  sgn(di) = sgn (di+l) = sgn (Ai). 
If Ai ---- 0, set di = di+: = 0. 

Step 2. For each interval [xi, xi+:] in which ((~i, fli) • M, modify di and di+: to d* and d~'+l 
(~* * = d * / A i  and ~* = di*+l/Ai .  Then, PM interpolant such that  ( i ,  13") e M, where ~i 

is given by (2.4). 

This kind of algorithm is known as f i t  and modi fy  type of algorithm. In further elaboration, 
OL* * Fritsch and Carlson note that  the mapping of the pair (c~i, f~) to ( i ,  ~i ) is not an easy task due 

to interaction of parameters a and/~ in the adjacent intervals, i.e., ~ i_ :Ai_l  ---- c~iAi. In other 
words, the algorithm is nonlocal.  As a solution, they suggested selection of a subset S C M with 
the following properties. 

(a) If (c~, ~) • S, then (a*, ~*) • S, whenever 0 < ~* < c~ and 0 </~* < ~. 
(b) If (a, f~) • S, then (/3, a) • S. 

One such subset of M is just de Boor-Swartz box, given by (2.3), i.e., the square inscribed into M. 
Fritsch and Carlson denoted it by $1 (Figure 4). Other subsets suggested by them are :  S 2 - - a  

quarter of the disc; S3--a right triangle, and S4--the noncovex quadrilateral with vertices (3, 0), 
(1, 1), (0, 3), and (0, 0). 

Now, Step 2 may be put in the more concrete form. 

Step 2A. For each interval [xi, xi+l] in which (ai, ~i) ¢ M, modify di, and di+l to d~ and 
• a* * * = d * / A i  and f~ = d i + l / A i .  di+ 1 such that  ( i, f~i ) • M, where ~i * 

] / 
/ / 
] / 

/ 

Figure 3. Two stages of Fitsch-Carlson algorithm. 

p , 
f 
/ 

::::: ] 

Figure 4. Subregions of monotonicity and spline interpolant to Akima data. 

EXAMPLE 2.3. Let us apply the Fitsch-Carlson algorithm to the data  from Example 2.2. After 
the first step, the necessary conditions for monotonicity are fulfilled. The new interpolant, P0 
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is shown in Figure 3 (left). The segment 34 is now monotone and (c~3, ~3) = (0, 0) E M. But, 
the point (ao,/?0) is still outside of M so the first segment is fail to be monotone. Scaling the 
ordinate of P0 by the factor 20 is done to make nonmonotonicity visible (frame A at Figure 3). 

Step 2A of the Fitsch-Carlson algorithm modifies the point (c~0, f~0) --- (1, 4.23) by projecting 
it onto S1 so to get the new one (a~,/~) = (I, 3). This causes lowering the slope do from 0.55 to 
0.39, which changes al from 0.567 to 0.402, thus, the point (al, f~l) = (0.402, 0.2809) does not 
leave the monotonicity area M. No other changes are made. The final interpolant Pl is shown 
in Figure 3. Scaling the first segment (frame B) reveals that the monotonicity is reached. 

EXAMPLE 2.4. Here we use the Akima data from [22], which are difficult for shape preserving 

interpolation. 

i. 1 01.i.i 01 1 
Yi 10 10 10 10 10 10 10.5 15 50 60 85 

The C2-cubic spline interpolant p, is displayed in Figure 4. The first step of Fitsch-Carlson algo- 
rithm gives Cl-spline interpolant Po (Figure 5). Using the subsets $1, $2, $3, and $4 for modifying 
(c~,/~) pairs, yields monotone interpolates of different shape: Pl, P2, Io3, and P4, respectively--see 
Figure 5 (first four segments are not shown). 

Figure 5. Fitsch-Carlson algorithm. 

Note that  the choice of S 1 produces the least change in the derivatives and the graph more 
closely resembles the graph of p0. Using de Boor-Swartz box S1 and the disc $2 as the subdomains 
of projection is also considered by Hyman [23]. 

Also, note that  So = ((0, 0)}, i.e., the origin point, used for the subregion will produce the 
zero-d interpolant, because all the pairs (ai,/~i) (see formula (2.5)) are projected into the origin, 
which imply di = 0, for i = 0 , . . . ,  n. 

As Fritsch and Carlson notice in [15], the algorithm has three basic components: 
• f i t  . (i) an initialization of derivatives {d,}~_0, 

(ii) the choice of subregion S c M,  satisfying properties (a) and (b); 
(iii) the selection of mapping (ai, f~i) ~-* (a~ , /~) .  

Effects of the choice of different subregions of M are explained in Example 2.4, so we shall 
focus our attention to items (i) and (iii). 

It is easy to see that  two-point difference formula 

- Ay0 AYn- 1 d~= Y~+l Yi-1 i = l  . . . . .  n - l ,  d 0 =  , d n = - - ,  (2.9) 
Xi+l - xi-1 ' ho hn-1 

approximates derivatives with accuracy O(h). On the other hand, the three-point (centered) 
difference formula 

h~A~-i + hi - lAi  
di = h~-i + hi ' i = 1, . . . .  n - 1, (2.10) 



Shape Preserving Approximations 67 

has an accuracy O(h2), and was suggested in [15]. For the end derivatives, the rtght, i.e., left 
noncentered version of (2.10) is used 

do = (2h0 + hl)A0 - h0A1 dn = (2hn-1 + hn-2)An-I  - hn-lAT~-'2 
ho + hi ' h n - 2  + hn-1 

Formula (2.10) is also called the parabolic formula (see [23]) since it gives the slope at x~ of the 
parabola interpolating points (xi-1, Yi-1), (xi, Yi), and (Xi+l, yi+l). Both two- and three-point 
formulas are local. 

Another local method, approximating derivatives with accuracy O(h) is the Akima method 
(see [221) 

aiAi-1 + biAi 
d i =  , i = 3 , . . . , n - 2 ,  

ai + bi 

where ai -- [Ai+l - A i [ ,  b~ = [Ai_l - Ai_2[. End points estimations do, dl, dn-1, dn are 
calculated by adding two extra knots. For instance, for estimating dn, two-points (x~+l, y~+l) 
and (xn+2, Yn+2) are defined by the fact that  they lie on the curve 

~ ( x )  = co + Cl(X - zn )  + c2(z  - z,~) 2, 

where the constants ci are determined by the property that  qo interpolates the points (xn-2, yn-2), 
Cxn-1, yn-1), and (xn, Yn), and that  abscissas xn+l and xn+2 satisfy 

X n + 2  - -  X n  -~- X n + l  - -  X n + l  - -  X n - - 1  ~ -  X n  - -  X n - - 2 .  

The Akima method reproduces shape of the data in a satisfactory manner, but do not have MP 
property. 

If we need higher accuracy, the four-point approximation can be used 

As - Ai-1 
di = A~-I + hi-1 

hi + hi-1 (2.11) 
+ (Ai - Ai-1) / (hi  + h i - l )  - (Ai+l - Ai) / (hi+l  + hi) hi-lh~, 

hi+l + hi + hi-1 

which is O(h 3) accurate, and it is local. 
The same accuracy, O(h 3) can be achieved by using cubic spline interpolant s(x) with one of 

the end conditions given in [13]. Contrary to the above methods, the spline method is global. 
The influence of applying different methods for derivative initialization is shown in Figure 6 

Cleft), where the labels 2, 3, and 4 denote two-, three-, and four-point difference formula, respec- 
tively. 

The matter  of mapping (ai, 8i) --* (a~, j3*) is obviously the most subtle issue of the Fritsch- 
Carlson algorithm. For example, if we want to 'project' a point (a, 8) ¢f M onto $1 (de Boor- 
Swartz box), we can use 'homothetic projection,' i.e., the intersection point (a*, 8*) of the line 
(0,0) - (a, 8) with 0S1 (boundary of $1). Also, we can project (a, 8) 'orthogonally' on 0S1, 
using the mappings a* = min{3, a}, 8" = min{3, 8}. The first method products an interpolant 
which graph is more taut,  as it is seen in Figure 6 (right). 

Figure 6. Influence of initial slopes and projection method. 
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Other Methods 

After Fritsch and Carlson published their algorithm, many authors have tried to improve their 
results [8,23-28], etc., mainly by careful studying the way of (a, D)-projection onto M. 

Let the subset S from Fritsch-Carlson algorithm is closed, and let T be the closed triangle with 
vertices (0, 0), (2, 0), (0, 2). 

THEOREM 2.9. (See [26].) Unless (1, 1) • S, the Fritsch-Carlson algorithm is at best first-order 
accurate. Unless T C S, the Fritsch-Carlson algorithm is at best second-order accurate. 

On the other hand, if T C S, then the Fritsch-Carlson algorithm is third-order accurate, as 
shown more precisely in Theorem 2.10. 

THEOREM 2.10. (See [26].) Assume that f • Ca[a, b] is monotone increasing, the initial deriva- 
tive approximations d~ of ft(xi) are second-order accurate, T C S and the projection of (ai, ~ )  
onto S satisfies a* + fl* >_ 2, then the Fritsch-Carlson algorithm is third-order accurate. 

In [25,26] Eisenstat, Jackson and Lewis gave two algorithms of fit and modify type, named 
two-sweep and extended two-sweep algorithm that are third-order whenever the initial derivatives 
are second-order accurate. They also proved that neither Fritsch-Carlson nor the two-sweep 
algorithm is a fourth-order method, while the extended two-sweep algorithm is fourth-order, 
provided that initial derivatives are third-order accurate, and f • C 4 is monotone. This algorithm 
is based on decomposition of (a, j3)-plane into six closed subsets A, B, C, D, E, and M-- the  
known monotonicity subset, see Figure 7. Subsets A and E are curvilinear triangles, shaded in 
the figure. 

j 
Figure 7. Method Eisenstat-Jack~n-Lewis. 

ALGORITHM 2.2. (See [26].) 

Step 1. Compute the initial approximate derivative values {di}. 
Step 2. Ensure that each di is nonnegative, i.e., d~ := max(d~, 0), i = 0, 1 . . . .  ,n. 
Step 3. Modify {di} so that each ordered pair (a~, ~3~) = (dJA~, di+l/A~) e M. 

Forward sweep--modify the second component only unless (ai,/~i) E A. 

If (c~, ~i) e C, then/~ := 3. 
If (c~i,/~i) • B, then decrease ~i until (a~, 13~) • OM. 
If (ai, ~i) • A, increase ai until either 

(a) (ai, fli) reaches 0.4, or 

(b) (a~-l, ~ - 1 )  reaches O(M U D tJ E) (i > 1). 
If (ai, ~i) ¢ M, then decrease/3i until (a~, ]31) • OM. 

Backward sweep--modify the first component only unless (ai, ]~i) • E. 

If (ai,/~i) • D, then decrease c~i until (a~, ~ )  • OM. 
If (ai, ~i) • E, then increase ~i until either 
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(a)  e OW, or 
(b) (hi+l,  3/+1) E O M  (i < n -  1). 

If (a, , /3i)  • M, then decrease ai  until (hi,/3~) E O M .  

The two-sweep algorithm applied to Akima data gives the MP interpolant which graph is shown 
in Figure 7. 

For initializing derivatives, four-point approximation (2.11) is used. 
Yan [29] develops a C 1 MP algorithm that  gives fourth-order approximation to C 4 monotone 

functions. This is also fit and modify type algorithm. It inserts two extra knots (of multiplicity 
> 1) in every subinterval within which the initial interpolant is not monotone. 

ALGORITHM 2.3. (See [29].) Steps 1 and 2 are the same as in the Algorithm 2.2. 

Step 3. If (~i,/3i) ~ M, then calculate 

2c~i + 3~ - 3 
x* := x i  d- h i ,  p := x*  - x i ,  77 := x i + l  - x* ,  

3(~i + 3~ - 2) 

and then choose additional knots 

3#Ay~ 37]Ay~ 
: =  + : =  

I~di -t- r]di+ l ' #d~ + 77d~+1 " 

Then, the cubic segment 

{ 3 

x e  
3 

with a l  :=  d i / ( x i  - ~1)2, a2 := d i - 1 / ( x i + l  - ~2)2, and b := Yi - d i ( x i  - ~ ) / 3  is 
monotone in [x~, xi+1]. 

For an example of Yan's MP interpolant, see Figure 9 (inserted knots are marked by black 
triangles). 

Beatson and Wolkowicz [24] used e x t e n d e d  m o n o t o n i c i t y  r e g i o n  E defined as union of M with 
the squares [0, 1] x [3, 4] and [3, 4] x [0, 1], and a projection on E, given by the following. 

A p p r o x i m a t e  P r o j e c t i o n  o n t o  E 

Given (a, /3)  outside E; 

if c~ _< 1 let/3 :-- 4; 
else if/3 < 1, let c~ :-- 4; 
else project (~,/3) to O E  along the ray (c~,/3) - (1, 1), 

and if needs, a breakpoint is added according to the following. 

A d d i n g  a B r e a k p o i n t  

Let p be a C 1 piecewise cubic with knots {xi}. Select 1 < h' -< 2 and suppose (c~,/3) E E \ M .  

Step 1. Then calculate 

h(2a + / 3 -  3) [ (2ol -t- ,3 -- 3)_. 2 ] 
= 3 ( c ~ + / 3 - 2 )  ' e = A i [ 3 ( e + / 3 _ 2 )  c~ . 

Step 2. If (~ < 1, then insert a new knot at ~ = xi + 25 with p(~) := p(~) + 47c5/3 and p'(~) 
unchanged. If/3 < 1, then ~ := h - ~f and ~ = Xi+l - 2~ with p(~) := p(~) - 4 7 ~ / 3  
and p~(~) unchanged. 
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The first algorithm of these authors is then given by the following. 

ALGORITHM 2.4. (See [24].) Given monotone data {xi,Yi}~ffio and 7 E [1, 2]. 

Step la. Fit  C 2 cubic spline, s corresponding to one of three types of end-conditions (see [13]). 
Step lb. For i := 0 to n, if di := p'(xi) has the wrong sign, set di := -d i .  
Step 2a. For i :-- 0 to n - 1 by twos, if (ai, 13i) ¢ E, approximately project (ai, 13i) onto E. 
Step 2b. For i := 1 to n - 1 by twos, if (ai, 13i) ~ E, approximately project (cri, 13i) onto E. 
Step 2c. For i := 0 to n - 1, if (a~, 13i) ~ M, add a new knot in (xi, xi+l). 

The second algorithm needs another kind of projection. 

R e l a x e d  P r o j e c t i o n  o n t o  E 

Given a function g E C[0, 1] (called relaxation function) with the properties 

(a) g(x) <_ x, x E [0, 1], 
(b) (1 - g(x))/(1 - x) is bounded on [0, 1) and (a, 13) ¢~ U .  

Step 1. Calculate A > 0 such that  (1, 1) + A(a - 1,13 - 1) E OM. 
Step 2. If cr < 1, then/3 := 1 + g(A)(13 - 1); 

else if 13 _< 1, then a := 1 + g(A)(a - 1); 
else (a, 13) := (1, 1) + g(A)(a - 1, 13 - 1). 

In [24], the following relaxation functions are mentioned 

3' x<g, x<g, 
g1(x) = 2 g2(x) = (5x - 2) 2 (2.12) 

2 x - l ,  x > ~ ,  ~ ,  x > ~ ,  

and g3(x) = x (x  + 1)/2. 

ALGORITHM 2.5. (See [24].) Given monotone data {xi, yi}in=o, 7 E [1, 2] and relaxation function 
g: Steps l a  and lb are identical as in Algorithm 2.4; Steps 2a-2c are the same as in Algorithm 2.4, 
except the phrase 'approximate projection' which is to be replaced by 'relaxed projection.' 

In [24], the choice 

di := min { -d i ,  &i - l ,  A i}  , 

is used as an alternative to the Step lb. 

EXAMPLE 2.5. The following table gives the PRN 14 radiochemical data  [15]. 

Yi 0 2.76 10 -5 4.37 10 -2 0.169183 0.469428 0.94374 0.998636 0.999919 0.999994 

These da ta  are interpolated by C 2 cubic spline interpolant, Fritsch-Carlson interpolant and 
interpolant obtained by Eisenstat, Jackson and Levis's Algorithm 2.2. The graphs are shown in 
Figure 8. Three methods that  use knot insertion, Algorithm 2.3 of Yah, Algorithms 2.4 and 2.5 
of Beatson and Wolkowicz are presented in Figure 9. Black triangles point locations of new knots 
being inserted. The curve labeled BWl is the graph of the interpolant derived by Algorithm 2.4 
(approximate projection) with 7 = 1. The curve BW2 corresponds to Algorithm 2.5 (relaxed 
projection) with "y = 1 and relaxation function g = 81 from (2.12). In the last case, no extra 
knots has been required. 

In geometric modelling and CAGD, it is important to have good methods for MP interpolation. 
It is also desirable to have one or several parameters that  can influence the interpolant's shape in 
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a predictable way. One such method is given in [30]. The authors use parametric (2, 2)-rational 
B~zier curve 

Pobo(t) +wPlbl(t) + P2b2(t) [ 1 ) 
P ( t ) =  bo(t)+Wbl(t)+b2(t) ' te[O, 1], w e  - , + c o  , 

where {bi} are Bernstein basis polynomials of degree 2, and Pi  are points in R 2 : P 0  = (0,3), 
P1 = (0, 0), P2 = (3, 0). After simplifying, the above vector-valued expression reduces on the 
parametric form 

3t 2 3(1 - t) 2 (2.13) 
x(t) ---- 2 ( w -  I)t(1 - t) + I '  y(t) = 2(w - 1)t(i  - t) + i '  

which is known [31] to be the arc of a conic section with endpoints in P0 and P2. For co = 
- 1 / 2 ,  the equation (2.13) describes the arc of the ellipse (2.7), i.e., it is just the border of the 
monotonicity region M. For co = 0, it is the line segment (0, 3) - (3, 0), and defines the triangular 
area $3 (see Figure 4). For co > 0, the curve (2.13) is a hyperbolic arc which adheres to the 
coordinate axes as much as co is bigger. This allows to change the subregion of monotonicity in a 
continuous way, by simple changing value of w. For co < 0, MP interpolant may be constructed 
by using modified Algorithm 2.2, and for co _> 0 by the 'homothetic'  projection. In this sense, co 
plays the role of shape parameter. Increasing co makes the monotone interpolant more resembling 
to zero-d interpolant. 

For an approach that  uses optimization technique to construct C2-cubic MP spline, see [32]. 

N o n m o n o t o n e  D a t a  

All above algorithms preserve their accuracy when the data  are monotone (increasing or de- 
creasing). But, if the data  change monotonicity the accuracy falls. The 'parabolic data '  exam- 
ple [19], given in Figure 10, emphasizes this phenomenon. 

Note that  the Fritsch-Carlson algorithm (projection on de Boor-Swartz box) can handle both 
increasing or decreasing data, if it is formalized as follows: 

0, Ai_ lAi  < 0, 

di := min [max(0, di), 3min (Ai -1 ,  Ai)], Ai_l  and As > 0, 

max[min (0, di), 3 m a x ( A i - 1 ,  As)], A,_I and Ai < 0. 
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/!',, 

a) ............................... b) ~ \  

Figure 10. MP S~ spline interpolates, formula (2.14). 

Using the function (x, y) ~-~ minmod (x, y), defined by 

1 
minmod (x, y) = ~ [sgn (x) + sgn (y)] min (]xl, [y]), 

the above algorithm can be put in the more compact form 

si := minmod (Ai_I,  Ai) , di := minmod (di, 3si). (2.14) 

The algorithm (2.14), applied to the 'parabolic data, '  {(xi, 4 Yi)}i=l, where Yi = f ( x i ) ,  f ( x )  = 
x(1 - x), Xl = 0, x2 = 0.25, x3 = 0.75, and x4 - 1, gives d2 = d3 = 0, which causes 'clipping' 
of the local extrema, and first-order accuracy for derivatives d2 and d3. On the other hand, 
the data  carry the information about existence of the extreme in the interval [x2, x3], since 
(Y2 - Yl)(Y3 - Y4) > 0. The resulting MP interpolant's graph is shown in Figure 10a with the 
solid line (the graph of f on [0, 1] is shown by the dashed line). 

In [23], Hyman extends the MP constraint (2.14) to 

di := sgn(di )min(Idi l ,  31Ai-1 I, IAil), 

which leads to the relaxed algorithm [19]. 

ALGORITHM 2.6. (See [19].) 

Step 1. Compute 

p~-I = Ai- l (2hi-1  + hi-2) - A~-2hi-1, 3 < i < n, 
X i - -  X i _  2 

pO i -~ A i - l h i  + A ih i -1 ,  2 < i < n - 1, 
X i +  1 - -  X i _  1 

p~ = Ai(2hi + hi+a) - Ai+lh i ,  1 < i < n - 2. 
X i + 2  - -  Xi  

Step 2. M, := 3min (IAi_ll, ]Ai[, ]p°l), 2 < i < n - 1. 
Step 3. If the numbers i > 2 and p0, p~-l, A i _ l  __ A i _ 2  ' and Ai - Ai_x have the same sign, 

then 
0 ) Mi ==max Mi, ~ m m ( ] p i l ,  Ip~-l[) • 

Step 4. If the numbers i < n - 1 and -p i  °, -p~, Ai -- Ai_l,  and Ai+l -- Ai have the same 
sign, then 

Mi := max M,, ~ min ([p°l, IP • 

Step 5. 

(sgn di)min (Idol, Mi) if sgn d~ = sgnp °, 
di :-- ' i = 2  . . . . .  n - 1 .  

0, otherwise, 

Step 6. If sgndi = sgnAi,  then d~ := (sgndi)min(Id~ I, 3JAil), otherwise d~ := 0; handle 
i = n similarly. 
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Algorithm 2.6 generates a third-order accurate (in Loo) interpolant, if the original derivatives 
are second-order accurate (see [19]). The improvement is obvious if this algorithm is applied on 
the parabolic data, given above. The obtained interpolant restores the parabola (Figure l la)  no 
matter how many knots we have and if they are spaced nonuniformly (Figure 12a). 

Huynh in [28] gives an exhaustive review of many MP methods, including (2.14). He compared 
eight such methods. Here, we will mention only MG3 (monotone general third-order) method. 

(a) (b) 

Figure 11. MP $31 spline interpolates, Algorithm 2.6. 

(a) (b) 

Figure 12. MP $31 spline interpolates, Algorithm 2.7. 

ALGORITHM 2.7. (See [28].) 

Si :---- minmod (Ai - Ai-1, Ai+l - Ai), 

p+ := A i  - s i ,  

P7 := Ai-  1 + s i -  1. 

Compute 

o ~ = m i n { O ,  3 A , _ l , - ~ p i }  , /3~:=max 3A,_I, 3 - 

then ai := m a x ( ~ ,  aiR), ~ := min(/~, B~), and 

di := di + minmod (c~i - di, ~i - di) . 

The result of applying Algorithm 2.7 on the parabolic data gives the same result as the previous 
algorithm (Figures 11a and 12a). 

I$: I1-D 
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EXAMPLE 2.6. Algorithms 2.6 and 2.7, and the algorithm represented by equation (2.14), are 
used to approximate the function 

f ( x )  --- e -2x2  sin (10x), x E [0, 0.9005]. 

The interpolation data  are supplied by sampling f on the mesh of n = 10 equidistant points, 
such that  xl  = 0 and xl0 = 0.9095. Graphs of interpolates are displayed in Figures 10b, 11b, 
and 12b. It can be seen that  the Fritsch-Carlson algorithm (2.14) results in clipping the strict 
extreme, while relaxed algorithm of Daugherty, Edelman and Hyman, or MG3 algorithm give 
almost identical interpolates. 

The key operation in all above algorithms whose are of fit and modify type is correction of 
the initial values d~ = p'(xi). It is performed by a nonlinear averaging function (s, t) s-, G(s, t), 
where s = Ai_l  and t = A~, such that  

di := G(s, t). (2.15) 

This gives an algorithm which must be independent on scaling coordinate axes, i.e., on the 
subclass of an affine transformation (s, t) ~-* (As, At), A E R. Note that  this transformation 
preserves monotonicity of the data. In fact, for A > 0, the set of increasing (decreasing) sequence 
of da ta  is closed under this transformation while, for A < 0, it transforms increasing data in 
decreasing ones and vise versa So, if 

G(As, At) = AG(s, t), (2.16) 

the algorithm will equally efficiently handle the data  before and after scaling. This makes the 
algorithm independent on the scale of measurement. As the consequence of (2.16), the function G 
is fully characterized by an one-variable function g defined by 

g(r) = r a s, 
S 

Both G and g are called limiter functions. It is desirable that  G (and g) possesses the symmetry 
and averaging property 

(a)  G(s,  t) = a ( t ,  s), or  r g ( 1 / r )  - -  g(r), 
(b) a(s ,  t) • cony{s, t}, or g(r) • cony{l, r}. 

The next two conditions provide stability and monotonicity of the algorithm (2.15): 

(c) G or g is continuous, 
(d) G(s, t) • conv{0, 3s~}, or g(r) • conv{0, 3 minmod (1, r)}. 

Stability of the algorithm means that  a small change in the data  may cause a large change in 
the interpolant. For example, in order to avoid the 'clipping' phenomenon described above, one 
may turn off the monotonicity constrain (2.14) near strict local extreme causing an instability of 
the method. 

In [28], several examples of limiter functions are given. Here we reproduce three of them 

3r , 0 < r <  1, 
2r 1 + 2r - 3r(r + 1) 

g(r) = 1 +-'--~' g(r) = 3r g(r) = r2 + 4r + 1' 
2 + r '  r : > l ,  

and in all cases, g(r) = 0 for r < 0. As it is noticed by Huynh [28], it does not seem fruitful to 
improve accuracy by developing new limiter functions. 
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Finally, let us mention the conditions, the derivatives di = pr(xi) must obey so that  the 
piecewise cubic p given by (2.4) preserve the positivity or negativity of the data  if (see [19]) 

- 31yi---~[ • sgn (Yi) d, <: 31yi----[[ 
hi - - h i - l "  

For corresponding MP (also positivity preserving) methods for constructing C2-piecewise quin- 
tic interpolates, see [19]. About quintic splines, see for example [33]. 

Some authors use optimization approach. Thus, in [34] Dauner and Reinsch discuss two algo- 
rithms for the construction of the cubic spline interpolant that  preserve positivity or monotonicity 
of the data, by solving a finite-dimensional nonlinear minimization problem. 

3.  C O N V E X I T Y  P R E S E R V I N G  I N T E R P O L A T I O N  

In this section, the CP refers to convexity preserving and MCP to monotonicity and convexity 
preserving interpolates. 

The most popular definition of convexity of a twice differentiable function f : I --* R, where I 
is any nonempty segment of the real axis, is f ' ( x )  >_ O, x E I. But, the definition of convexity 
need not any preassumption about continuity of the function. Actually, f is convex (on I) if for 
any x, y E I ,  and for any A E (0, 1), the Jensen inequality is valid 

f ((1 -- ~)x -{- ~y) _< (1 - )~)f(x) q- )~f(y). (3.1) 

If for x ~ y in (3.1) <_ is replaced by < ,  the function f is strictly convex. The function f is 
concave (strictly concave) if - f  is convex (strictly convex). 

Convexity of f implies continuity except at the end points of I.  The alternative definition 
to (3.1) is via second-order divided difference 

f ( x )  f (y )  f ( z )  > 0, (3.2) 
Ix, y ,  z;  f ]  = ( x  - y ) ( x  - z )  + ( y  - x ) ( y  - z )  + ( z  - x ) ( z  - y )  - 

w h e r e  x, y, and z are any three noncoincidental points from I. The 'discrete' version of the 
divided difference operator, defined for the data  {(xi, Y~)}ieN is 

[x~, x~+l, x~+2; y] = A~+I - A~ 
X i . b 2  - -  X i 

The divided difference in (3.2) can be iterated as follows: 

[ X i ,  . . . , X i + k ;  f ]  "~ [ X i - k l ' '  " " ' X i ' b k ;  f ]  - -  [X i ,  . . . , X i . l _ k _ l  ; f ] ,  [ x i  ; f ]  -~- f ( x i ) .  

Xiq_ k - -  X i 

Obviously, A~ _-- [xi, X~+l : y]. The function f is convex of order k > O, if for any set of 
noncoincidental points {x0 , . . . , x r}  from I it is valid 

[x0, . . . ,  xr; f] _> 0. (3.3) 

Changing the sign >_ into > gives the definition of strict convexity of order k. Also, definitions 
of (strict) concavity of order k obtains from (3.3) by inverting these signs. 

For other details about convex functions, see for example [35]. 
Let p be a polynomial from :Pro (m > 3) that  interpolates the data  {(xi, Y~)}~--0. Theorems 2.7 

and 2.8 from the previous section (see, also, Remark 2.1), give the necessary and sufficient 
conditions for a polynomial to be monotone on some subinterval [x~, xi+l]. The monotonicity 
regions in the (a, 13)-plane are or triangular areas or convex combinations of characteristic ellipses 
with the origin. In the case of convexity, we have corresponding results. 

THEOREM 3.1. NECESSARY CONDITIONS. Let p E Pm (m > 1) be convex on [x~, x~+l]. Then 

a ~ < l ,  ~ i > l ,  or a i = ~ = l ,  (3.4) 

where ai and Bi are given by (2.6). 
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PROOF. 

(i) Let rn > 2. The derivative p'(xi) is the slope of the line of support ~1 (see [35]) that  touches 
p in xi. Similarly, g2 is the line of support of p in Xi+l. Therefore, for x • (xi, Xi+l), 
p satisfies p(x) > max{el(x), £2(x)}. On the other hand, by the Jensen inequality, p < e0 
on (xi, Xi+l), where g0 is the chord joining the points (xi, p(xi)) and (xi+l, p(xi+l)), with 
the slope Ai. Therefore, graphs ofl0, gl, and/2  form a triangle such that  max{gl, g2} < g0 
with equality at the end-points. Comparing slopes of triangle's sides results in ff  (xi) < Ai 
and p'(xi+~) > Ai, i.e., at the first two inequalities in (3.4). 

(ii) Let m = 1. Then, obviously p'(xi) = p'(xi+l) = Ai, so (3.4) is complete. | 

Let rm = 2/(1 - am-2) and s m =  2/(1 + am-2), where am denotes the largest zero of the 
p(0,1) Jacobi polynomial .DO'°)v+l if m = 2v, o r .  ~+1 if m = 2v + 1. Note that  1/rm + 1/Sm = 1, and we 

have the following theorem. 

THEOREM 3.2. (See [20].) 

(a) I f  (ai, ~i) • D, where D is a wedge shaped region defined by the following inequalities: 

Sm(Ce-1) < a - -  fl < rm(a- -1 ) ,  a < l,  fl > l,  

with vertex (1, 1) (Figure 13 (left)), then p • P m  (m >_ 3) is convex on [xi, xi+l]. Note 
that OD intersects fl-axis in the points Sm and rm. 

(b) I f  (ai, j3i) • D1, where D1 C D is the triangular region with vertices (1, 1), (0, sin), and 
(0, rm), then p is a monotone and convex polynomial. 

J Cubic spline 

• ' . .  

Figure 13. 

Theorem 3.2 generalizes the result of Neuman [36], which states that  the cubic spline p given 
by (2.4) is convex on [xi, Xi+l] if and only if (ai, 13i) E W,  where W = {(a, ~) • N 2 : 2 a + ~  _< 3, 
a + 2/3 > 3}. 

The following theorem establishes the existence of the polynomial of the best approximation 
which preserves convexity of higher order. Let w be the modulus of continuity of f(2m-1).  

THEOREM 3.3. (See [37].) Let m > 1 and f • C2m-1[ -1 ,  +1]. Let 1 < kl < k2 < . . .  < kp < m 
be p Frxed integers and ~i = +1, i = 1 , . . .  ,p fixed signs. For each positive integer n, let Pn • Pn 
be the polynomial of the best approximation to f on [-1, +1]. I f  e i f (k ' ) (x )  > 0 on [--1, +1] for 
i = 1 , . . . , p ,  and if  

k='-'~x w < +oo ,  

then for n sufficiently large we have e~p(~k~)(x) > 0 on [--1, +1] for i = 1 , . . .  ,p. 

In [38], Passow and Roulier have proved four negative theorems on the best convex approxi- 
mation. We cite their Theorem 1. 
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THEOREM 3.4. (See [38].) Let f • C[-1,  1] have bounded r th order divided differences, and 
nonnegative (r + 1) st order divided differences on [-1, 1]. Let Pn be the polynomial of best 
approximation o f f  on [-1, 1]. Assume that there is no C > 0 for which 

C 
En(f)  <( (n-k 1) r + l '  for n ---- 0, 1 , . . . .  

[-1, 11. Then there are infinitely many n for which we do not have pn (x) >_ 0 on 

As it has been proved by Erd6s, the classical Markov inequality 

2n 2 
IIP't[ <- b_--Z-~]lPl], 

(p E 7~n, [I. [[ is sup-norm) can be improved by replacing n 2 by en/2 for polynomials with only 
real zeros outside [a, b]. Myers and Roulier have considered the subclass of convex polynomials, 
and have proved the following negative result. 

THEOREM 3.5. (See [39].) Let p 6 Pn, and [[ • [[ be the sup-norm on [a, b]. Markov's inequaJity 
cannot be improved by replacing n 2 by some lower power of n for convex increasing interpolates. 

In the paper [40], Ivanov considered the problem of interpolation of k-convex (strictly k-convex) 
data  {(xi, Yi)}~=0 by the function f 6 C[xo, xn] with absolutely continuous derivative f (k-1) ,  
f(k) E Lp (1 < p < 0o), such that  f(k) > O. Moreover, the algorithm for finding f is given under 
the min [f(k) lLp constrain. 

Let us turn to the more promising piecewise polynomial CP and MCP interpolation. It is 
well known that  the classical interpolating splines, for example, parabolic or cubic spline, in 
general, do not preserve monotonicity and convexity. In the preceding section, we presented 
several algorithms for monotonicity (or positivity) preserving C 1 piecewise cubic interpolates. 
The algorithms for finding PM C2-quintic piecewise interpolates are also known (see [19]). But, 
these interpolates do not preserve convexity as the following example shows. 

EXAMPLE 3.1. Figure 13 (right) shows the data {xi, f(xi)}3=o taken from the convex function 
f ( x )  = 1 /x  2, at the nodes x0 = -2 ,  Xl = -1 ,  x2 = -0.3, x3 = -0.2,  used in [41]. Neither 
C2-cubic spline (dotted line) nor C* MP interpolant obtained by Fritsch-Carlson method (solid 
line) preserves the convexity of the data. 

The impossibility of constructing similar algorithms for CP piecewise cubic interpolates is 
shown in the following counterexample [19]. 

EXAMPLE 3.2. Let us consider the samples of f ( x )  = Ix[ on the mesh - 1  = Xl < x2 < .-. < 
xn -- 1, which contains the point 0, say xj = 0. Suppose that  p is a C 1 piecewise cubic interpolant. 
The left derivative at x j, p' ( x j - 0 )  must be equal to Ai_ 1 = - 1  to preserve convexity on Ix j_ 2, xj]. 
The right derivative p'(xj  + 0) must equal A i = 1 to preserve convexity on [xj, xj+2]. Thus, 
p'(xj -- O) • pt(xj -b 0) and p is not differentiable at xj.  

Accordingly, we must modify our demands, accepting either nondifferentiable splines, or splines 
of higher degree, or splines with additional knots or nonpolynomial splines (exponential, rational, 
etc.) 

In the case of C°-piecewise cubic spline, the following conditions on d 7 = p'(xi - 0) and 
d + = p'(xi + 0) ensure that  the cubic Hermite interpolant (2.8) preserves convexity or concavity 
of the data. 

THEOREM 3.6. (See [19,42].) Given the convex (concave) data {(xi, Yi)}~=0. Let 

Pi = sgn [xi-1, xi, Xi+l; Y], i = 1 , . . . , n  - 1. 

I f  
p iAi_l  < pid 7 <_ pid + < piA~ (3.5) 
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and 

-2p ,  (d;+ 1 - A , )  <_ p, (d. +, - A,)  <_ - ½  p, (d;+ 1 - A,) ,  

then p is convex (concave). 

We consider now again the set of splines SJm = S ~ ( X )  that  corresponds to the mesh X = 
{ x o , x l , . . .  ,Xn}, introduced in Section 2. Passow [43] proved the following theorem concerning 
interpolation with a quadratic C 1 spline. 

THEOREM 3.7. (See [43].) 

(i) g Yi+l - Yi > 0, Aiq-1 - -  m i > 0,  i = 0, 1 , . . . ,  n - 1, then there exists an increasing 
interpolant in S 1. 

(ii) I f A i + l  - Ai  > 0 and Ai+2 - 2Ai+l + Ai > 0, i = 0 , 1 , . . . , n  - 2, then there exists a 
convex interpolant in S]. 

If the data  X = {x0, xl ,  x2, x3} are increasing and convex, then there exists an increasing and 
convex interpolant p E S~, where (see [39]) 

A2 m 2 > 
- A a - A 2 + A I "  

An exhaustive s tudy of shape preserving interpolation with various classes of splines is given 
by Schmidt in [44,45] (for cubic splines see [46]). For example, he considers the conditions for 
existence of quadratic spline interpolant p from S], given by 

p(x) = Yi + dihit + (Ai  - di)hit 2, t = x - x_______3 e [0, 1]. (3.6) 
h~ 

The necessary and sufficient condition for p to be convex, monotone, or positive on [0, 1] is, 
respectively, 

di < Ai, i = 0 , 1 , . . . , n -  1, (3.7) 

d~ _> 0, i = 0 , 1 , . . . , n ,  (3.8) 

2 
d, > - ~  (y, + ~ ) ,  i = 1 , . . . , n .  (3.9) 

Let the data, {(xi, Yi)} are interpolated by the spline p, given by (3.6). Let ' n {/~i}i=l be given 
with 0 </~i < 1, such that  (1 - /~i)di-x + j3idi = Ai-1, i = 1 , . . . , n .  

THEOREM 3.8. (See [45].) Define the sequences {7i} and {6i} by 70 = 1, 61 = Ao, and 

~i7i--1 
6i-1-1 : 6i  Jr" (-1)iTi (Ai - Ai-1) ,  i = 1 . . . . .  n - 1. 

3 ' i=  1 - ~ i '  

I f 6 '  = max{62j} and 6" = rain {69.j_1), j = 1,2 . . . .  , and 6' <_ 6", then (3.7) is valid, i.e., the 
quadratic spline interpolant (3.6) preserves convexity of the data. I f  do E [6', 6"], then 

di = Ai_l - ( -1)  i+ld° - 6i+1, i = 1,. . . ,  n. 
3,i 

T H E O R E M  3.9. (See [45].) Define {3,i} and {6i} by 3'0 = 0, 61 = 1, and 

3'5 = 3,i-1 + ( -1)  i-16i-1Ai 6i = ~i6i-1 
1 - / ~ i '  1 -/3"----~" i = 1 , . . . , n -  1. 

I f 6 '  = max{6~j} and 6" = min{62j-1}, j = 1 ,2 , . . . ,  and 6' <_ 6", then (3.8) is valid, i.e., the 
quadratic spline interpolant (3.6) preserves monotonicity of  the data. I f  do E [6', 6"], then 

di = ( -1)  id° 6---'i---. ' i =  1 , . . . , n .  
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THEOREM 3.10.  (See [45].) Define {7i} and {6i} by 70 = 1, 61 = O, and 

7i= t~i"/i-ll--Bi' 6i+1 = 6i + ( - 1 )  i~ : -1~ ' -  ' ,  i = 1 , . . . ,  n - 1. 

I f 6 '  = max{62j} and 6" = min{62j_l},  j = 1 , 2 , . . . ,  and 6' <_ 6", then (3.9) is valid, i.e., the 
quadratic spline interpolant (3.6) preserves posi t ivi ty  of  the data.  I f  do E [5', 5"], then 

di = 6 i + l - d o ,  i =  l , . . . , n .  
"n 

T h e  shape preserving effect can be obta ined also by using knot  insertion technique,  an idea 
e labora ted  by Schumaker in [47]. He considered the following problem. 

PROBLEM 3.1. Find a function s 6 Cl[xi ,  xi+l] such tha t  

s (x j )  = (yj),  s ' (x j )  = dj, j = i , i +  1, 

where Yi, y~+l, di, and di+l are given numbers.  

This  problem can be solved by a quadrat ic  polynomial,  if and only if 

di + di+l = 2A~. (3.10) 

In this case, the  solution is 

(di+l - di)(x  - xi)  2 
s(x)  = Yi + di(x  - xi)  + 2(xi+1 - xi)  (3.11) 

Otherwise,  the  solution can be a quadrat ic  spline with one (simple) knot.  

THEOREM 3.11.  (See [47].) For every t e (xi, Xi+l), there  exists a unique quadratic spline p 
with a (simple) knot  at t solving Problem 3.1. In particular, 

f a l + b l ( x - x i ) + c l ( z - z i )  2, z i < z < t ,  
p(x)  

a2 q- b2(x - t) -+- c2(x - t) 2, t < x < Xi+l, 

with a l  = Yi, bl = di, Cl = (d - d i ) / (2~) ,  a2 = al  + b la  + clc~ 2, b2 = d, c2 = (di+l - d)/(2j3), 
where 

d p'(t)  2Ai  c~di+13d~+l = = , ( ~ = t - - x i ,  1 3 = X i + l - - t .  
Xi+l -- xi  

Based on the  tes t  (3.10) and Theorem 3.11, different algori thms can be constructed.  At the  first 
stage of such an algorithm, we specify the  interpolat ing da ta  and define the  set of slopes {di} t ha t  
ensure the  quadra t ic  interpolant  is monotone  or convex or both.  Then,  if the  result of tes t  (3.10), 
on j th  interval is positive, the  unique quadrat ic  polynomial  (3.11) is the  interpolant  we need. 
Otherwise,  we insert a knot  t in [xi, xi+l] such tha t  the  following conditions are valid. 

Monotonici ty:  

21Ayil > I(t - xi)di + (xi+l - t)d~+xl . 

Convexity:  

xi < t < xi + 2Ax~(di+x - Ai)  if Id~+l - A i l  < Idi - A~I, 
- d~+ l  - di  ' 

2Axi (d i  - A i )  < t < Xi+l, if Idi+l - Ai I > Idi - A i l .  
xi + di+l - di - 
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This idea is further explored by Lahtinen in [48,49], where interesting applications can be 
found. 

In the series of papers, McAllister, Passow and Roulier have elaborated the way of constructing 
spline interpolant of arbitrary degree that preserves shape of the data (see [41,50-52]). Their 
method is based on the concept of {a}-admissibility of the sequence of numbers [51]. More 
precise, let {ai}n=l be a given sequence of numbers such that  0 < ai  < 1. Let {(xi, Yi)}~=o be 
the da ta  that  are increasing (and/or convex) and xi = xi-1 + aiAxi. The set of numbers {ti} is 
said to be increasing (and/or convex) {ai}-admissible if the piecewise linear function L with the 
breakpoints 

(X0, Y0), (~:1, t i ) ,  (~'2, t 2 ) , . . . ,  ('2.n, tn), (Xn, Yn) 
passes through the points (xi, Yi), i = 1,. . . ,  n - 1, and is increasing (and/or convex). 

In the case that  there exist increasing (and/or convex) {ai}-admissible points for given data, 
the piecewise linear function L exists, and the spline interpolant p is constructed such that  on 
[xi, xi+l] it is a polynomial from Pk, which Bernstein form is 

1 ~ ( .h i )bj (x)  ' (3.12) p(x) = -~ L xi + ?-~ 
j=O 

where bj(x)= .-(%i ) (x_x i )J (x i+ 1 _x)k , - j  is the j th  basic Bernstein polynomial (see Section 5). 

It is well known (Theorem 5.2) that  Bernstein polynomials preserve m th order convexity of the 
generating function. Thus, if L is monotone (and/or convex) so is p. The integer numbers ki, 
defining the degree of polynomial pieces are free parameters that  may control the smoothness of 
the spline. The interpolating algorithm offered by authors of [41] is based on the following. 

ALGORITHM 3.1. (See [41].) Let {ai}n_l with 0 < ai  < 1 be given. Define m0 = 0 and M0 = A1. 
Now, for i = 1 ,2 , . . .  , n -  1, define 

Ai - ai Mi-1 mi m 
1 - ai 

and 
{ A i - - a i m i - 1 }  

Mi = min Ai+l ,  1 - -~ i  " 

THEOREM 3.12. (See [41].) Given increasing and convex data {(xi, Yi)}, i = O, 1 , . . .  ,n, and 
{a~}~=l with 0 < ai < 1, i = 1, . . . ,  n. Then there exist {a~}-admissible points for this data, if 
and only if the alpha-algorithm can be completed with mi <_ Ai+I for i --- 1 , . . . ,  n - 1. 

EXAMPLE 3.3. For the data taken from the function f(x)  = 1Ix 2, as in Example 3.1, the shape 
preserving algorithm McAllister-Passow-Roulier is illustrated in Figure 14. The leffmost graph 
shows the data  points, as well as the inserted points (~i, ti). The middle graph represents two 
different Cl-cubic splines that  are obtained for the following a-sequences: a l  = a2 = a3 = 0.5 
(graph 1) and a l  = 0.1, a2 = 0.6, and a3 = 0.9 (graph 2). The third graph shows two different 
interpolates for k = 3 (all pieces have the same degree) and for k = 15. All interpolates preserve 
monotonicity and convexity. 

• CO--DATA [ ] 
o INSERTED POINTS j 

/ 1 / k=3 

Figure 14. The algorithm McAllister-Passow-Roulier. 
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As it is noted in [12], the degree of various piecewise polynomials may be forced to be arbitrarily 
high by a suitable choice of data points. In other words, it is impossible to interpolate convex 
data  by a convex polynomial spline of bounded degree for general data and knots. In [50] it is 
shown that  in CP interpolation this undesirable property can occur for any choice of fixed knots. 
Further development of the idea of the shape preserving interpolation by splines of arbitrary 
degree, using the shape preserving property of Bernstein polynomials can be found in [53-55]. 

In [56], the algorithm is presented for calculating an osculatory MP and CP quadratic spline, 
that  is consistent with the given derivatives at the data points. 

As far as the most important class of cubic splines is concerning, Costantini and Morandi [57,58] 
have studied Cl-cubic splines which preserve both convexity and monotonicity. For other inter- 
esting results of the Italian group, concerning shape preserving interpolation, see [53-55,59-63]. 

The C2-cubic spline CP interpolation is considered in [64] (also MP), [13,65]. 
For example, Miroshnichenko (see [64]) consider the cubic spline s from C2[x0, x~]. Denote 

Mi = s" (x i ) ,  i = O, 1 , . . . , n ,  Ai = h i / ( h i - 1  + hi), #i = 1 - Ai, i = 1 , . . . , n -  1. 

THEOREM 3.13. (See [64].) Le t  Di = 6[xi-1, xi,  Xi+l; y], i = 1 , . . . ,  n -  1, and D - 1  = Dn+l = O. 

Suppose  that  the  constants  A0 < 4, #n < 4, Do >_ O, and Dn ~_ 0 are given. Le t  s E C2[x0, Xn] 

be a cubic spline wi th  end conditions 

2M0 + AoM1 = Do, #~M~-I  + 2M~ = Dn, 

which interpolates the convex data {(xi, Yi)}i~0. If  

2 D i -  AiDi+l - I ~ i D i - 1  > 0 ,  i = O ,  1 , . . . , n ,  

then s is convex  on [x0, xn]. 

THEOREM 3.14. (See [64].) Let the constants An, #o, Co, and an are given such that  ]An[ <_ 2, 
[#0[ <- 2. Let c~ = 3(AiAi_l + #iAi),  i = 1 , . . . ,  n - 1. Let  s E C2[x0, x,~] be a cubic spline with 

end condit ions 

2d0 + #odl = Co, Andn-1 + 2dn = an, 

which interpolates the increasing data {(xi, yi)}in=0 • H 

c lmax{0 ,  #0} _~ 2Co < 12A0, 

C~_lmax{0, An} _< 2an < 12An_l, 

A~Ai_I <_ (1-t- A~)Ai, i = 1 , . . . , n -  1, 

#iAi _< (1 + # i ) A i - 1 ,  i = 1 , . . . , n -  1, 

then s is increasing on [x0, xn]. 

For convex and monotone parabolic splines see [64]. Also, some other aspects of quadratic 
shape preserving approximation can be found in [66,67]. An algorithm that  uses an optimization 
approach for constructing C 2 cubic spline is given by Dierckx [68]. 

Quite a different approach is used by de Boor in [13]. It is based on the concept of extrane- 

ous inflection point of the interpolant p, which is such inflection point from (xi, Xi+l) so that  
~ i + 1  > 0, where ~i = As - A i - 1 ,  and as above, Ai  = A y i / h i  , hi = Axe.  Let the piecewise linear 
interpolant to the data  {(xi, Yi)}, i = 0, 1 . . . . .  n is convex (concave) on the interval [xr-1, x8+1], 
then the interpolant p is said to be good in de Boor sense, if it is convex (concave) on the interval 
[X~-l, xi+l]. Obviously, if/5i = 0, this definition recognizes a linear function on [xi-1, xi+l] as 
an interpolant. In other words, good shape preserving interpolant should not introduce extrane- 
ous inflection points, because the existence of such points results in appearance of interpolant's 
oscillations. 
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Trying to eliminate extraneous inflection points, Schweikart [69] introduced the spline inten- 
sion. Each segment of such a spline is an exponential function, or, more precisely, a linear 

combination of the basis {1, x, e Ax, e -Ax} for A > 0, or the customary cubic spline for A = 0. 

Increasing A increases 'tension' of a spline curve, such that for A ~ oo, it approaches to the 

piecewise linear interpolant. From this reason, A is often refereed to as tension (parameter). 
Clearly, increasing of tension may result in eliminating of extraneous inflection points. For some 
generalizations of Schweikart's model, see [70]. For shape preserving aspect of exponential splines 
see [71-75], while a good survey of the topic is given in [76]. 

The only shortcoming of the Schweikart-Sp~ith spline interpolant is that  the exponential func- 
tions are much more expensive for calculation than the cubic ones. This motivated a number of 
authors to t ry  to find a cubic alternative to exponential splines under tension [77-80]. 

One good alternative is de Boor's taut spline [13]. It uses a knot inserting technique to place 
the extra knots that  allow sharp bending of a cubic spline without breaking out into oscillations. 
The taut  spline, for x E [xi, Xi+l] has a form 

p(x)  = Ai  + B i u  + Ci¢(u; z) + Die(1 - u; 1 - z), (3.13) 

with 

¢(x; z) -- (~x 3 + (1 - o~) \ 1 - - - ~ ] +  ' 

c~(z) = (1 - ~//3)/¢ and the additional knot ¢(z) = 1 - "~min{1 - z, 1/3}, where "y E [0, 3]. Also, 

- x , )  

u(x)  - hi ' 

~i+1 if ~i~i+ 1 ~> O, ~i -b ~i+1 ~ 0, 
z = (5i + 5i+1)'  

1 
2 '  otherwise, 

where 5i -- Ai - Ai-1,  i = 1 , . . .  , n -  1, and z = 1/2 for i = 0, 1. Note that  ~/is a free parameter,  
and increasing of 7 made the interpolant to look more 'round.' 

With the notation Mi = p(xi ) ,  the coefficients in (3.13) are 

Ai  = p(xi)  - Di,  Bi  = h iA i  - Ci + Di, 

Mi+l 
Ci = hi-2 ¢I-~., z ) '  Di = ¢ ( ; - z)" 

It remains to determine the sequence {Mi}in0 so that  p belongs to C2[xo, Xn], i.e., to solve the 
tridiagonal system 

a M i _ l  + b M i q - c M i + l  = 6 i ,  i =  l . . . .  , n - l ,  (3.14) 

where 

hi-1 ¢~(1;  Z / _ l )  - l h i _ l  ¢'(1; 1 -  zi) - hi b = + lh i ,  = 
a -- ¢(1; 1 - z i -1) '  ~/7(~ z--i-~ ~7"(~; £ - - z ~  c ¢"(1; zi)" 

If a = 1, no additional knots are introduced, and then (3.14) reduces to 

h i -  1 Mi-  1 + h i -  1 + hi hi 
6 3 Mi + -~- Mi+l = 6i, 

which results in the customary cubic spline interpolant, which depends on the end-point condi- 
tions. 
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In the paper [81], the convexity preserving properties of a class of C 2 polynomial splines of 
nonuniform degree is studied, and the corresponding algorithm is given. 

The interpolation splines of degree k + 1, and I times continuously differentiable (i.e., the splines 
from the class S~+1) that  are both MP and CP are studied by Neuman ([82,83]). He uses a set 
of knots {ti} that  is related with interpolation nodes {xi} in the following way: 

X 0 ~ t o = . . . . _ ~  t i n _  1 ~ t m  ~ X 1 = t k +  1 ~-- . . .  = t k +  m ~ t k + m + l  

. . . . .  t2k+l ---- X2 . . . . .  Xn-1 : t(n-1)(k+l) . . . .  

. . . . .  t ( n _ l ) ( k + l ) + r n _  1 ( t ( n - 1 ) ( k + l ) + m  . . . . .  tn(kd_l)_ 1 : X n ,  

where m is an arbitrary real number such that 1 _< m _< k. 

THEOREM 3.15. (See [83].) Let k and m be arbitrary natural numbers such that 1 <_ m <_ k. I f  
for a / l i  = 0 , 1 , . . . , n -  1, 

A i > k + l  ~ -~ (1  k + l ) i - j -1  
m m j=o 

Ck+l-~ max{m, k + 1 m} that then there exists an increasing and convex spline s E "k+X , r = 
interpolates increasing and convex data { (xi, Yi)}~=0. 

4 .  R A T I O N A L  S P L I N E S  

An acceptable alternative to MP or CP interpolation processes by polynomials or polynomial 
splines are shape preserving rational splines. The rational spline is a smooth enough, piecewise 
(m, n)-rational function. A function is called (m, n)-rational if it is an m-degree polynomial 
divided by an n-degree one. 

In [84], Delbourgo and Gregory have introduced piecewise rational quadratic function for which 
the necessary derivative condition for monotonicity is also sufficient (see also [85]). They have 
given a closed form solution to the monotonic interpolation problem. It results in C 1 monotonic 
(2, 2)-rational spline (or simply quadratic rational spline) with at most O(h 4) accuracy. 

Let {(xi, Yi)}i~0 be given monotone data (x0 < xl < . . .  < x , ) .  Let s be the rational quadratic 
spline, defined for x E [x~, xi+l], i = 0, 1 , . . .  , n -  1 by 

P,(t) 
s(x) = Qi(t) '  if Ai ~ 0, 

yi, i f A i = 0 ,  t = ( x - x i )  (4.1) 
hi 

where 

Pi(t) = AiYi+lt 2 + (yidi+l + yi+ld~)t(1 - t) + Aiyi(1 - t) 2, (4.2) 

Qi(t) = Air 2 + (di+l + di)t(1 - t) + Ai(1 - t) 2. (4.3) 

As in previous sections, we set Ai  = Ay i /h i  and di = s'(xi). 

THEOREM 4.1. (See [84].) The spline s(x), x E [Xo, x~] has the following properties: 

(i) i f  Ai  ~ O, then Qi(t) ~ 0 for all t E [0, 1]; 
(ii) s(xj )  = yj, s ' (xj)  = dj, j -- i, i + I ;  

(iii) s E Cl[xo, xn]; 
(iv) s'(x) > o ~or x e [xo, x.]; 
(v) lima,-,0 Pi(t) /Qi( t)  -~ Yi. 

The convergence analysis is given in the following theorem. 
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THEOREM 4.2.  (See [84].) Let  f E C4[x0, Xn], and suppose [f ' (x)[  > 0 on a compact  set 
K C Ix0, xn]. Let  Yi = f ( x i )  and  f~ = f ' ( x i ) .  Then for x E [xi, xi+l] C K ,  i = 0, 1 , . . . ,  n - 1, 

(i) there exists a constant c, independent of  i, such that 

min [Qi(t)[ > c > o; 
o<t<l 

(ii) I f (x )  - s(x)[ _< h i A m a x { [ f ~  - di[, ]f~+l -- di+l[} -4- 4 ' h i Bi,  where 

A = ~ IIf 'll,  Bi -- ~ f(4) IIf'll + T + 2 f(3) , 

and []. H denotes the uniform norm on [x0, Xn]. 

A rat ional  cubic C2-spline, or more  precisely (3, 2)-rational spline (on each subinterval  it reduces 
on rat ional  funct ion with a cubic numera tor  and a quadrat ic  denominator) ,  which has MP a n d / o r  
CP  p rope r ty  is considered in [85]. 

In [86], Delbourgo develops the idea from [84] to use C 2 (3, 2)-rational spline, defined in x 

[xi, Xi+l], by 
~,~Ai(1 - t) + B i t ,  

s(x) = (1 - t)yi + tyi+l - Cihi(1 - ~ )~-~i T ~(~-_--t~-~i 

where Ai = Ai -di, Bi = di+l -Ai, and as above t = (x- xi)/hi. The numbers I/Ci are tension 

parameters for the subinterval, i.e., when Ci --~ O, s approaches to the linear interpolant to 

(xi, Yi) and (Xi+l, yi+1), while Ci ~ oc reduces s on the cubic segment. In [86], the consistency 

of a tridiagonal system is established, and it is shown how tension parameters can be used for 

adjusting convexity of the spline s. 

Gregory [87] suggested a (3, 2)-rational spline of the form 

s(t) ---- (1 - t)3yi + t(1 - t)2(riYi + hidi) + t2(1 - t)(riyi+l - hidi+l) + t3yi+l 
1 + t(1 - t)(ri - 3) , (4.4) 

for x E [xi, xi+l],  where ri > - 1  is the tension parameter  in this interval. T he  case ri = 3 
is t ha t  of  o rd inary  cubic spline approximation.  The  Gregory  rat ional  spline is C 2 if ri > 2, 
i = 1 , . . .  , n  - 1. T h e  spline is an MP interpolant  if ri _> (di + d i+ l ) /A i ,  and a CP  interpolant  if 

max  {d~+l - Ai, Ai - di} 
r i > l +  

min {di+l - Ai, Ai - di}" 

T h e  examples  or Gregory  rat ional  spline are given on Figures 15 and 16 (Example  4.1). 

Figure 15. Gregory's rational spline uner tension. 

Figure 16. Gregory's rational spline uner tension. 
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A variat ion of (4.4) was used by Sarfraz [88] to  obta in  monotonic i ty  preserving interpolat ion.  

His spline has the  form 

s( t)  = (1 - t)3oqyi q- t(1 - t)2(2 + a i ) A i  + t2(1 - t)(2 + ai+l)B~ + t3~iYi+l 
(1 - t)2(~i + 2t(1 - t) + t2]3~ 

where Ai  = yi + ~ i / (2  + (~i)hidi, B~ = yi+l - ~3~/(2 + Di)hid~+l, while c~ and ~3, are the shape 
parameters .  For ~ = t3i = 1, s becomes the cubic interpolant.  

T h e  C 2 rat ional  spline tha t  for x E [xi, xi+l] takes the form 

s ( x ) = ( 1 - t ) y ~ + t y i + l + C i  t + D~ [1 + ~i( t)  , 

where ~p~ and ¢4 are functions satisfying 

(a) ~i, ¢i e 6'2[0, 11; 
(b) ~i( t )  > - l , ¢ i ( t ) > - l , t •  [0, 11; 
(c) v~(1) = ¢ i (0)  = 0; 

! (d) ~ ( 1 )  < 0, ~bi(0 ) _> 0, i = 0 , 1 , . . . , n -  1; 

has been considered by Miroshnichenko [64,89]. Suppose tha t  Yi = f ( z i ) ,  where f • C2[zo, xn]. 

Let  mi  = s ' (x i ) ,  Mi  = s" (x i ) ,  i = 0 , 1 , . . . , n ,  and for i = 0 , 1 , . . . , n -  1, 

wi = 1 - [2 + ¢~(0)] [ 2 -  ~ ( 1 ) ] ,  

u, = { 6 - 6 ~ ; ( 1 ) -  ~;'(1) + 2 [~;(111~} -1 , 

V i = {6 ÷ 6~b:(0)- ¢:t(0)÷ 2 [¢:(0)] 2}-1. 

Then,  the  constants  Ci and Di in (4.5) are given by 

Ci h2uiMi+l ,  Di  2 = = h i v i M i  , i = O ,  1 , . . . , n - 1 .  

Let  Ai = h i / ( h i - 1  + hi), #i = 1 - Ai, i = 1 , . . . ,  n - 1 and Pi = (uio.)i) -1, Qi = (viwi) -1, 
i = 0 , . . .  , n  - 1. In [89], it has been proved tha t  mi satisfy the tr idiagonal  sys tem 

- A i P i - l m i - 1  - L i m i  - # iQimi+ l  = - g i ,  i = 1 , . . . ,  n - 1, 

where ni  = AiPi - l [2  + ¢~_1(0)] + #iQi[2 - ~(1 ) ]  and 

gi = AiPi-1  [3 + I~_1(0) ]  A i _  1 ÷ " i Q i  [3 -- ~ ( 1 ) 1 A i .  

T H E O R E M  4.3.  (See [89].) Let  the rational spline s, given by (4.5) interpolate  convex  data 

{ (x i ,  yi)}in=o, Yi = f ( x i ) ,  and satisfies the boundary  condit ions 

Mo = f " ( x o ) ,  i n  = f " (Xn ) ,  

where  f " ( x o )  >_ 0 and f " ( x n )  >_ O. I f  

~bi(t) = ~i(1 - t),  ~i > - 1 ,  ~ ' ( t )  >_ O, t • [0, 1], 

~i(1) = O, ~ ( 1 )  _< O, i = O, 1 , . . . , n -  1, 

} 2 - ~ o ~ ( 1 ) > m a x ~  - -  , 6i+1 
- (A i6 i+ l  #i6i ' i = 1 , . . . , n - 2 ,  

6 - 6~o~(1) - ~g(1) + 2 [~ (1 ) ]  2 > f " ( x o )  
- -  (~1 ' 

6 - 6~ '_~ ( I )  - ~'.'_1(i) + 2 [ ~ ' _ , ( i ) ]  = > f " ( : n )  
- -  6 n - 1  ' 

where gPi(t) = t3/[1 ÷ ioi(t)], 6i = [Xi-l, xi, xi+1; f], then s is convex on [xo, xn]. 
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THEOREM 4.5. (See [89].) Let the rational spline s, given by (4.5) interpolate increasing data 
{(zi ,  yO}Lo, yi = Y(zO, a.d satisfy boundary conditions 

mo -- f'(xo), mn= f'(xn), 

with f ' ( xo )  >_ 0 and f ' ( x n )  _> 0. IfP~ < 0 and Qi < 0, i = 0 ,1 , . . .  , n  - 1, and 

2 + 2 ¢~(0) > h i - 1  2 Ai+1 
A---~. ' 2 - ~ V i ( 1 ) '  > ~ , 

3t [1 + £o/(t)] - t2qo~(t) <_ [3 - ~(1)] [1 + ~i(t)] 2 , 

3(1 - t) [1 + ~bi(t)] + (1 - t)2¢;(t) < [3 4- ¢;(0)] [1 + ¢i(t)] 2 , 

for i = 0 ,1 , . . .  ,n  - 1, f ' (xo)  = [X-l, x0; f], f ( x n )  = [xn, Xn+l; f], then s is increasing on 

A special case of the rational spline (4.5), with ~i(t) = pi(1 - t) and ¢i(t) = qit, i = O, 1 , . . . ,  
n - 1, where {Pi} and {qi} are two nonnegative sequences or real numbers, actually they are 
tension parameters, is considered in [90]. Note that,  in this case, (4.5) becomes a (4, 2)-rational 
spline. If put Pi = qi = Pi, the spline of the form 

Ci(1 - t) 3 Dit 3 
s(x) = Ai(1 - t) + Bit  + + 

1 + pit 1 + p~(1 - t) 

is obtained. This kind of rational spline was studied by Frost and Kinzel [91], where Pi being 
adjusted automatically. 

EXAMPLE 4.1. The following data (see [91]) 

are interpolated by the Gregory's rational spline (4.4). The uniform tension Pi = 3, i = 0, 1 , . . . ,  9, 
results in the ordinary cubic spline (Figure 15 (left)) with unsatisfactory shape preserving prop- 
erty. Increasing tension to 4 gives better result (Figure 14 (right)), but the optimal effect will 
probably be gained by a nonuniform tension, like in the case shown in Figure 16 (left), where 
P0 = P9 = 10, Pl = Ps = 4, while the other tensions are equal to one. Very large tension leads to 
the almost piecewise linear interpolant (Figure 16 (right)). 

At the end of this section, we describe (2, 1)-rational splines of Schmidt and Hess and their 
shape preserving properties that  include positivity, convexity, and symmetry. Suppose the data  
{(xi, Yi)}~=0 are given such that  x0 = 0 < xl < ..- < xn = 1 and Yi -> 0, i = 0 , 1 , . . . , n .  Hess 
in [44] and Schmidt and Hess in [92] have considered (2, 1)-rational spline of the form 

s (x)  = yi +  ,h,t + (di  - x e [xi ,  (4 .6 )  

where t = (x - x~)/hi, and r~ > 0 are parameters. 

THEOREM 4.6. (See [44,45].) The rational spline s given by (4.6) is in C1[0, 1], and it 

(a) preserves nonnegativity of data if  and only i f  

di _> (2 + ri)y~ + 2~/(1 + r~)yiyi+l, i = O, 1, . . . ,  n - 1; 
hi-1 

(b) preserves monotonicity of  data ff and only ff 

di _> 0, i -- 0, 1, . . . .  n; 

(c) preserves convexity of data ff and only i f  

d i < A i ,  i---- 0 , 1 , . . . , n -  1. 

The following theorem of Schmidt and Hess gives the conditions for preserving symmetry of 
the data. 
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THEOREM 4.7. (See [45].) Suppose that the data set {(xi, Y~) }'~=-n is positive and symmetric, 

x_~=-x~ ,  y_~ = y~ > 0, i = 0 , 1 , . . . , n ,  

with xn = 1. Then, for sufficiently large parameters r l , . . .  ,rn the Cl-spline interpolant (4.6) is 
nonnegative and symmetric on [-1, 1]. 

5.  A P P R O X I M A T I O N S  

Let Kr[a, b], or Kr(I) denote the class of functions convex of order r on I = [a, b]. The K+(I) 
will denote the class of strictly convex on I functions of order r. 

An early result is given by Pal [93] (see also [94]). 

THEOREM 5.1. (See[93].) 
(a) Every f E/(2(1) can be infinitely close approximated by the algebraic polynomials that 

are convex on I. 
(b) Every f E C(I) is the uniform fimit of a sequence of polynomials that are of the same 

convexity as f on I. 

The Bernstein polynomials Bn(f; x) that  are defined for any function f E C[a, b] by 

1 ~o  ( : ) ( n k ) ( x - a ) k ( b - x ) ~ - k  , (5.1) B n ( f ; x ) -  ( b - a )  n f aq-k b a 

where n > 0 are known to converge uniformly towards f ,  i.e., l imBn(f)  = f .  

THEOREM 5.2. (See [94].) If  f is strictly convex, convex, or polynomial of order r, then Bn(f)  
is also strictly convex, convex, or polynomial of order r. 

PROOF. Without loss of generality, we put I = [0, 1]. Then the Bernstein polynomials takes the 
more simple form 

B n ( f ; x ) = ~ - ~ . f ( k ) p n , k ( x ) ,  x E [0,1], 
k--0 

with Bernstein basis polynomials 

pn ,k (x )=(nk )  x k ( l - x )  n-k. 

The following relation is well known (see [95]) 

k=0 

and as 
Ar f ( k )  __n~[k k + r .  f] 

" ' "  n ' ' 

we have 
[k k + r ] n'n r n-z.., f , ak = pn-r,k(x), (5.2) B ( J ) ( S ; x ) =  , . . . ,  ; n (n - r)l 

k=0 

where ak >_ 0 for all x E [0, 1]. Thus, f E Kr[0, 1], implies [k/n, . . . ,  (k + r)/n; f] >_ O, which 
together with (5.2) gives B(n r) (f;  x) > 0, and therefore, B~ (f)  E Kr [0, 1]. Obviously, f E K + [0, 1], 

implies the strict positivity of B (r) (f) ,  etc. I 



88 L.M. KocI~ AND G. V. MILOVANOVId 

Relation (5.1) also defines the Bernstein operator Bn : C(I) ~ C(I). This operator is linear 
and positive [95]. As the consequence, if f is (strictly) concave by the above theorem, Bni f )  
is (strictly) concave too. The convexity preserving property of Bernstein polynomials has been 
used in statistics by Wegmiiller [96]. 

Berens and DeVore [97] gave an interesting characterization of Bernstein operator. Namely, 
they noticed that its slow convergence is a consequence of shape preserving properties of Bernstein 
polynomials, which is given by 

[f(x) Bn(f;  x)l < const w ( f ;  ~ n  ) - • , x E [ 0 ,  1 ] ,  

but the Bernstein operator has the biggest rate of convergence among the all polynomial, con- 
vexity preserving operators that preserve linear function. More precisely, the authors of [97] have 
introduced £:n--the class of operators Ln defined by 

Ln(f)  E Pn, for all f E C[O, 1], 

£.n : Ln(g) = g, for all g E •1, 

[Ln(f)] (j) > O, if f(J) > O, j = O, 1 , . . . ,n ,  

and have proved the following result. 

THEOREM 5.3. (See [97].) For any Ln E f-.n, 

Ln ((" - x)2; x) > Bn ((" - x)2; x) = x(1 - x), 
n 

with equality ff and only ff Ln = Bn. 

The Bernstein operator uses the data {(xi, f(xi))},  where xi = a + k(b - a)/n are uni- 
formly spaced knots, sometimes thereby referring as interpolation-type operators (see [98]). In 
spite of this, in general, the Bernstein polynomial Bn(f)  do not interpolate f at the internal 
knots xx, . . .  ,xn-1. On the contrary, the end-points x0 = a and xn = b are interpolated, i.e., 
Bn(f;  xj) = f (x j )  for j = 0, n. The following definition introduces the concept of interpolation- 
type operators. 

DEFINITION 5.1. Each operator from the sequence {Fn} is of interpolation type with the knots 
n x' d < xr~ < .. .  < x n 6 I C R if  

n 

Fn(f; x) = Z f (x~) h~(x), (5.3) 
kffi0 

where h~ : I --* R +, k = 0, 1, . . .  ,n are given functions, and f : I ~ R is an arbitrary function. 

THEOREM 5.4. (See [99]) Let the sequence {¢i} of functions be defined through 

n n 

¢0 = ~ h~, ¢ i = Z ( x k - x i _ , ) h ~ ,  i = l , . . . , n .  
k = 0  k = i  

Operators Fn defined by (5.3) preserve convexity of the function f if and only if the functions ¢0 
and ¢1 are linear on 1, and ¢i (i = 2 , . . . ,  n) are convex on I. 

Tzimbalario in [100] determined necessary and sufficient conditions for an arbitrary continuous 
operator (not necessarily positive) to preserve convexity of any order. 
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THEOREM 5.5. (See [100].) Let L : C[a,b] --* Via, b] be a continuous linear operator. The 
necessary and sufficient conditions/'or the implication 

f e Kr[a,b] =~ L(f)  • Kr[a,b], 

are 

(i) p • Pr -1  =~ L(p) • 7)r_1; 
(ii) L(~oc r - t )  • K r for every c • [a, b], where 

S 0, x • [a, c), ~cr(x) 
( x - c )  r, z • [c ,b ] .  

REMARK 5.1. In fact, this is a special case of Tzimbalario's Theorem. The original theorem 
treats generalized convexity preserving problem---convexity with respect to Chebyshev system. 
In the present form, Theorem 5.5 is the consequence of the theorem of positivity of continuous 
linear operators of Popoviciu [101] and Vasid and Lackovi6 [102]. On approximation of functions 
convex with respect to arbitrary Chebyshev systems see, also [103-105]. 

A general type of operators, defined by 

T ( f ; x ) = / y g ( x , y ) f ( y ) d y ,  x • X ,  X,  Y c R ,  

where the kernel K is defined on the rectangle X x Y, X, and Y are real intervals, and f • C(Y)  
has been considered by Karlin [106]. 

THEOREM 5.6. (See [106].) I f  the kernel K is a totally positive function of order three (see [107]) 
and 

fyK(x, ) y=l, 
then T preserves convexity of f ,  i.e., f • K(I)  ~ T( f )  • K(I) .  

A large number of known operators preserve convexity (of order two) of generating function. 
The long list includes operators of Weierstrass (the proof of convexity preserving is given by Butzer 
and Nessel [108]), Favard-Szatz-Mirakyan (Lupa~, [109]), Mayer-K6nig-Zeller (Lupa~, [109]), 
Baskakov (Lupa~, [110]), Ibragimov-Gad~ijev [111], Jakimovski-Leviatan (Wood, [112]), Gam- 
ma-operators of Lupa~ and Mfiller [113], etc. 

As it is shown by Della Vecchia [114], the Stancu operators defined for all f • C[a, b] by 

s tz l ( f ;  = f (5.4) 
k=0 

where 

preserves convexity of every order of the function f.  Moreover, the generalized version of (5.4), 
studied by Mastroianni and Occorsio [115] S[a] = [E - (E - S[na])] A, where E is an identity 

operator and A • R + has the same property [114]. For A = 1, ¢[a] reduces on Sin ~], which for 
a = 0 becomes the Bernstein operator. 

The Durrmeyer [116] operator Dn, defined for every f integrable on [0, 1] by 

Dn(.f; x) = (n + 1) pn,k(x) pn,k(t)J'(t) dt, z e [0,11, 
k--0 

preserves convexity of every degree, as it is proved by Derriennic [117]. 
In [118], Andrica and Badea have proved that the following theorem. 
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THEOREM 5.7. (See [118].) The following statements are equivalent. 

(i) Jensen's inequality for functions convex on I. 
(ii) There is a sequence of approximating and convexity preserving positive linear polynomial 

operators which reproduce the affine functions. 
(iii) Korovkin's Theorem in the space C(I).  
(iv) Jessen's inequality for positive linear functionals on C( I). 

PROOF. The proof in Ill8] follows from the implication scheme that  connects assertions (i)-(iv): 
(i) ~=~ (iv) =~ (iii) =~ (ii) =~ (iv). | 

The convexity-preserving properties of linear operators can be used for characterizing convex 
functions, see [119,120]. 

Clearly, the notion of shape cannot be reduced only on monotonicity or convexity (even of 
higher order). The shape of the graph of some real function may be also related to variation of 
this function (see [107,108]), or to other types of convexity. 

A subclass of the class of convexity of order 2, /(2(1) = K(I )  is the class of logarithmically 
convex functions. The function is logarithmically convex, i.e., f E Klog(I) if l o g f  E K(I) .  It 
is easy to show that  Kiog(I) C K(I) .  It is interesting if Bernstein polynomial operator (5.1) is 
closed over the class Kjog(I). The positive answer is given by Goodman [121]. 

Extended convexity preserving property of Bernstein polynomials are studied in [103-105, 
122,123]. In the last one, the preservation of the classes of quasiconvexity QC, strict quasiconvexity 
SQC, strong quasiconvexity SnQC, convexity C = K(I) ,  strict convexity SC = K+(I),  and affinity 
AFF = K ( I )  \ K+(I)  is considered. The classes of quasiconvexity, strict quasiconvexity, and 
strong quasiconvexity are defined by for f : I --, R, I c R in the following way. Let x, y E I and 
A E (0, 1). Then 

Q C - - { f  : f [ ( 1 - A ) x + A y ] _ < m a x { / ( x ) ,  f ( y ) } } ,  

S Q C = { f  : f [ ( 1 - A ) x q - A y ]  < m a x { f ( x ) , f ( y ) } , f ( x ) • f ( y ) } ,  

SnQC = {f  : f [(1 - A)x + Ay] < max {f(x),  f (y )} ,  x # y},  

The relationship between these classes is given by Ponstein [124] and it is shown with the help 
of the graph at Figure 17, where A --, B indicates that  A C B. 

A F F  ~ C 

/ SQC QC 

SC ~ SnQC 

Figure 17. Graph of inclusion of different kinds of convexity. 

A strongly quasiconvex function is also known under the name of unimodal function (a function 
with the only one minima). It has been proved in [123] that  every variation diminishing operator L 
tha t  maps a set of bounded functions into the set of continuous functions preserve quasiconvexity. 
Particularly, for the Bernstein operator, the following implications take place: 

f E QC => B n f  E SnQC, 

f E SQC => B n f  E SnQC, 

f 6 C ~ B n f  e SC, 

f E AFF ~ B n f  E AFF. 

Approximation with quasiconvex functions have been considered in [125]. 
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The fact is that the Bernstein operator is reach with 'shape preserving' properties. Actually, it 
serves as a kind of model for testing some shape preserving properties. Many properties valid for 
Bernstein operator are also valid for larger classes of positive linear operators. For example, let 
Lip M/~ denote the class of HSlder continuous functions with Lipschitz constant M and order/z, 
or such functions that satisfy 

[f(x) - f(y)l <_Mix-y[  ~, for all x, y E I. 

Then Brown, Elliot and Paget [126] have proved that for all # E (0, 1], the Bernstein operator is 
closed over Lip M#, i.e., 

f e Lip M# ==~ Bnf  E Lip M#. 

Della Vecchia [127] has proved that this property can be spread out over many other important 
operators, like the operators of Favard-Szasz-Mirakyan, Stancu, Favard-Pethe-Jain, Baskakov, 
Weierstrass, Cauchy, Picard, Fejer-de la Vall~-Poussin, and Jackson. 

Another generalization of convex function is starshaped function, i.e., the function f : I --* R 
such that 

f(Ax) <_ Af(x), for every A E (0, 1), x E I. 

Let K ° denote the set of functions convex on [0,1] such that f(0) = 0, f (x)  > O, on [0, 1] 
and one-sided continuous at the points 0 and 1. If the set of functions starshaped on [0, 1] will 
be denoted by S, then K ° c S [128]. As it is shown by Lupa~ [129], the Bernstein operator 
preserves starshapedness, i.e., f E S ~ B n f  E S. What is more, the operator of Hirschman- 
Widder and operator of Leviatan, both of them being generalizations of the Bernstein operator, 
have starshaped-preserving property as well [130]. 

Approximation of functions or discrete data by splines is also considered from the shape preserv- 
ing point of view. Results obtained by Bojanid and Roulier [131] is generalized in Theorem 5.5. 

Jackson-type estimations for approximation of convex functions by convex splines with equally 
spaced knots are given in [132] by Beatson. 

Algorithms for computing shape preserving approximating splines with knots that coincide 
with the data points are given by Dodd and McAllister in [133]. 

Using the optimization theory, Andersson and Elfving [134] offer a Newton-type algorithm 
for the computation of the monotone spline approxima~ to noisy monotone data. The reacher 
spectra of 'shape' of the data being approximated and preserved by the smoothing spline is 
studied by Girard and Laurent [135]. It includes location of peaks or discontinuities, the value of 
period etc., and the authors reduce the problem on solving the minimization problem. In [136], 
Koci6 uses Bernstein form of cubic to control 'nonstandard' shape features like peaks, tangent 
points, etc. 

A lot of research has been done about the quantitative estimations of Jackson-type for comono- 
tone approximation of a function by polynomials and splines. This means such approximations 
when an approximant changes monotonicity (convexity) at the same intervals as the function 
being approximated. The basic results goes back to Lorentz, Zeller and DeVore [137-140]. Un- 
fortunately, the limited size of this review does not allow us to list these interesting results. 
The topic was further developed by Leviatan and Mhaskar [141,142], Shvedov [143-145], Beat- 
son [146,147], and other authors. For the survey see [148], and for the recent results [149-152]. 

Also, we will mention a circle of authors that have considered problems concerning the best 
monotone approximation and the Polya algorithm. If f is Lebesgue measurable on I = [a, b], 
let fp denote the best Lp-approximant to f by nondecreasing functions, i.e., 

Ilf - fpllp = inf {llf - g]ip}, 

where g is a nondecreasing function on I. It is known that fp is uniquely determined (up to a.e. 
equivalence) if i < p < co. It is known that limp_,~ fp = f¢¢ exists uniformly on I provided that f 
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is quasiconvex, which means that  lim~-,x+0 f ( y )  exists at each x E [a, b) and limy--.x-0 f ( y )  exists 
at each x E (a, b]. The function foo is known as a best best Loo-approximant. The procedure for 
constructing foo is known as Polya algorithm. For various results concerning this topic see, for 
example, [153-156]. 

Finally, a few words about moment preserving approximation by splines and its connection 
with quadratures. 

Following earlier works [157,158] concerning some problems in physics, Gautschi [159] consid- 
ered the problem of approximating a spherically symmetric function t ~-~ f ( t ) ,  t = [[x[[, 0 _< t < ee 
in R d, d > 1 by a piecewise constant function sn, so that  approximation preserves as many mo- 
ments of f as possible. The problem was extended to spline approximation of arbitrary degree 
by Gautschi and Milovanovid in [160], by considering a spline function Sn,m of degree m _> 0 on 
[0, +ee) vanishing at t = -bee, with n _> I positive knots Tv (v = 1 , . . . ,  n), i.e., 

s.,m(t) = ~ av(r~ - t)~, av • R, 0 < t < +ee, (5.5) 

so that  it reproduces first 2n moments of f 

S S s,~,m(t)t ~ d V  = f ( t ) t  ~ d V  j = 0, 1 , . . . ,  2n  - 1. (5.6)  

Differential dV is the volume element depending on the geometry of the problem. We cite two 
theorems from [160]. 

THEOREM 5.8. (See [160].) Let f • Cm+:[ 0, +ee] and 

f0 + ~  tg-n+ m + l  < + e e .  f(m+l)(t) dt 

Then a spline function sn,m satisfies (5.6), exists and is unique ff and only ff  the measure 

(-I) m+l 
dA(t) = m[ tm+l f (m ~- 1)(t) dr, on [0, -bee), (5.7) 

admits an n-point Gauss-Christoffel quadrature formula 

g(t) dA(t) = ~ ~(~)g ~(~) + P~(g; d~), (5.8) 
v = l  

with distinct positive nodes T (n), where Rn(g; dA) = 0 /'or ali g • P2n-1. In that event, the 
knots Tv and weights an in (5.5) are given by 

-(re+l) (n) T~ = T (n), av = T v A v v = 1 , . . . , n .  

THEOREM 5.9. (See [160].) Given f as in Theorem 5.8, assume that the measure dA in (5.7) 
admits the n-point Gauss-Christoffel quadrature/'ormula (5.8) with distinct positive nodes r~, = 
r (n) and the remainder term Rn(g; dA). Then,/'or any t > O, the error of the approximation by 
the spline Sn,m, given by (5.5) that satisfies (5.6) is 

f ( t )  - Sn,m(t) = Rn (at; dA), 

where 
~,(~) = ~-(m+:)(~ - t)~. 

Further results are concerning moment preserving approximations by defective splines as well 
as approximation on finite intervals, see [161-164]. 
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