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Abstract

Integration of periodic functions on the real line with an even rational weight
function is considered. A transformation method of such integrals to the integrals on
(—1,1) with respect to the Szeg6—Bernstein weights and a construction of the corre-
sponding Gaussian quadrature formulas are given. The recursion coefficients in the
three-term recurrence relation for the corresponding orthogonal polynomials were ob-
tained in an analytic form. Numerical examples are also included. © 2002 Elsevier
Science Inc. All rights reserved.
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1. Introduction

We consider integrals of (27)-periodic functions over the real line R,
1) = [ somwio dr (1)
R
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with a given even rational weight function of the form

_P@)
where

n

o) =[] (t+8), 0<bi<by<---<h,
=l
and P(¢) is a polynomial of degree at most m < n, which is nonnegative on the
half line [0, +00).
Problem (1.1) can be simplified by first obtaining the partial fraction de-
composition of (1.2) in the form

where the sum is over all pairs of conjugate complex poles +ib; of O(#*), with

corresponding multiplicities 7; (j = 1,...,m). Here, > 77, r; = n.

Thus, without loss of generality we can consider only weights of the form
1
Wv(t) :W‘r<t,b) :m (V> 1), (1.3)
i.e., integrals
dr

LUf) = I(f;b) = )= (b>0,v=1). 1.4
) =18 = [ FOgmy 6>0v21) (14)

The paper is organized as follows. In Section 2 we develop a transformation
method for reducing the previous integrals 7,(f;b) to the integrals on (—1,1)
with respect to the Szegé—Bernstein weights (SBWs). Section 3 is devoted to the
corresponding Gaussian formulas. For appropriate values of v we obtain the
explicit expressions for the recursion coefficients in the three-term-recurrence
relation for the corresponding (monic) orthogonal polynomials. Finally, some
numerical examples are considered in Section 4.

2. Reduction of integrals to a finite interval

In this section we will show how to reduce the integral (1.4) to an integral on
the finite interval. For this purpose we need the sum of the following series

+o0 +00 1
W,(t) = W,(t;b) = Z w,(2kn+ 1) = =
k=—o0 j— [(2kn +1)° + bz]

(2.1)
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Since (cf. [6, p. 685])

*Zm 1 o sinh 2n8
(ka4 B B cosh2np — cos2na’

in the simplest, but the most important case v = 1, for 2na = 7 and 2nff = b, we
obtain

sinh b 1
Wi(z) = Wi(n;b) =

2b  coshb —cost’ (2.2)

Ina general case€ we can prove:

Lemma 2.1. Let w, be given by (1.3), & = —(t41ib)/(2n), and { = —¢&7.

Then
L (2 i A . d"' [ cotnz
R i |5
(2.3)

cotmz

2v =1 —e dz 7 | (240

The proof of this result can be done by an integration of the function
z +— g(z) = meot(nz)w,(2nz 4 1) over the rectangular contour Cy with vertices
at the points (N + (1/2))(#1 %), where N € N is such that the poles & of the
function g are inside of Cy. Then, taking N — +o0, the corresponding integral
over Cy tends to zero, because w,(z) = O(1/z*") when z — co. Then, by
Cauchy’s residue theorem, we get

W, (c) = i wy(2kn +1) = — (§§§g(2) + Bgsg(Z)),

re., (2.3).
For v =1, (2.3) reduces to (2.2). When v = 2 we have

_ bcoshb —sinhb CcosST+a
4b3 (coshb — cos 1)’

(1)

where

B sinh 2b — 2b
4= Jbcoshb — 2sinh b’
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Using MATHEMATICA package:
In[l]:=glz,t,b,n]:=PiCot[Piz]|/((BPiz+t)2+Db2)n
In[2]:=sumalt,b,n]:=—(Residuelg[z,t,b,n],z,—(t +IDb)/(2P1)]

+Residueg[z,t,b,n],z,—(t — Ib)/(2P1)])
In[3]:=polft,b,n]:=ComplexExpand]|
suma[t,b,n]|* (Cosh[b] — Cos[t])n//Simplify
we can suspect the following form of our sum

py(cost)

W(t) = —F >
(x) (coshb — cos 1)

where p,(x) is an algebraic polynomial. Indeed, we can prove the following
result:

Theorem 2.2. Let x = cost and ¢ = coshb. Then

W(2) = Wi(c:) = (f"_(’if)v (=12, (2.4)

where p,(x) = p,(x;b) is a nonnegative polynomial on [—1,1] of degree v — 1.
These polynomials satisfy the recurrence relation

peas) = 55 { T - (e - T2, (2.5)

ob
where p;(x) = V¢ — 1/(2b).

Proof. We start with (2.2) written in the form (¢ — x) W (1) = p;(x), where
()_sinhb_ c2—1
PR = T T

Thus, the formula (2.4) is true for v =1.
Suppose that (2.4) holds for some v( > 1). Then, differentiating

(€ =x)'Wi(r) = pul)

with respect to b, we get

X =cost, ¢=coshb.
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ie.,

(c—x)"""W(1) = ﬁ {vv 2 —1p,(x) — (c — x) al)avéx) } =: pyi1(x).

Thus, the result is proved. O

We are ready now to give a transformation of the integral (1.3) to one on a
finite interval. Putting ¢ = 2kn + © and using the periodicity of the function f,

f(t) = f(2kn+1) = f(v),
we have

400 Qk+1)n
Mﬁ—hvwr—ij/; £y () di

k=—o00 k—1)n

i /ff(r)m(ﬂm +1)dr

k=—00

/_nf(f) < f: w, (2kn + r)) dr,

T‘ k=—00

because of the uniform convergence of the series (2.1). Thus,

Mn:[Ummwm,

where W,(7) is defined by (2.1) and given by (2.4). We see that W,(—1) = W, (1),
i.e., W, is an even weight function.
Because of the last property of the weight function, we have

L =150 = [ omedes [ rome d
= [+ r-ame

0

Changing the variables cos T = x and putting
f(z) + f(=1) = F(cos 1), (2.6)

we get the following result:

Theorem 2.3. The integral (1.3) can be transformed to the form

10 =10r6) = [ oo P S @)
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where ¢ = coshb, p,(x) is a polynomial determined by the recurrence relation
(2.5), and F is defined by (2.6).

3. Gaussian type formulae for Szego—Bernstein weights

In order to evaluate the integral (2.7) it would seem more natural and
simpler to apply the Gauss—Chebyshev quadrature formula, i.e., taking
x— ®(x) = F(x)p,(x)/(c —x)" (c > 1) as an integrating function with respect
to the Chebyshev weight (ChW) v(x) = (1 —x2)"/%.

In this case, when for some » > 1 the function F satisfies the condition
[ FOx)(VI=22)"" dx < 400, the error R,(®),, of the n-point Gauss—
Chebyshev quadrature can be estimated as follows (see [5])

where 4 > 0 is a constant independent on & and n. Hence, when ¢ > 1 is very
close to 1, even if the integrand is bounded, it gives a very large bound.

On the contrary, if we take v,(x) = (1 —x2)"/*/(c — x)" as a weight function
(Szeg6—Bernstein weight), then the error of the corresponding Gaussian for-
mula is bounded as follows

d’ dx

(c=x)"

R (P)] < l [F(x)p,(x)]|(1 — 22D

where B > 0 is a constant independent on ¥ (¥(x) = F(x)p,(x)) and n. It is
clear that the last integral is much smaller then the previous one. Also, some
numerical evidences confirm this argument (see Section 4).

Thus, for evaluating the integral (2.7) it is more convenient to construct the
Gaussian quadratures

/l x) dA, (x ZA Ri(¥P),, R.(Pu_1), =0, (3.1)
for the measure
Al = o di———F ) (3.2)
(c—x)"V1—x? ’

where the function ¥ includes the algebraic polynomial p,(x), ie.,
Y(x) = F(x)p,(x). Here, 2,,_; denotes the set of all polynomials of degree at
most 2n — 1.

It is well known that the corresponding orthogonal polynomials 7,,(x) for
the measure (3.2) can be calculated explicitly provided v < 2n (cf. [7, p. 31]). On
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the other side, there is a nonlinear algorithm to produce the recursion coeffi-
cients in the three-term recurrence relation for the monic polynomials =, ,(x),

Tai1s(6) = (6 = 0000 (x) = B 01 (x), 1 >0,

) = Lr) (1) 20 = [ ano) (33)

1

in terms of ones for the polynomials =, , ;(x) orthogonal with respect to the
measure dA,_;(x) = d4,(x)/(c —x). However, such an algorithm is quite nu-
merically unstable unless ¢ is very close to the support interval of the measure
(see [3, p. 102]). Two numerical algorithms for this purpose were also discussed
in [1]. Our goal in this paper is to find analytic expressions for the recursion
coefficients for some appropriate values of v.

Knowing these coefficients, oc,i"), /3,(:'), k = 0, one can easily obtain the n-point
Gaussian quadrature formula (3.1) for any n. The nodes x,(c”), indeed, are the
eigenvalues of the symmetric (tridiagonal) Jacobi matrix

B o
IR
Ju(d2,) = B o
B,
L o Bl 0l

while the weights (Christoffel numbers) A,i”) are given by A,({”) = ﬁg")vil in terms
of the first components v;; of the corresponding normalized eigenvectors (cf.
[2, Section 5.1; 4]).

Firstly, we introduce the modified moments for d,(x) by the orthogonal
polynomials 7, (x),

mi‘” = /_1 Tpy—1(x) dA,(x) = /_1 (cnn;c_)l'(\j)ldx—xz (n=0). (3.4)

Notice that 7, (x) are the monic Chebyshev polynomials of the first kind T, (x)
(To(x) = 1, T,(x) = 2'""cos(narccosx), n = 1).
It is easy to prove the following auxiliary result:

Lemma 3.1. For the first moment we have

) — / 1 dx _ 10 (e)
¢l e-)'VI=2 (@-1)




372 G. Mastroianni, G.V. Milovanovié | Appl. Math. Comput. 128 (2002) 365-378

where
1
0.(c) =< [(2v = Dei-i(0) = (€ = 1), ()], Qole) = 1.
Thus, we find
Q](C) =, QZ(C) :Cz_‘_%a Q3(C) :CS+%Ca

3
O4(c) =c* +3c7 + g cte.

According to [6, p. 415] we have
0.0 = (@~ 1R ( ).

c2—1
where P, is the Legendre polynomial of the order v.
In order to get connection with the Chebyshev measure dy(x) it is conve-
nient to put O_;(c) = (¢* — 1)""/%. Then it gives m" = .
Now, we can prove:

Theorem 3.2. The polynomials =, ,(x) can be expressed in terms of polynomials
{Tkv-1(x)} in the form

TC,,?‘,(X) = nn,v—l (X) - qE,")nn—ljv—l(x)a (35)

where ¢ = m") /m\" and the moments m" are given by (3.4). If o=V and ="
are the recursion coefficients in (3.3) for polynomials {m,,_(x)}, and

(v—1)
r=" = (@ = 1) Qvsle) (3.6)
m O,-1(c)
where the polynomials Q,(c) are defined in Lemma 3.1, then
v v— v y— ﬁE’V—l)
q(l):cfo((() 1)7”’ qillcha;(q N _ q(“) (n=1). (3.7

The coefficients in (3.3) are given by

' =0 wa) a) =gl g (n=1)
and By’ £ mi) = 70,1(c)/ (> = 1),

BY = B g [ =l gl — )] =),

Alternatively,




G. Mastroianni, G.V. Milovanovié | Appl. Math. Comput. 128 (2002) 365-378 373

Proof. Putting

:
._.

T (%) = M1 (x) — lefziﬂkw—l (x)
0

=~
Il

and using the inner product with respect to the measure d4,_;,

(.2, / F()g(x) diy .
because of orthogonality, we obtain that for each 0 <i<n — 2,

(nn,vv Tiy—1 )\;71 = _qivz) (ni,vfla T v—1 )\‘71

and

(nn,vvniﬁvfl)v,l = [ (C —x)n,,“,.(x)nf}v,l(x) d)w(x)

- /,1 T () (¥7,-1 (x)) 24 (x) = 0.

Thus, we conclude that qnl = 0 for such values of i and the formula (3.5) is
true, where we put qnn L =qV
From (3.5), because of orthogonality

0= (Tcmw 1)‘7 = (nn,vfla 1)‘ - q,(,")(nnfl,vfh l)w

we get ¢ = m(/m'”,, where the modified moments are defined by (3.4).
Using the recurrence relation for polynomials {7,,_;(x)} we find that

1
mly = (e — o V)m) — BV, — / Tt (6) Ay,
-1

which gives

(v) (v=1)y,(v) (v=1)
my = (c—oy )my —m

and

)= (e = o ym) = B Iml (> 1).

n n—1

These equalities give (3.7).

Finally, changing 7 ,(x) (k =n — 1,n,n + 1) in the recurrence relation (3.3)
by (3.5) and using the corresponding relation for polynomials {7 ,_;(x)} we get
forn>=2

Tt v—1 (x) = (x _ OC + qn+l qu))nn,vfl (x) _ (ﬂEIV) _ qi\’)aiﬂ

) (v—1 v) (v v—1 v
002 )1 () + (B0 = B0 ) e ().
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Comparing with the recurrence relation for {n,,_;(x)} we obtain formulas for
the recursion coefficients. The case n = 1 should be considered separately. O

Notice that in Chebyshev case (v = 0) we have

Y s r:cz—l r:c(cz—l)

1 ’ 2 c ’ 3 2 I (1/2)7
_(@+(1/2))(c 1)

Vg = P T (3/2)0 , etc.

Now, using the previous theorem we give explicit expressions for recursion
coefficients for some important special cases, where ¢ = cosh b.

Case v =1. Here we have ¢\" =e™, ¢\ = (1/2)e™ (n>2), and the re-

cursion coeflicients

1
m) =e?, ol =—Ze? Al =0 (n>2),
poa _T B = 1 (1—e ), po» _! (n=2)
0 " Snhp 1 T2 ’ 4 07

Case v = 2. Here, ¢\”) = e tanh b, ¢ = (1/2)e™ (n > 2), and

1
2 2 _
af)):m, OCE):—C btanhb, OC,SZ)ZO (”l>2),

2) a mcosh b 2 1 _ 2 @ 1 _

ﬁ() ﬁm, ,Bl —E(I—GZb)tanh b7 BZ _Z(l-’-ezb)’
and % = (1/4) (n=3).
Case v=3. Here, ¢\’ =sinhbtanhb/(2+ cosh(2b)), ¢\ = e coshb,

¢ =l (n>=3), and

3coshb sinh b
() () _ o2 cosh b h
o, =e " coshb+ (e +3 m cosh(2b)> tanh b,

% =5 cosh(20)

@ o m(cosh®b+(1/2)) (1 —e2)*
ﬁ() - 5 ’ ﬁl - 2
sinh’ b 2(1 —4de2b 4 e%)




G. Mastroianni, G.V. Milovanovié | Appl. Math. Comput. 128 (2002) 365-378 375

BY = % (143 -3¢ % —e®), =" (n>3).

As we can see the recurrence coeflicients for polynomials 7, ,(x) reduce to the
corresponding coefficients for Chebyshev polynomials for n = ny (n € N).
Precisely, calculations show that

O!("):oc(o):o, n= {v—‘rl] +1

n n 2

and

4. Numerical examples

In order to illustrate the presented transformation method, we consider in
this section a few numerical examples. All computations were done in D-
arithmetic on the WORKSTATION DIGITAL ULTIMATE ALPHA 533au2 (with
machine precision ~2.22 x 107'°).

Example 4.1. Consider integrals of the form

T 2sin2t—1 e cos%
I,(f;b) = . 5 dt =1).
(f50) /,OO 312005 2rpy & =1

The function

~ 2sin2t—1
34 2co083t

—cos 2t

f(@)

is (2m)-periodic and its graph on the interval [—=, 7] is displayed in Fig. 1.

(a) 7 (b) 3.5

Fig. 1. The periodic function f(¢) (a). The function F(x) obtained by transformation (2.6) (b).
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Since
26—00521
S@+f=9)=- 3+2cos3rt’
putting x = cost and using (2.6) we find
—2e!-2?
F(x) :F(COST) :f(T)+f(_T) :m

and according to (2.7),

L ! . 7, (x) dx
R R vt

where ¢ = cosh b.

Let v = 1. Applying Gaussian quadratures with the ChW for n = 5(5)50 and
taking b = 10" (m = —2,—1,0) we get approximations of 7,(f;b) with relative
errors given in Table 1. Numbers in parentheses indicate decimal exponents.

Taking Gaussian quadratures for n=5(5)50, with SBW, uv(x)=
(1 —x2)~"2/(c — x), the corresponding errors are also presented in the same
table. The corresponding exact values of ;(f; b) are obtained using Gaussian
quadratures with SBW in Q-arithmetic (machine precision ~1.93 x 1073%):

L(f;0.01) = —0.2586588216241823127882... x 10> (c = 1.0000500...),

I(f;0.10) = —0.4968012877996286228355... x 10" (¢ =1.0050041...),
I(f;1.00) = —0.1673215409745331112726... x 10" (c =1.5430806...).

Table 1
Relative errors in Gaussian approximations of the integral 7;(f; b) with respect to the Chebyshev
weight (ChW) and the Szeg6—Bernstein weight (SBW)

b b =001 b=0.1 b=10
n ChW SBW ChW SBW Chw SBW

5 8.4 (—1) 13(-2) 22(-1) 6.3 (-2) 12(-2) 55(=2)
10 8.0 (—1) 2.4 (—4) 11(-1) 1.5(-3) 27 (=3) 3.5(-3)
15 7.6 (—1) 1.1 (=5) 43(-2) 42(-5) 1.5 (—4) 7.0 (=5)
20 72 (~1) 9.0 (—7) 1.6 (—2) 4.4 (—6) 1.0 (—6) 3.5(-6)
25 6.7 (—1) 1.6 (—8) 6.0 (—3) 9.7 (-8) 1.8 (-7) 23(=7)
30 63 (—1) 74(-10)  22(=3) 2.8 (=9) 9.8 (—9) 4.6 (—9)
35 59 (1) 59(—11)  82(-4) 29(=10)  67(=11)  23(—10)
40 55(-1) 10 (—12)  3.0(-4) 64(-12)  12(=11)  1.5(=11)
45 52(=1) 48(—14)  1.1(-4) 18(—13)  65(—13)  3.1(-13)
50 48 (—1) 47(-15)  41(=5) 19(-14)  52(=15)  1.6(—14)
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As can be seen, for smaller values of b (c is close to 1) the Gauss—Chebyshev
quadratures ChW cannot be used directly. When b increases the both quadr-
atures become comparable. However, by writing /,(f; b) in the form

T sinhbs (' F(¢) — F(x) dx
Li(f;b) ==F(c) —
Wib) =55 Fle) ==, /,1 c—x Ji-g
the Gauss—Chebyshev quadratures can be applied directly.
Consider now the case v = 2, with the functions ¢, and the corresponding
weights v, (k=0,1,2), where
F(x)pa(x) 1
X)) =—""—"7, n(x) = ———m .
i) (c— x)z_k il (c— x)km
Applying the Gaussian quadratures with the Chebyshev weight ChW
(k = 0) and the Szegé-Bernstein weights SBW, (k = 1) and SBW, (k = 2) we
get approximations of the integral ,(f; b). The exact values of this integral for
some selected b are:
L(f;0.01) = —0.1156183821140487028202. .. x 10°,
L(f;0.10) = —0.1214706913588412300593 ... x 10°.

The relative errors in Gaussian approximations for n = 5(5)50 are presented in
Table 2.

The advantage of quadrature formulas for £ = 2 (in this case v = 2) is evi-
dent. When b increases all quadratures give similar results.

Example 4.2. Consider now the integral (1.4), with a nonanalytic function
£(£) = |cos(t/2)|”" (« > 0). After the transformation we obtain the integral

Table 2
Relative errors in Gaussian approximations of the integral ,(f;b) with respect to the Chebyshev
weight (ChW) and to the Szeg6—Bernstein weights (SBW; and SBW,)

b b =001 h=0.1
n ChW SBW, SBW, Chw SBW, SBW,

5 1.0 (0) 9.1 (=1) 55(=7) 8.9 (—1) 3.7 (=1) 1.1(-3)
10 1.0 (0) 8.3 (—1) 1.0 (-7) 6.2(~1) 14 (-1) 6.7 (—5)
15 1.0 (0) 7.5 (—1) 47(-9) 3.4(—1) 5.0(=2) 43 (—6)
20 9.9 (—1) 6.8 (—1) 19(=11)  1.6(-1) 1.9 (-2) 6.4 (—8)
25 9.9 (—1) 6.1(—1) 46(-12)  74(-2) 6.8 (—3) 44(-9)
30 9.8 (—1) 55(-1) 26(—12)  32(-2) 25(=3) 2.8 (—10)
35 9.7 (—1) 5.0 (—1) 23(-12)  13(-2) 9.2 (—4) 43 (-12)
40 9.6 (—1) 45(-1) 23(-12)  5.6(=3) 3.4 (—4) 3.1(=13)
45 9.5(—1) 4.1(=1) 23(-12)  23(=3) 1.2 (—4) 1.4 (—15)
50 9.3 (—1) 3.7 (=1) 23(-12)  92(-4) 4.6 (—5) 2.0 (—14)
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log lO(r")

-12

-14

- 16

0 1 2 3 4
Fig. 2. Relative errors in Gaussian approximations with n =5 (upper curve) and n = 20 nodes
(lower curve) for 0 <o < 4.5.

sw=4], (1?)&@—;;1"—7’

where 4 = 2p;(x) = sinh b/b.

In order to evaluate this integral, we apply Gaussian rule in n points with
SBW (v =1). A typical behavior of the relative error », of Gaussian approx-
imations with respect to the parameter o (0 <o < 4.5) is displayed in Fig. 2 in
the log-scale. Two cases for n = 5 and n = 20 are given, whereas b = 0.01. It is
clear that the rapidly increasing of accuracy achieves when the parameter o
tends to an integer (i.e., when f becomes an analytic function).
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