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We introduce a class of polynomials orthogonal on some radial rays in the
complex plane and investigate their existence and uniqueness. A recurrence
relation for these polynomials, a representation, and the connection with standard
polynomials orthogonal on (0, 1) are derived. It is shown that their zeros are simple
and distributed symmetrically on the radial rays, with the possible exception of a
multiple zero at the origin. An analogue of the Jacobi polynomials and the
corresponding problem with the generalized Laguerre polynomials are also treated.
© 1997 Academic Press

1. INTRODUCTION

Let meN, a,>0, s=0,1,...,.2m -1 and &y, &,...,8,,_, be
(2m)th roots of unity, i.e., & = exp(ims/m), s =0,1,...,2m — 1. We
study orthogonal polynomials relative to the inner product

2m—1

(F9)= L & [ f(2e(E)w(2)]dz (1)

where [, are the radial rays in the complex plane which connect the origin
z = 0 and the points a &, s = 0,1,...,2m — 1, and z — w(z) is a suitable
complex (weight) function.

In this paper we consider the cases when a, =1 and z » w(z) is a
complex function such that

|W(XSS)|=W(X), s=0,1,....2m — 1,
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122 GRADIMIR V. MILOVANOVIC

and x — w(x) is a weight function on (0,1) (nonnegative on (0,1) and
J&w(x) dx > 0). Then, (1.1) can be written in the form

2m—-1

ro=[ ( T f(xe)g(xe) |w(x) dr. (12)
s=0
In the case m = 1, (1.2) becomes

(£.8) = [ SRR w(x) d

so we have the standard case of polynomials orthogonal on (—1,1) with
respect to the even weight function x — w(x).

Although some results hold regardless of whether the number of rays is
even or odd, the case with an odd number of rays will not be considered
here. The main reason for this decision is that the fundamental recurrence
relation for orthogonal polynomials in that case is quite different from one
in the even case.

The paper is organized as follows. In Section 2 we develop preliminary
material on existence and unigueness of the orthogonal polynomials, and
in Section 3 we give the recurrence relation for these polynomials. Mo-
ment determinants and orthogonal polynomials for m = 2 and w(x) =1
are discussed in Sections 4 and 5, respectively. A representation of the
orthogonal polynomials and the connection with standard polynomials
orthogonal on (0, 1) are discussed in Section 6. In Section 7 it is shown that
their zeros are simple and distributed symmetrically on the radial rays,
with the possible exception of a multiple zero at the origin. An analogue of
the Jacobi polynomials is treated in Section 8, and a corresponding
problem with the generalized Laguerre polynomials in Section 9, where we
take a, = 4+, s =0,1,...,2m — 1. Then, the inner product (1.2) reduces
to

2m—1

(re)=[ ( Y freggCia) w13

The generalised Hermite polynomials on the radial rays were considered
in [7], including a linear second-order differential equation for such
polynomials. The type of connection between the general orthogonal
polynomials and the orthogonal polynomials on the real ray also appeared
in work by E. Hendriksen and H. van Rossum [5], where they considered
an electrostatic interpretation of zeros. Also, we mention here the refer-
ences by A. J. Duran [2, 3] and R. Smith [9, 10], which may have some
connection to our results.
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2. PRELIMINARIES, EXISTENCE, AND UNIQUENESS

First we see that
1 2m—1 5
(f:f)zfo( )y |f(X€S)|)w(x)dx>0,
s=0

except when f(z) = 0. The moments are given by

2m—-1

Y squ)flx“qw(x) de, p,g=0. (21)
s=0 0

.= (27, 27) =

The inner product (1.2) has the following property:
LEMMA 2.1, (z™f, g) = (f, z"g).

Proof. Since &' = &,

N

m = (—1)° we have

2m—1

(z"f.8) = | ( z x”’ss’”f(xss)g—(xes))W(X) dv

1 2m—1 e
- [ ( L f(xgs)xmss'”g(xss))W(x)dx
= (f.2"g). 1

It is easy to verify the following
LEMMA 2.2. Letp =2mn +v,n=[p/Q2m)],0 < v<2m — 1. Then
2m—1 2m—1 2m lfl/ — 0’
: 0 fl<v<2m-1.

Thus, w, , in (2.1) is different from zero only if p =g (mod2m);
otherwise p, , = 0. Using the moment determinants

Moo M10 MN—10
Ay =1, Ay = M.m M1 MN—11 N>1,
Mo N—-1 M1, N-1 MN—1,N-1

we can state the following existence result for the (monic) orthogonal

)

polynomials {7 (2)}yZ, with respect to the inner product (1.2).
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THEOREM 2.3. If Ay >0 for all N =1 the monic polynomials
{mn (20, orthogonal with respect to the inner product (1.2), exist uniquely.

Proof.  Write

N
my(z) = Y aMz", eV =1,

v=0
and consider the orthogonality conditions
N N
(77-N’ZQ)= ZaIEN)(ZV'ZQ)z ZQISN)I‘LV,g):KNSQN’ QSN,

v=0 v=0

where Ky = llmyll* # 0 and 8,y is the Kronecker delta. These conditions
are equivalent to the system of linear equations

(N)

Moo M0 7 Mo %o 0
(N) 0
w 0 “ a!
.01 11 N1 | 1 _ . (2.2)
MKonv  HMan 77 Maw aM Ky

Since Ay, ; # 0 the system (2.2) has a unique solution for the coeffi-
cients a/™). For the monic polynomials we have «{" = 1 and

KyAy

2
afV) = = [lmyll

ANJrl

e, lmyll> =Ay /Ay 1

THEOREM 2.4.  For the polynomials my(z), orthogonal with respect to the
inner product (1.2), we have

my(ze,) = e’y (2), s=1,....2m — L. (2.3)

Proof. Let my(z) be the (monic) polynomial of degree N orthogonal
with respect to the inner product (1.2), i.e.,

2m—1

(my,8) = fol( Y my(xe)g(xe,) |w(x) dx =0,

s=0

where g(z) is an arbitrary polynomial of degree at most N — 1 (i.e.,

gEPy ). For each j (1 <j<2m —1) we put Qy (2) = & "my(zg)
and H{(z) = g(z¢;). Evidently, the polynomials Q, (z) are monic.



A CLASS OF ORTHOGONAL POLYNOMIALS

125
We have

2m—1
(QN,].,H].)=[ ( Z PRCNET s)H(xs))w(x)dx

2m—1+j
—s].—N/Ol( z WN(xgs)g(xss))w(x)dx

g " (my,8) =0

because &,,,_1.; = &_1.
Since H,(z) can be every polynomial in 2 _,, we conclude that Q (z)

is an orthogonal (monic) polynomial with respect to (1.2). Finally, from the
uniqueness of my(z) it follows that

& "my(ze,) = my(2),

ie,23). 1

s=1,...,2m — 1,

3. RECURRENCE RELATION

We begin this section with the following auxiliary result
LEMMA 3.1. Let the inner product (-, -

) be given by (1.2) and let the
corresponding system of monic orthogonal polynomials {my(2)}5”, exist
Then, for 0 < v < N < 2m — 1, we have (z

N 7TN) = 0.
Proof.

Let0 < v<N<2m—1and 7(z)

= Z}’:o‘yj(”)z/, v > 0. Then
2m—1

fo ( EO stSN—WV(xss))w(x)dx
Sgo Lx £X (Z ”)xfssf)w(x)dx

_ j_io _;(V)(folxN+jW(x) dx) ( 221 gSNj) :

Since0<j<v<N-1<2m-2/ie,1<N—-v<N-—-j<2m-1,
accordmg to Lemma 2.2, we have that X" %N~/ =0, and therefore
zN,m)=0. 1

(=¥,m)



126 GRADIMIR V. MILOVANOVIC

Using the well-known Gram-Schmidt orthogonalizing process and
Lemma 3.1, we get:

LemMmA 3.2, The first 2m monic polynomials orthogonal with respect to
the inner product (1.2) are given by my(z) =z, N=10,1,...,2m — 1.

It is well known that an orthogonal sequence of polynomials satisfies
a three-term recurrence relation if the inner product has the property
(zf,g) = (f,zg). In our case the corresponding property is given by
(z"f, g) = (f, z"g) (cf. Lemma 2.1) and the following result holds.

THEOREM 3.3. Let the inner product (-, ) be given by (1.2) and let the
corresponding system of monic orthogonal polynomials {r\(2)}5 %, exist. They
satisfy the recurrence relation

Tyem(2) =2"my(2) = bymy_,(2), Nz=m,
my(z) =2V, N=0,1,....,2m — 1, (3.1)
where
Ty 27N 7y I1?
bN:(N N ): N - (3.2)
(Wme’Wme) HWN_m”

Proof.  Since ., (2) — z"my(2) is a polynomial of degree at most
N+ m — 1, we can express it in terms of the orthogonal basis
{m, (})Z5" . Thus,

mven(2) = 20y (2) + f m(2), (33)

from which, for an arbitrary k, we have
N+m—-1
(Tnsms ™) = (2"my, ) + Y BY(m,, ).
v=0
Because of orthogonality, we conclude that

) — _(#"my.m)

N , O<v<N+m-—1.
(7TV’7TV)

Since (z"mwy, m,) = (wy, z"m,) = 0for m + v < N, i.e, v <N — m, we
get

=0, v»=01,....N—m—1.
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Consider now the inner product (z"my, ) for N—m <v<N +
m — 1. Using Theorem 2.4, we find that

2m—1

(z"my,m) = fol( ; x’"ss’"wN(xas)wv(xss))w(x) dx

m; as’"astN(x)a;’wy(x))w(x) dx

1

2m— 1 -
( go gmN = ”)];x’"ﬂ'N(x)ﬂ'V(x)w(x)dx.

In view of Lemma 2.2, the first factor on the right in the last equality is
different from zero only for m + N — v = 2m, i.e, if v = N — m. Thus,

(277N TN ) _ (7, 2" TN )

(N—-m) — _
By 2
(7TN—m'7TN—m) ||7TN7m||

Denoting B ~™ simply as —b,,, we see that (3.3) reduces to (3.1). 1

4. MOMENT DETERMINANTS FOR m =2 AND w(x) =1

In this section we consider the inner product

(f.9) = [ [F(x)e(x)
+f(ix)g (i) + f(—x)g(—x) + f(—ix)g(—ix)] dx. (4.1)
The moments are given by

4
Mpoa=(2P27)={p+qg+1’
0, otherwise.

p =¢q (mod4),

Thus, if p=4i+ vand g =4j + v, v {0,1,2,3}, we have

4
4i+j) +2v+ 1’

i,j>0. (4.2)

Raivv 4j+v =
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Our purpose is now to evaluate the moment determinants

Moo M10 MN-10
T S D R CE)
Mo N—1 M1 N-1 Ut MN-1,N-1

For every k € N we define the determinants

Moo 0 My 0
0 M2 0 M2

C, = Mos 0 pg O , (4.4)

0 Mg 0 Mg

Mog—2 2k-2

0 0
D, = M1s Mss , (4.5)

Mok—1,2k—1

which can be expressed in terms of the determinants

E(()") =1,
I‘LV,V /"L4+V,v Iu’4(n*1)+V,V
EW) — Moy gty Moty a4 Man—1)+v,4+ v
n - . 1)
My an-1+v  Mavy sn—1)+» 7 Man—1)+ v, 4n—-1)+ v

where v =0,1,2,3. We first interpret these determinants in terms of
Hilbert-type determinants. Namely, because of (4.2), we have

l n
A4i+j) +2v -7 i,j=l.

E() = 4"det (4.6)
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In order to evaluate the determinants in (4.6), we use Cauchy’s formula
(see Muir [8, p. 345))

n i>1j_£l(ai —a;)(b; — b))
ij=1 ﬁ (a; + b))

ij=1

al-+bj

with a; = 4i and b; = 4j + 2v — 7. Thus, we obtain:

LEMMA 4.1. We have

, (01l (n = 1)1)°

n—

ITIT@4i+4j+2v+1)
i=0 j=0

Er(zV) — 4n

In our further investigations, we need a quotient of the determinants E{*).
LEmmA 4.2. For v = 0,1, 2,3 we have
E™"), 4 211 4(k —n + 1)\

E" “8n+2v+1|in dkt2v+1) "

\
P

and E\" JE§" = 4/Qv + 1).
This follows immediately from Lemma 4.1.

LEMMA 4.3.  For the determinants (4.4) we have
C, = E®LE?,, k(even) 2 2;  C,=EQ, 1), ER- 1)), k(o0dd) = 1.
(4.7)

Proof. Similarly as in [4], we use Laplace expansion for determinants.
Let first £k be even. Expanding by columns numbered 1,3,...,k — 1, one
finds that only one nonzero contribution results, namely from the minor
and cominor pair

1 3 5 -« k-1 2 4 6 - k
(1 3 5 k—l)’ (2 4 6 - k) (4.8)

Since the matrix C, is symmetric, and the sign associated with the pair
(4.8) is (—1)*"/2, one immediately obtains the first relation in (4.7).

Similarly, Laplace expansion by columns 1,3,..., k gives the result for
odd k. 1
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Also, we can prove:

LEMMA 4.4. For the determinants (4.5) we have
D, = E{),E®),, k(even) = 2; D, =EQ., ,ER 1,5, k(odd) = 1.

Using the same techniques we find:

LEMMA 4.5. For the moment determinants (4.3) we have
Ay = C Dy and Agiv1 = CriiDy,

where C,. and D, are given by (4.4) and (4.5), respectively.
Combining Lemmas 4.1, 4.3, 4.4, and 4.5, we obtain:
LEMMA 4.6. We have

Moy = EPEDEDED,
— 0 1 2 3
Muper = EQAEVEPED,
— 0 1 2 3
Mypez = EQLERLEPED,

— 1 2 3
Apnis = ELLELLEZDLED.

5. ORTHOGONAL POLYNOMIALS FOR m =2 AND
w(x) =1

We note, first of all, from Lemmas 4.1 and 4.6, that A, > 0 for all
N > 1, and therefore, the orthogonal polynomials {7 (2)}y >, with respect
to the inner product (4.1) exist uniquely, and

AN-%—l

Ay

> 0. (5.1)

(my,my) = ||7TN||2 =

THEOREM 5.1.  The (monic) polynomials {mwy(2)}5>,, orthogonal with
respect to the inner product (4.1), satisfy the recurrence relation

Ty 2(2) = 281y (2) — bymy_,(2), N =2,

my(z) =2V, N=0,1,2,3, (5.2)



A CLASS OF ORTHOGONAL POLYNOMIALS 131

where
16n? . o1
(8n + 2v — 3)(8n + 2v + 1) fv=0.1
An+v T 2 (53)
(4n + 2v - 3) _ 5 3
(8n + 2v — 3)(8n + 2v + 1) yr=23
Proof. Since (see (3.2))
b — ||7TN||2 _ Ayig ) Ay, N>2
N llry_,II? Ay Ay’ 7

using Lemmas 4.6 and 4.2, we find for » = 0, 1,

b _ A4n+v+1/A4n+V _ Er(zljr)l/Er(IV)
dnt+v - +2 +2) 1
' A4(nfl)+ v+ 3/A4(n71)+ v+2 E’(1V )/Er(zlil )

X 16n?
ity (8n + 2w —3)(8n + 2v+ 1)

Similarly, for v = 2, 3, we have

A4n-¢- V+1/A4n+v _ Er(tlfl—)l/Er(lV)
- +2 +2)°
A4n+v— 1/A4n+v—2 Er(z,f%—l )/Er(tv )

b4n+v -

(4n + 2v —3)°

bypsy = :
v (8n 4 2v —3)(8n + 2v + 1) I

Remark 5.1. From (5.3) we conclude that

1
bN_)Z as N » +oo,

7y

just like in Szego
(-1,1).

Remark 5.2. Taking

s theory for orthogonal polynomials on the interval

7m_(2) = m4(2) =0, mo(2) =1, m(z) =z,

the recurrence relation (5.2) holds for every N > 0.
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Remark 5.3. Since

2 byby_; - bz||77'0||2, N even,
“771\]” = )
byby_ 5+ bollmyll®, N odd,

and [lmoll® = Ay /Ag = g = 4 (4= D),

s l® = A5 /A1 = Roo ar/ oo = Bay = 4/3,
we can define b, = 4, b, = 4/3, so that for every N > 0 we have

2 [ byby_ by, N even,
Il =\ bbb N odd
NYN-2 1 .

Remark 5.4. Let N=4n + v, n =[N/4],0 < v < 3. Since (cf. (5.1)

Ayia _ Appsvit _ E"),

lyll? = = = :
AN A4n+1/ Er(zy)

Lemma 4.2 gives the norms of the polynomials {7 (z)}. Namely,

0<N<3,

2 _
[l |l N1

4 2114k —n + 1)\
C8n+2v+ 1)\ iy dk+2v+1]]

2 N > 4.

2
1™ = M7y, 1l

6. A REPRESENTATION OF THE POLYNOMIALS 7 (z2)

In this section we again consider the general case of the inner product
(1.2) for which the corresponding system of the monic orthogonal polyno-
mials {7y (2)}yZ, exists and satisfies the recurrence relation (3.1). Based
on this recurrence relation or on formula (2.3) from Theorem 2.4, we can
conclude and easily prove that ,(z) are incomplete polynomials with the

following representation:
LEMMA 6.1.  The polynomials wy(z) can be expressed in the form

[N/2m]

my(z) = X vz (6.1)
i=0

where v are real coefficients and y§N) = 1.
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Indeed, from Theorem 2.4 it follows that every zero z, # 0 of 7,(2)
leads to a set of 2m zeros of the form z,s, (0 <s <2m — 1) and
therefore m,(z) has a factor z2™ — z5™; apart from these factors there is a
factor z¥ with v = N — 2m[N/2m].

Taking N =2mn + v,n =[N/2m], v €{0,1,...,2m — 1}, we see that
(6.1) becomes

n
7T2mn+v(z) = Z ’}/i(N)ZZM(nil)JrV: (62)
i=0
from which there follows immediately:

LEMMA 6.2. The polynomials from Theorem 3.3 can be expressed in the
form

Tymnsn(2) =27 (2%M), v=0,1,....,2m —1;,n=0,1,..., (6.3)

where q,ﬁ”)(t), v=0,1,...,2m — 1, are monic polynomials of exact degree n.

THEOREM 6.3.  The monic polynomials q{"(¢), v = 0,1,...,2m — 1, de-
fined in (6.3), satisfy the two relations

q,”""(t) = q,”(1) = byg"(1),  0<vs=m-—1 (64)
and
g () =q(t) — byql" ™ (1), m<v<2m-—1, (65)
where N = 2mn + v.

Proof. Let N=2mn+ v, n =[N/2m]. Then, for 0 < v<m — 1,
we have that N+ m=2mn+v+m and N—-m=2mn —1) +
v + m. Using the recurrence relation (3.1) and the representation (6.3),
we obtain (6.4). Similarly, for m < v < 2m — 1, we have that N + m =
2mn+ 1)+ v—mand N —m = 2mn + v — m, and then (3.1) reduces
to (6.5). 1

THEOREM 6.4. The monic polynomials q{"(¢), v=10,1,...,2m — 1, de-
fined in (6.3), satisfy the three-term recurrence relation

qi(1) = (1 = a”)g (1) — blg”(t), n=0,1,...,
q”(t) =1,  qU(t) =0, (6.6)

where the recursion coefficients a'") and b$" are given in terms of the
b-coefficients as

a) = by + by, by = by_,,by, N=2mn+v.
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Proof. Suppose that N =2mn + v, n =[N/2m],and 0 < v <m — 1.
Then, combining (6.5) in the form

a2 1(1) =17 " (1) — by, (t) (6.7)
and (6.4) we obtain

g 1(1) = (t = by ) g (1) — bytg{=™(1).

Replacing now n by n — 1 in (6.7) and using the last equality we get (6.6).
In a similar way we prove the case when m < v <2m — 1. |

The three-term recurrence relation (6.6) shows that the monic polyno-
mial systems {q{"”(¢)}/>,, v=0,1,...,2m — 1, are orthogonal. In the
following theorem we investigate this orthogonality.

THEOREM 6.5. Let x — w(x) be a weight function in the inner product
(1.2) which guarantees the existence of the polynomials m\(2), i.e., q"(¢),
v=20,1,...,2m — 1, determined by (6.3). For any v € {0,1,...,2m — 1},

the sequence of polynomials {q\"(¢)},7=", is orthogonal on (0, 1) with respect to

the weight function

t — Wy(l‘) — t(2v+172m)/2mw(t1/2m). (68)

Proof. Let N=2mn+v, n=[N/2m], and K=2mk + v, k =
[K/2m]. Consider the inner product

2m—1

(me.m) = [ ( ) WN(X%)—WK(XSS))W(X)M

s=0
which can be reduced to

2m—1

(mvm) = [ ( z es”ﬂN(X)E!—WK(X))W(X)dx

1 PR
= meo 7y (X) e (X)w(x) dx
1
= 2m [ x27q("(x*") " (x2")w(x) d,
0
using the property my(xe,) = e’my(x), s = 0,1,...,2m — 1, from Theo-

rem 2.4, and the representation (6.3). Changing variable x?” =t in the
last integral, we conclude that

1
(7TN’7TK) =(7T2mn+v'772mk+v) =/(; qr(zy)(t)QI(cy)(t)Wv(t) dt = 0’ n # k'

where w,(¢) is given by (6.8). |
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Remark 6.1. The question of the existence of the polynomials 7 (z) is
reduced to the existence of polynomials ¢{*’(¢), orthogonal on (0, 1) with
respect to the weight function w,(¢), for every v =0,1,...,2m — 1.

7. ZEROS OF m,(z2)

THEOREM 7.1. LetN =2mn + v,n =[N/2m],v{0,1,...,2m — 1}.
All zeros of the polynomial 7y (z) are simple and located symmetrically on the
radial rays I, s = 0,1,...,2m — 1, with the possible exception of a multiple
zero of order v at the origin z = 0.

Proof. In view of (6.3), the polynomial m,(z) can be expressed in the
form my(z) = z7¢{"(z?™), v € {0,1,...,2m — 1}, where ¢{"(¢) is orthog-
onal on (0,1) with respect to the weight (6.8). It is well known that the
zeros of ¢*)(¢) are real and distinct and are located in (0,1). Let 7{"",
k =1,...,n, denote these zeros in increasing order,

T <) < <),

Each zero 7{"") generates 2m zeros z{",”), s =0,1,...,2m — 1, on the
radial rays [,

2m .
Z/((r?;v)= .‘/Tlgn,v)ezsar/m’ s=0,1,....2m—1,

where i =V —1. If v> 0, there exists a zero of order v at the origin
z=0. 1

8. AN ANALOGUE OF THE JACOBI POLYNOMIALS

Let ﬁn(“'ﬁ)(x) be the monic Jacobi polynomials orthogonal with respect
to the weight x — (1 —x)*(1 + x)? on (—1,1) and let P{*#)(¢) be their
transformed form (again monic) on (0, 1). Then we have

~

PeP(x) = (x = &,) P P(x) = BB (x),

n-n—1

where (cf. [6, p. 45))
. B?—a’
T 2k+a+B)2k+atB+2)
~ 4k(k+ a)(k+ B)(k+ a+B)
T (2k + a+ B)*((2k + a+ )" — 1)
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and

PiP(1) = (t — @,) Py P)(1) = B, Py (1),
where

Bl P)(x) = B P(2t = 1) = 2"B{* (1),

B,. (8.1)

-l>||—\

1 _
&n=5(1+&n), B

In the sequel we need the following lemma which follows immediately
from Bateman and Erdeélyi [1, Sect. 10.8; formulas (33) and (36)].

LEMMA 8.1, For the monic Jacobi polynomials P\* PX(x) the following
relations hold,

BePi(x) = (1 +x) Pl P (x) = ¢, Bl P)(x), (8.2)
Pl (x) = P B-D(x) —d, P pf)(x), (83)
where

2n+B+)(n+a+pB+1)
" 2n+a+B+2)2n+a+B+1)’

J 2n(n + a)
" @2n+a+B)2n+a+p-1)

Consider now the polynomials {m)(2)}yZ, orthogonal with respect to
the inner product (1.2), where the weight function is given by

o 1
= (1 — x2m 2my . > -1, y> ——. 8.4
w(x) = ( XMy x o v 5 (8.4)

THEOREM 8.2. The monic polynomials {m\(2)}xZ, orthogonal with re-
spect to the inner product (1.2), where the weight function is given by (8.4),
can be expressed in the form

my(z) =27"z"PlB)(222" — 1),  N=2mn+ v,n=[N/2m],
(8.5)
where v e {0,1,...,2m — 1}, B,=v+ Qv+ 1-2m)/2m), and

P("‘ B)(x) denotes the monic Jacobi polynomial orthogonal with respect to the
welghtx — (1 —x)*(1 + x)? on (—1,1). The polynomials m\(z) satisfy the
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recurrence relation (3.1), where

n(n + a)
2n+a+B)2n+a+B,+1)
b2mn+v=
(n+B)n+a+h)
2n+a+B)2n+a+B,+1)

f0<v<m-—1,

ifm<v<2m-1.

(8.6)

Proof. The weights ¢ — w,(¢), given by (6.8), reduce in this case to
w,(t) = (1 — ) pr+@rrt=zm/zm 5= 0.1,...,2m — 1.

Taking t = z2™, i.e,. x = 2z?™ — 1, in (8.1), yields immediately the repre-
sentation (8.5).

In order to determine b, in the recurrence relation (3.1) we combine
(8.5) and (8.2) or (8.3), taking x =2z*"—1and B=8,=v+ Qv+
1—-2m)/2m.

Let N =2mn + v, n = [N/2m]. Since

2v+1-2m 2(v+m) +1-2m
B+tl=y+t—F——+l=vy+ = Boim:
2m 2m
(8.7)
forv=10,1,...,m — 1, (8.2) reduces to
2n+127V772m(n+1)+ V(Z) = 2Z2m2n27(1}+m)772mn+v+m(z)
- cnznZ_VWZmn+v(Z)’
i, Tyyom(2) = 2wy, (2) — (c,/2)my(2). Thus,
C, (n+B,+1)(n+a+p,+1)
bN+m =5 = .
2 (2n+a+B,+2)2n+a+p,+1)
According to (8.7), the last equality gives b,,,,,,, for v=m,...,2m — 1.

In a similar way, using (8.5) and (8.3), for v = m,...,2m — 1, we obtain

d, n(n + a)
bem =% = '
2 (@2n+a+B,_,)2n+a+pB,_,+1)

from which we determine b,,,,,,, forv=20,1,..., m = 1. 1|

Remark 8.1. For a = y=0and m = 2, (8.6) reduces to (5.3).
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9. AN ANALOGUE OF THE GENERALIZED LAGUERRE
POLYNOMIALS

Using the same method as in the previous section, we investigate the
corresponding problem on (0, + %) with the inner product (1.3), i.e.,

+o [2m—1
RN e o) P
where
1
w(x) =x?"exp(—x?"), y> —— (9.2)

2m

Let Ij(,f)(t) be the monic generalized Laguerre polynomials orthogonal
with respect to the weight ¢ — #°¢~" on (0, + ). They satisfy the three-term
recurrence relation (cf. [6, p. 46])

L) (1) = (t—(2n+s+ 1))L(‘)(t) —n(n + )L (1),
as well as the following relations (see [11])
L“”)(t) = L“’(t) + (n+ s)L(” (1),
Lp(1) = LG79(r) = nL$) 4(1).
THEOREM 9.1. The monic polynomials {m\(2)}yZ, orthogonal with re-

spect to the inner product (9.1), where the weight function is given by (9.2),
can be expressed in the form

ay(z) = 2" L(2"), N =2mn+ v,n=[N/2m],

where v€{0,1,...,2m — 1}, a,= y+ Qv+ 1 —2m)/(2m), and f,(,f)(t)
denotes the monic generalized Laguerre polynomial orthogonal with respect to
the weight t = t°e™" on (0, + ). The polynomials \(z) satisfy the recur-
rence relation (3.1), where

n+1l+a, fo0<v<m-—1,

b = X
2mntv n ifm<v<2m-1.

The proof of this theorem is quite similar to the proof of Theorem 8.2.
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