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Abstract. This survey paper is devoted to inequalities for zeros of algebraic polynomials.
We consider the various bounds for the moduli of the zeros, some related inequalities, as
well as the location of the zeros of a polynomial, with a special emphasis on the zeros in
a strip in the complex plane.

1. Introduction

In this paper we give an account on some important inequalities for zeros of alge-
braic polynomials. Let

(1.1) P (z) = a0 + a1z + · · ·+ anz
n (an 6= 0)

be an arbitrary algebraic polynomial of degree n with complex coefficients ak
(k = 0, 1, . . . , n). According to the well-known fundamental theorem of algebra, it
has exactly n zeros in the complex plane, counting their multiplicities.

Suppose that P (z) has m different zeros z1, . . . , zm, with the corresponding mul-
tiplicities k1, . . . , km. Then we have

(1.2) P (z) = an

m∏
ν=1

(z − zν)kν , n =

m∑
ν=1

kν .

Rouché’s theorem (cf. [45, p. 176]) can be applied to prove the proposition that the
zeros of a polynomial are continuous functions of the coefficients of the polynomial.
This property can be stated in the following form.
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Theorem 1.1. Let P (z) be given by (1.1) and let z1, . . . , zm be its zeros with the
multiplicities k1, . . . , km, respectively, such that (1.2) holds. Further, let

Q(z) = (a0 + ε0) + (a1 + ε1)z + · · ·+ (an−1 + εn−1)zn−1 + anz
n,

and let
0 < rν < min |zν − zj |, j = 1, . . . , ν − 1, ν + 1, . . . ,m.

There exists a positive number ε such that, if |εi| ≤ ε for i = 0, 1, · · · , n−1, then
Q(z) has precisely kν zeros in the circle Cν with center at zν and radius rν .

There are several proofs of this result. Also, this theorem may be considered as a
special case of a theorem of Hurwitz [27] (see [45, p. 178] for details and references).

Thus, the zeros z1, . . . , zm, can be considered as functions of the coefficients a0,
a1, . . . , an, i.e.,

zν = ϕν(a0, a1, . . . , an) (ν = 1, . . . ,m).

Our basic task in this paper is to give some bounds for the zeros as functions of all
the coefficients. For example, we try to find the smallest circle which encloses all
the zeros (or k of them). Instead of the interiors of circles we are also interested
in other regions in the complex plane (half-planes, sectors, rings, etc.).

The paper is organized as follows. Section 2 is devoted to the bounds for the
moduli of the zeros and some related inequalities. The location of the zeros of a
polynomial in terms of the coefficients of an orthogonal expansion is treated in
Section 3. In particular, we give some important estimates for zeros in a strip in
the complex plane.

2. Bounds for the Moduli of the Zeros

In this section we mainly consider bounds for the moduli of the polynomial zeros.
We begin with classical results of Cauchy [11]:

Theorem 2.1. Let P (z) be a complex polynomial given by

(2.1) P (z) = a0 + a1z + · · ·+ anz
n (an 6= 0),

and let r = r[P ] be the unique positive root of the algebraic equation

(2.2) f(z) = |an|zn −
(
|an−1|zn−1 + · · ·+ |a1|z + |a0|

)
= 0.

Then all the zeros of the polynomial P (z) lie in the circle |z| ≤ r.
Proof. If |z| > r, from (2.2) it follows that f(|z|) > 0. Since

(2.3) |P (z)| ≥ |an||z|n −
(
|an−1||z|n−1 + · · ·+ |a1||z|+ |a0|

)
= f(|z|),

we conclude that |P (z)| > 0, i.e., P (z) 6= 0, for |z| > r. Thus, all the zeros of P (z)
must be in the circle |z| ≤ r. �

The polynomial f(z), which appears on the left hand side in (2.2), is called asso-
ciated polynomial of P (z). As usual, we call r[P ] the Cauchy bound of P (z).



Theorem 2.2. Let P (z) be a complex polynomial given by (2.1) and let

M = max
0≤ν≤n−1

|aν | and M ′ = max
1≤ν≤n

|aν |.

Then all the zeros of P (z) lie in the ring

|a0|
|a0|+M ′

< |z| < 1 +
M

|an|
.

Proof. Suppose that |z| > 1. Then from (2.3) it follows

|P (z)| ≥ |an||z|n −M
(
|z|n−1 + · · ·+ |z|+ 1

)
= |an||z|n

(
1− M

|an|

n∑
ν=1

|z|−ν
)

> |an||z|n
(

1− M

|an|

+∞∑
ν=1

|z|−ν
)

= |an||z|n
|an| |z| − (|an|+M)

|z| − 1
.

Hence, if |z| ≥ 1 + M/|an| we see that |P (z)| > 0, i.e., P (z) 6= 0. Therefore, the
zeros of P (z) can be only in the disk |z| < 1 +M/|an|. Applying this result to the
polynomial znP (1/z) we obtain the corresponding lower bound. �

The circle |z| ≤ 1 + M/|an| cannot be replaced by a circle |z| ≤ 1 + θM/|an|,
with a universal constant θ such that 0 < θ < 1 as the simple example P0(z) =
zn −Mzn−1 demonstrates if only M is sufficiently large.

Cohn [13] proved that at least one of zeros of P (z) satisfies the following inequality

|z| ≥ r
(
n
√

2− 1
)
,

where r is the Cauchy bound of P (z). His proof based on the Grace-Apolarity
theorem. Using the elementary symmetric functions and AG inequality, Berwald
[4] proved:

Theorem 2.3. Let z1, . . . , zn be the zeros of the polynomial P (z) given by (2.1)
and let r be the unique positive root of the equation (2.2). Then

r ≥ |z1|+ · · ·+ |zn|
n

≥ r
(
n
√

2− 1
)
,

with equality in the second inequality if and only if z1 = · · · = zn.

Similarly as in the proof of Theorem 2.2 we can use the well-known Hölder in-
equality (cf. Mitrinović [48, pp. 50–51])( n∑

k=1

xpk

)1/p( n∑
k=1

yqk

)1/q

≥
n∑
k=1

xkyk,



where xk ≥ 0, yk ≥ 0 (k = 1, . . . , n) and 1/p + 1/q = 1 with p > 1, to estimate
the right hand side in (2.3). So we obtain

|P (z)| ≥ |an||z|n −
(n−1∑
ν=0

|aν |p
)1/p(n−1∑

ν=0

|z|νq
)1/q

= |an||z|n
(

1− Mp

|an|
A(z)1/q

)
,

where Mp =

(
n−1∑
ν=0
|aν |p

)1/p

and

A(z) =

n−1∑
ν=0

|z|(ν−n)q < 1

|z|q − 1

(
|z| > 1

)
.

Thus, for |z| > 1 we have

|P (z)| > |an||z|n
(

1− Mp

|an| (|z|q − 1)
1/q

)
.

Therefore, if (|z|q − 1)
1/q ≥Mp/|an|, i.e.,

|z| ≥
(

1 +
(Mp

|an|

)q)1/q

,

we conclude that |P (z)| > 0, i.e., P (z) 6= 0.

Thus, we can state the following result (Kuniyeda [31]–[32], Montel [49]–[50], Tôya
[73], Dieudonné [16], Marden [39]):

Theorem 2.4. Let P (z) be a complex polynomial given by (2.1) and let

Mp =

(n−1∑
ν=0

|aν |p
)1/p

and Rpq =

(
1 +

(Mp

|an|

)q)1/q

,

where p, q > 1, 1/p+ 1/q = 1. Then all the zeros of P (z) lie in the disk

|z| < Rpq.

Taking p→ +∞ (q → 1) we obtain Theorem 2.2.

The special case p = q = 2 gives the bound investigated by Carmichael and Mason
[10], Fujiwara [18], and Kelleher [29]:

R22 =

√
|a0|2 + |a1|2 + · · ·+ |an|2

|an|
.



We mention here also a similar result of Williams [81], who changed R22 by

R′22 =

√
|a0|2 + |a1 − a0|2 + · · ·+ |an − an−1|2 + |an|2

|an|
.

From some Cauchy’s inequalities (see Mitrinović [48, p. 204 and p. 222]) we can
obtain the following inequalities

(2.4) min
1≤ν≤n

αν
βν
≤

n∑
ν=1

ανλν

n∑
ν=1

βνλν

≤ max
1≤ν≤n

αν
βν

,

which hold for the real numbers αν , βν > 0, λν > 0 (ν = 1, . . . , n), with equality if
and only if the sequences α = (α1, . . . , αn) and β = (β1, . . . , βn) are proportional.
Using these inequalities, Marković [40] considered

P (z) =

n∑
ν=0

aνz
ν and f(z) =

+∞∑
ν=0

bνz
ν ,

with bν > 0 (ν = 0, 1, . . . ) and proved the following result:

Theorem 2.5. Let r0 be a positive root of the equation Mf(r) = |a0|, where

M = max
1≤ν≤n

{
|aν |
bν

}
.

Then all the zeros of P (z) lie in |z| ≥ r0.

In particular, when bν = t−ν (ν = 1, 2, . . . ) and

g(t) = max
1≤ν≤n

(
|aν |tν

)
,

where t is any positive number, one has that all the zeros of P (z) lie in the domain

|z| ≥ |a0|t
|a0|+ g(t)

.

The same result was also obtained by Landau [33] in another way.

Assuming that λ1 > · · · > λn > 0, Simeunović [63] improved (2.4) in following
way

min
1≤ν≤n

αν
βν
≤ min

1≤ν≤n


ν∑
k=1

αk

ν∑
k=1

βk

 ≤
n∑
ν=1

ανλν

n∑
ν=1

βνλν

≤ max
1≤ν≤n


ν∑
k=1

αk

ν∑
k=1

βk

 ≤ max
1≤ν≤n

αν
βν

and then proved that all the zeros of P (z) lie in the domain

|z| ≥ |a0|t
|a0|+ h(t)

,

where

h(t) = max
1≤ν≤n

(
1

ν

ν∑
k=1

|ak|tk
)
≤ max

1≤k≤n

(
|ak|tk

)
.

In Bourbaki [8, p. 97] the following result is mentioned as a problem:



Theorem 2.6. Let

(2.5) P (z) = zn + an−1z
n−1 + · · ·+ a1z + a0

be a polynomial with non-zero complex coefficients, and let zν (ν = 1, . . . , n) be
the zeros of this polynomial. Then

max
1≤ν≤n

|zν | ≤ max
(

2|an−1|, 2
∣∣∣ an−2
an−1

∣∣∣, . . . , 2 ∣∣∣ a1
a2

∣∣∣, ∣∣∣ a0
a1

∣∣∣).
Introducing a new variable w = z + an−1/n, the polynomial (2.5) can be trans-
formed to a polynomial of the form

P (w − an−1/n) = wn + cn−2w
n−2 + · · ·+ c1w + c0.

If we define a polynomial S(w) by

(2.6) S(w) = wn − |cn−2|wn−2 − · · · − |c1|w − |c0|

then we can prove the following result (cf. Milovanović [43, pp. 398–399]):

Theorem 2.7. If at least one of the coefficients cν (ν = 0, 1, . . . , n − 2) is
non-zero, then all the zeros of P (z) lie in the circle∣∣∣z +

an−1
n

∣∣∣≤ r,
where r is the unique positive zero of the polynomial (2.6).

Setting pk = |an−k/an| (k = 1, . . . , n) the equation (2.2) reduces to

(2.7) zn =

n∑
k=1

pkz
n−k,

where pk ≥ 0 (k = 1, . . . , n) and
n∑
k=1

ak > 0. Westerfield [80] found an estimate

for the positive root of this equation.

Theorem 2.8. Let r be the unique positive root of the equation (2.7) and let
positive quantities k√pk (k = 1, . . . , n), after being arranged in order of decreasing
magnitudes, form a sequence q1 ≥ q2 ≥ · · · ≥ qn. Then r satisfies the inequality

r ≤
n∑
k=1

qksk, where

s1 = y1, sk = yk − yk−1 (k = 2, . . . , n),

and where yk is the unique positive root of the equation

yk =

k∑
ν=1

yk−ν (k = 1, . . . , n).

A simple proof of this theorem was given by Bojanov [5] as an application of the
following his theorem:



Theorem 2.9. If xν are positive roots of the equations

xn = aν1x
n−1 + a2ν2x

n−2 + · · ·+ anνn

(aν1, aν2 . . . , aνn ≥ 0; ν = 1, . . . ,m),

then the positive root Z of the equation

xn =

n∑
k=1

( m∑
ν=1

aνk

)k
xn−k

satisfies the inequality Z ≤ x1 + x2 + · · ·+ xm.

The method of Bojanov [5] gives also a lower bound for the positive root of (2.7).

Zervos [82] proved the following result:

Theorem 2.10. Let I1, . . . , In be index sets and θij (≥ 0) real numbers satisfying
the condition ∑

iν∈Iν

θiν = ν − t (ν = 1, . . . , n),

where t (0 < t ≤ 1) is a fixed number. Then, the positive root r of the equation
(2.7) satisfies the inequality

r ≤ max

{
M,
( n∑
ν=1

pν

/ ∏
iν∈Iν

M
θiν
iν

)1/t}
,

where M = max
{
Miν

}
and Miν are any positive numbers.

Prešić [54] proved a lemma which with certain specifications proves the previous
theorem of Zervos. An extension of this lemma, which gives a lower bound of r,
was proved by Tasković [70].

Let λ2, . . . , λn be arbitrary positive numbers and let r be the unique positive root
of the equation (2.7). Then (see Zervos [82, p. 343] and Mitrinović [48, p. 223])

(2.8) r ≤ max

(
λ2, . . . , λn,

(
p1 +

p2
λ2

+ · · ·+ pn

λn−1n

))
.

In order to prove this we put λ = max(λ2, . . . , λn). If α ≥ r, then (2.8) holds. Let
λ < r. Then λ2, . . . , λn < r, and therefore

p1 +
p2
λ2

+ · · ·+ pn

λn−1n

≥ p1 +
p2
r

+ · · ·+ pn
rn−1

=
1

rn−1
(
p1r

n−1 + · · ·+ pn
)

= r

and inequality (2.8) is true.



Introducing a mini-max principle to a totally ordered sets, Tasković [71] stated a
result which in a special case gives that

r = min
λ2,... ,λn∈R+

max

(
λ2, . . . , λn,

(
p1 +

p2
λ2

+ · · ·+ pn

λn−1n

))
= max
λ2,... ,λn∈R+

min

(
λ2, . . . , λn,

(
p1 +

p2
λ2

+ · · ·+ pn

λn−1n

))
.

Walsh [77] proved the following result:

Theorem 2.11. If all the zeros of a polynomial P (z) =
n∑
ν=0

aνz
ν lie in a circle

|z| ≤ r, then all the zeros of the polynomial P (z)− a lie in the circle

|z| ≤ r + |a/an|1/n.

Precisely, this is an useful consequence of a general result of Walsh [77], which
is known as Coincidence Theorem (see Theorem 2.20) Walsh [78] also proved the
following result:

Theorem 2.12. Let P (z) be a polynomial of degree n given by (2.1). Then all
its zeros lie in the circle |z| ≤ R, where

R =

n−1∑
k=0

∣∣∣ ak
an

∣∣∣1/(n−k) .
Proof. Suppose that all the zeros of the polynomial

Pk(z) = anz
k + an−1z

k−1 + · · ·+ an−k+1z

lie in the circle |z| ≤ rk−1 (k = 1, . . . , n). Since P1(z) = anz, we have r0 = 0.

Applying Theorem 2.11 to Pk(z), with a = −an−k, we conclude that all the zeros
of the polynomial

Pk(z) + an−k = anz
k + an−1z

k−1 + · · ·+ an−k+1z + an−k

lie in the circle |z| ≤ rk−1 + |an−k/an|1/k. Since

Pk(z) = zPk−1(z) + an−k+1 (k = 2, . . . , n),

taking rk = rk−1 + |an−k/an|1/k, we obtain

R = rn =
∣∣∣ an−1
an

∣∣∣ +
∣∣∣ an−2
an

∣∣∣1/2 + · · ·+
∣∣∣ a0
an

∣∣∣1/n . �

Some improvements of this result were given by Rudnicki [61]. Tonkov [72] gave
an elementary proof of this theorem and also determined the lower bound for the
zeros.

The following result was also proved by Walsh [78]:



Theorem 2.13. All the zeros of the polynomial P (z) given by (2.1), where an = 1,
lie in the disk

(2.9)
∣∣∣z +

1

2
an−1

∣∣∣≤ 1

2
|an−1|+M,

where M =
n∑
ν=2
|an−ν |1/ν .

Another proof of this theorem was given by Bell [3].

Rahman [55] replaced the disk (2.9) by∣∣∣z +
1

2
an−1

∣∣∣≤ 1

2
|an−1|+ αM,

where (i) α = 0 if P (z) is of the form an−1z
n−1 + zn, and (ii)

α = max
2≤ν≤n

(
M−1|an−ν |1/ν

)(ν−1)/ν
if P (z) is not of the form an−1z

n−1 + zn.

The classical Cauchy’s bounds were improved in various ways by many authors.
As an improvement Joyal, Labelle, and Rahman [28] proved the following theorem:

Theorem 2.14. Let P (z) =
n∑
ν=0

aνz
ν (an = 1) be a polynomial of degree n, and

let β = max
0≤ν<n−1

|aν |. Then all the zeros of P (z) lie in the disk

(2.10) |z| ≤ 1

2

{
1 + |an−1|+

[
(1− |an−1|)2 + 4β

]1/2}
.

The expression (2.10) takes a very simple form if an−1 = 0. If |an−1| = 1, it
reduces to 1 +

√
β, which is smaller than the bound obtained in Theorem 2.2. If

|an−1| = β, Theorem 2.14 fails to give an improvement of Theorem 2.2. A ring-
shaped region containing all the zeros of P (z) was obtained by Datt and Govil
[14]:

Theorem 2.15. If P (z) =
n∑
ν=0

aνz
ν (an = 1) is a polynomial of degree n and

A = max
0≤ν≤n−1

|aν |, then P (z) has all its zeros in the ring-shaped region

(2.11)
|a0|

2(1 +A)n−1(An+ 1)
≤ |z| ≤ 1 + λ0A,

where λ0 is the unique root of the equation x = 1 − 1/(1 + Ax)n in the interval
(0, 1). The upper bound 1 + λ0A in (2.11) is best possible and is attained for the
polynomial zn −A(zn−1 + · · ·+ z + 1).

If one does not wish to look for the roots of the equation x = 1 − 1/(1 + Ax)n,
one can still obtain a result which is an improvement of Theorem 2.2, even in the
case |an−1| = β:



Theorem 2.16. Under the conditions of Theorem 2.15, P (z) has all its zeros in
the ring-shaped region

|a0|
2(1 +A)n−1(An+ 1)

≤ |z| ≤ 1 +
(

1− 1

(1 +A)n

)
A.

Some refinements of Theorems 2.14 and 2.15 were obtained by Dewan [15].

We mention here also a result of Abian [1]:

Theorem 2.17. Let P (z) = a0 + a1z + · · · + anz
n with a0 6= 0 be a polynomial

and let A(z) and B(w) be given by

A(z) =
1

a0 + · · ·+ anzn
and B(w) =

1

a0wn + · · ·+ an
,

respectively. Then the precise annulus which contains all the zeros of P (z) is
given by

(2.12)
1

lim
k→+∞

k

√∣∣∣ 1

k!
A(k)(0)

∣∣∣ ≤ |z| ≤ lim
k→+∞

k

√∣∣∣ 1

k!
B(k)(0)

∣∣∣ .
From the well-known Stirling’s formula it follows that lim

k→+∞
k−1(k!)k−1 = e−1.

Then (2.12) reduces to

1

e lim
k→+∞

k√|A(k)(0)|
k

≤ |z| ≤ e lim
k→+∞

k√|B(k)(0)|
k

.

In 1881, Pellet [53] published the following result:

Theorem 2.18. If the equation Fk(z) = 0, where

Fk(z) =|a0|+ |a1|z + |a2|z2 + · · ·+ |ak−1|zk−1 − |ak|zk

+|ak+1|zk+1 + · · ·+ |an|zn (0 < k < n, a0an 6= 0),

has two positive roots rk and %k (0 < rk < %k), then the polynomial

z 7→ P (z) = a0 + a1z + a2z
2 + · · ·+ anz

n

has no zeros in the annulus rk < |z| < %k and precisely k zeros in the disk |z| ≤ rk.

Pellet’s proof uses Rouché’s theorem [60] (see also [45, p. 176]). Walsh [79] pub-
lished in 1924 another more direct proof and established a sort of converse of
Pellet’s theorem. Walsh allows in his proof the zeros of P (z), which are in abso-
lute value less than a, to vary continuously and monotonically (in absolute value)
and to approach 0. Walsh [79] remarked that his proof of Pellet’s theorem remains
valid also in the case of a power-series and of its zeros inside the circle of con-
vergence. Ostrowski [51] remarked that his proof of Walsh’s theorem also applies
mutatis mutandis to a power series when one considers its zeros within the circle
of convergence.

Precisely, Walsh’s converse of Pellet’s theorem can be stated in the following form
(cf. Marden [39, p. 129]):



Theorem 2.19. Let Fk be defined as in Theorem 2.18, where a0, a1, . . . , an
are fixed coefficients, and let ε0, ε1, . . . , εn be arbitrary complex numbers with
|ε0| = |ε1| = · · · = |εn| = 1.

If r is a positive number such that

(1) r is not a zero of any polynomial

P (z) = ε0a0 + ε1a1z + · · ·+ εnanz
n,

(2) every polynomial P (z) has k (0 < k < n) zeros in the circle |z| = r.

Then Fk(z) has two positive zeros rk and %k (0 < rk < %k) and rk < r < %k.

Steckhin [68] considered a generalized case

G(z) = ε0ϕ0(z) + ε1ϕ1(z) + · · ·+ εnϕn(z),

where ϕk(z) are arbitrary complex functions and |εk| = 1 (k = 0, 1, . . . , n). Let
MG be the set of all the zeros of G(z) when ε0, ε1, . . . , εn vary independently, but
such that |εk| = 1 (k = 0, 1, . . . , n). Steckhin [68] gave an elementary proof of the
following result:

Theorem 2.20. In order that z ∈ MG, the necessary and sufficient conditions
are given by

(2.13) Gk(z) = |ϕ0(z)|+ · · ·+ |ϕk−1(z)| − |ϕk(z)|+ · · ·+ |ϕn(z)| ≥ 0,

where k = 0, 1, . . . , n.

Proof. Suppose that Gν(z) < 0 for some ν (0 ≤ ν ≤ n). Then

|G(z)| ≥ |ϕν(z)| −
∑
k 6=ν

|ϕk(z)| = −Gν(z) > 0,

i.e., z 6∈M.

Conversely, let Ak = |ϕk(z)| and Aq = max
0≤k≤n

Ak. Inequalities (2.13) show that

Aq ≤
∑
k 6=q

Ak. Since every term of the right sum does not exceed Aq, this sum can

be split on B1 =
∑

1Ak and B2 =
∑

2Ak so that |B1 −B2| ≤ Aq. Then, we have

B1 ≤ B2 +Aq, B2 ≤ B1 +Aq, Aq ≤ B1 +B2,

i.e., it is possible to build a triangle by the line segments having the lengths B1,
B2, and Aq. This ensures existence of the numbers ηk (k = 0, 1, . . . , n), |ηk| = 1,

so that
n∑
k=0

ηkAk = 0. But, Ak = |ϕk(z)| = δkϕk(z), where |δk| = 1. Thus,



n∑
k=0

εkϕk(z) = 0, where εk = ηkδk, |εk| = 1 (k = 0, 1, . . . , n). In this way, z ∈MG

and the proof is completed. �

The conditions of this theorem can be stated in a compact form

n∑
k=1

|ϕk(z)| ≥ 2 max
0≤k≤n

|ϕk(z)|.

Let P (z) be a polynomial, defined by

(2.14) P (z) = ε0a0 + ε1a1z + · · ·+ εnanz
n,

where

z = xeiθ (x ≥ 0, 0 ≤ θ < 2π), ak ≥ 0, |εk| = 1 (k = 0, 1, . . . , n),

and let M be the corresponding set of all the zeros of P (z) when ak are fixed and
ε0, ε1, . . . , εn vary independently, but |εk| = 1 (k = 0, 1, . . . , n).

Applying the previous theorem to (2.14) Steckhin obtained the following result:

Corollary 2.21. In order that z ∈M, the necessary and sufficient conditions are
given by

Pk(x) = a0 + · · ·+ ak−1x
k−1 − akxk + · · ·+ anx

n ≥ 0,

where k = 0, 1, . . . , n.

Let a0an 6= 0. Then

P0(x) < 0 (0 ≤ x < %0), P0(x) ≥ 0 (%0 ≤ x < +∞),

Pn(x) ≥ 0 (0 ≤ x ≤ rn), Pn(x) < 0 (rn < x < +∞),

and for k = 1, . . . , n− 1,

Pk(x) ≥ 0 (0 ≤ x ≤ rk, %k ≤ x < +∞), Pk(x) < 0 (rk < x < %k),

which yields the result of Walsh [79] and Ostrowski [51].

Select now some subset S ⊂ {0, 1, . . . , n} and denote by MS the set of zeros of
all polynomials P (z) for fixed values of ak (k = 0, 1, . . . , n) and εp (p ∈ S), when
other εk independently take values so that |εk| = 1. Steckhin [68] also proved:

Theorem 2.22. Set

Q(x, ϕ) =
∑
p∈S

εpapx
peipϕ, R(x) =

∑
k 6∈S

akx
k,

r(x) = max

{
0, 2 max

k 6∈S
akx

k −R(x)

}
.



For z ∈MS it is necessary and sufficient that inequalities

r(x) ≤ |Q(x, ϕ)| ≤ R(x)

hold.

The special case when S = {p, q} (0 ≤ p < q ≤ n) was considered by Lipka [37]
and Marden [38] (see also Marden [39, pp. 130–133]). A complete description of
the set Mpq ≡MS can be given by Theorem 2.22 (see Steckhin [68]).

Riddell [59] considered the problem of the zeros of the complex polynomial

P (z) = zn + α1z
n−1 + · · ·+ αn−1z + αn

under the assumption that some |αk| is large in comparison with the other |αi|,
and he proved that then P (z) has n − k zeros near 0 and one zero near each of
the k values of (−αk)1/k. He established certain conditions under which precise
estimates can be given. The results obtained rest on the following observation.
Let k denote an integer in the range 1 ≤ k ≤ n, chosen and fixed in the sequel.
Given a polynomial P (z) as above, suppose that P (z) = 0 and z 6= 0. It follows
that

|zk + αk| ≤
∑
i6=k

|αi||z|k−i.

Define
a = |αk|, b = |α1|+ · · ·+ |αk−1|, c = |αk+1|+ · · ·+ |αn|

and

g(r) =

{
br + crk−n (0 < r ≤ 1),

brk−1 + cr−1 (r ≥ 1),

where it is understood that b = 0 in case k = 1, and c = 0 in case k = n.

It is an immediate consequence that if P (z) = 0 and |z| > 0, then

|zk + αk| ≤ g(|z|).

In the following, we will consider two cases, where the quantities P (z), k, a, b, c,
and g(r) will continue to have the meanings given above.

Case 1. Annuli which contain no zero. Riddell [59] proved the following estimate
which asserts the existence of a zero-free annulus

m− < |z| < m+.

Estimate A. The polynomial P (z) has n − k zeros in the disk |z| ≤ m− and k
zeros in the region |z| ≥ m+, where m− < m+ ≤ a1/k (zeros are being counted
with their multiplicities).

The proof of this result depends on the following lemma:



Lemma 2.23. Estimate A holds if r = m− and r = m+ are two solutions of an
equation of the form a = h(r), where

h(r) ≥ rk + g(r).

Lemma 2.23 is essentially the result of Pellet [53, p. 393] (see also Dieudonnè [16,
p. 10]) in our context.

The first application of Riddell’s lemma is to the existence of m± to the right of
r = 1. For this, Riddell [59] proved the following result:

Theorem 2.24. Let 1 < a ≤ 1 + b+ c, and D > 0, where

D =
1

4
(a1/k + b)2 − a1/k − 1

a− 1
(ab+ c).

Then Estimate A holds with

(2.15) m± =
1

2
(a1/k − b)±D1/2.

If m− and m+ lie on opposite sides of r = 1, Riddell [59] proved:

Theorem 2.25. Let 1 + b+ c < a. Then Estimate A holds with

(2.16) m− =
( c

a− b− 1

)1/(n−k)
, m+ =

(a− c
b+ 1

)1/k
,

and also with m− given by (2.16) and m+ by (2.15).

The case b = 0 of Theorem 2.25 strengthens a result of Parodi [52, pp. 139–140].

When both m± are to the left of r = 1, Riddell [59] obtained:

Theorem 2.26. Let c < a ≤ 1 + b+ c and b+ 2d1/2 < a, where

d ≥
{
a(c/a)k/(n−k), if k < n/2,

min{1, a2−n/k}c, if k ≥ n/2.

Then Estimate A holds with

m± =

{
1

2
(a− b)±

[
1

4
(a− b)2 − d

]1/2}1/k

.

Case 2. Disks which contain a single zero. In the following we will present Riddell’s
Estimate B, which under stronger conditions implies the existence of k disks

|z − (−αk)1/k| ≤ R,

each one of which isolates a single zero of P (z).



Estimate B. The polynomial P (z) has n− k zeros in the disk |z| ≤ m− and one
zero in each of the k disjoint disks

|z − (−αk)1/k| ≤ R,

where m− +R < a1/k (a = |αk|).

For the proof of this estimate the following lemma is essential.

Lemma 2.27. Suppose that Estimate A holds with m± given as in Lemma 2.23.
Suppose that, for some upper bound M on the moduli of the zeros of P (z),

g(M) ≤ a−mk
+.

Then Estimate B holds with the given m− and with R = a1/k −m+, provided also
that, in case k ≥ 3, R < a1/k sin(π/k).

The first result derived from this lemma applies, in case k ≥ 2, only to lacunary
polynomials P (z).

Theorem 2.28. Let a > 1, b = 0, and D > 0, where

D =
1

4
a2/k − a1/k − 1

a− 1
c.

Then Estimate B holds, with

R =
1

2
a1/k −D1/2, m− =


1

2
a1/k −D1/2, if a ≤ 1 + c,(
c/(a− 1)

)1/(n−k)
, if a > 1 + c,

provided also that, in case k ≥ 3, R < a1/k sin(π/k).

The case k = 1 of the above theorem simplifies an estimate due to Parodi [52, pp.
76–77].

With some slight loss in precision for small values of k, the next theorem does not
require the restriction P (z) to be a lacunary polynomial. Riddell [59] proved the
following results:

Theorem 2.29. Let 1 + 2b < min{a1/k, a+ b− c}. Then Estimate B holds, with

m− =
( c

a− b− 1

)1/(n−k)
, R = a1/k −

(
a− ab+ c

1 + b

)1/k
,

provided also that, in case k ≥ 3, R < a1/k sin(π/k).



Theorem 2.30. Let c < an/k ≤ 1 and b + 2d1/2 < a, and suppose b2 ≤ d if
a+ b+ c > 1, where

d =

{
a(c/a)k/(n−k), if k < n/2,

c, if k ≥ n/2.

Then Estimate B holds, with

R = a1/k −
(
a− b− 2d

a− b

)1/k

, m− =

{
1

2
(a− b)−

[
1

4
(a− b)2 − d

]1/2}1/k

,

provided also that, in case k ≥ 3, R < a1/k sin(π/k).

If k = n and a + b > 1, the previous theorem does not apply, because of the fact
d = c = 0 and the additional hypothesis b2 ≤ d is not satisfied. If b < a/2, then
Estimate A is satisfied with

m+ = a− ab/(a− b) > 0.

Therefore in the case k = n, a + b > 1, we can replace the hypotheses of the
previous theorem by 2b < a ≤ 1 and preserve the result with

R = a1/n −
(
a− ab/(a− b)

)1/n
.

At the end of this section we consider numerical radii of some companion matrices
and bounds for the zeros of polynomials. Let P (z) be a monic polynomial of degree
n ≥ 3 given by

(2.17) P (z) = zn − a1zn−1 − · · · − an−1z − an (an 6= 0; ak ∈ C).

Some bounds for the zeros of P (z) can be obtained using results on the numerical
range and the numerical radius of the Frobenius companion matrix of P (z). Some
other companion matrices of P (z) can be obtained by a similarity transformation
of the Frobenius companion matrix of P (z). Recently Linden [36] (see also [35])
used some types of generalized companion matrices, which are based on special
multiplicative decompositions of the coefficients of the polynomial, in order to
obtain estimates for the zeros of P (z) mainly by the application of Gersgorin’s
theorem to the companion matrices or by computing the singular values of the
companion matrices and using majorizations relations of H. Weyl between the
eigenvalues and singular values of a matrix.

Proposition 2.31. Let P (z) is given by (2.17) and let there exist complex numbers
c1, c2, . . . , cn ∈ C, 0 6= b1, b2, . . . , bn−1 ∈ C such that

(2.18) a1 = c1, a2 = c2b1, . . . , an = cnbn−1 · · · b2b1.



If the matrix A ∈ Cn×n is given by

(2.19) A =



0 bn−1 0 . . . 0

0 0 bn−2 0

...
. . .

. . .

0 0 0 b1

cn cn−1 . . . c2 c1


,

then

P (z) = det(zIn −A),

where In is the n-by-n identity matrix.

Thus, the eigenvalues of A are equal to the zeros of P (z). A discussion of the
normality condition for A is given in [35].

Decompositions of type (2.18) of the polynomial coefficients are always possible.
The simplest one is ck = ak (k = 1, . . . , n) and b1 = · · · = bn−1 = 1, when we get
the Frobenius companion matrix.

Let x,y ∈ Cn, (x,y) = y∗x, and ‖x‖ =
√

(x,x). For a given M ∈ Cn×n, we
define the numerical range F (M) by

F (M) =
{

(Mx,y) : x ∈ Cn, ‖x‖ = 1
}

and the numerical radius r(M) by

r(M) = max
{
|z| : z ∈ F (M)

}
.

Let σ(M) denotes the spectrum of M . Since σ(M) ⊂ F (M), we see that estimates
for r(M) give estimates for the eigenvalues of M .

Theorem 2.32. Let M = [ajk] ∈ Cn×n and m ∈ {1, . . . , n}. If the matrix

Mm ∈ C(n−1)×(n−1) is obtained from M by omitting the m-th row and the m-th
column and dm ≥ r(Mm) is an arbitrary constant, then

r(M) ≤ 1

2
(|amm|+ dm)

+
1

2

(|amm| − dm)2 +


∑
k 6=m

|amk|2
1/2

+

∑
k 6=m

|akm|2
1/2


2

1/2

.

The following propositions were proved in [36].



Proposition 2.33. Let A ∈ Cn×n be given by (2.19) and

β1 = min

{
cos

π

n+ 1
max

1≤k≤n−1
|bk|,

1

2
max

1≤k≤n−2
(|bk|+ |bk+1|)

}
,

β2 = min

{
cos

π

n
max

2≤k≤n−1
|bk|,

1

2
max

2≤k≤n−2
(|bk|+ |bk+1|)

}
.

Then
r(A) ≤ min

(
U1, U2

)
,

where

U1 = β1 +
1

2

|c1|+
√√√√ n∑
k=1

|ck|2


and

U2 =
1

2
(|c1|+ β2) +

1

2

(|c1| − β2)2 +

|b1|+
√√√√ n∑
k=2

|ck|2

2


1/2

.

Proposition 2.34. Let A ∈ Cn×n be given by (2.19) and

β̃1 = min

{
cos

π

n+ 1
max

1≤k≤n−1

1

|bk|
,

1

2
max

1≤k≤n−2

(
1

|bk|
+

1

|bk+1|

)}
,

β̃2 = min

{
cos

π

n
max

1≤k≤n−2

1

|bk|
,

1

2
max

1≤k≤n−3

(
1

|bk|
+

1

|bk+1|

)}
.

Then
r(A−1) ≤ min

(
V1, V2

)
,

where

V1 = β̃1 +
1

2|cn|

∣∣∣∣ cn−1bn−1

∣∣∣∣ +

√√√√1 +

n−1∑
k=1

∣∣∣∣ ckbk
∣∣∣∣2


and

V2 =
1

2

(
|cn−1|
|cnbn−1|

+ β̃2

)

+
1

2

( |cn−1||cnbn−1|
− β̃2

)2

+

 1

|bn−1|
+

1

|cn|

√√√√1 +

n−2∑
k=1

∣∣∣∣ ckbk
∣∣∣∣2
2


1/2

.

For b1 = b2 = · · · = bn−1 = b, the constants βi and β̃i (i = 1, 2) reduce to

β1 = |b| cos
π

n+ 1
, β2 = |b| cos

π

n
, β̃1 =

1

|b|
cos

π

n+ 1
, β̃2 =

1

|b|
cos

π

n
.

From Propositions 2.33 and 2.34 Linden [36] determined annuli for the zeros of
P (z).



Theorem 2.35. Let P (z) be a monic polynomial as in Proposition 2.31 and let
Ui, Vi (i = 1, 2) be defined as in Propositions 2.33 and 2.34, respectively. Then, all
the zeros of P (z) lie in the annuli

max
(
V −11 , V −12

)
≤ |z| ≤ min

(
U1, U2

)
.

Another cases were also considered in [36]. Some other interesting papers in this
direction are [12], [17], [30]. For example, Kittaneh [30] computed the singular
values of the companion matrix of a monic polynomial, and then applying some
basic eigenvalue-singular value majorization relations, he obtained several sharp
estimates for the zeros of P (z) in terms of its coefficients. These estimates improve
some classical bounds on zeros of polynomials.

3. Zeros in a Strip and Related Inequalities

Turán [74] outlined reasons why it is important to extend some classical ques-
tions of the theory of the algebraic equations to the case of other representations,
different from the standard polynomial form

(3.1) P (z) = a0 + a1z + · · ·+ anz
n.

He considered in this respect the role of the Hermite expansion

(3.2) P (z) =

n∑
k=0

αkHk(z),

where the k-th Hermite polynomial Hk(z) of degree k. He showed that one can
obtain results for strips containing all zeros using the representation (2.2) as for
circles containing all the zeros using representation (2.1) (cf. Theorems 2.2 and
2.12). Precisely, Turán [74] proved the following analogs of Cauchy’s and Walsh’s
estimates for complex zeros.

Theorem 3.1. If the polynomial P (z) is given by (3.2) and

(3.3) max
0≤k≤n−1

|αk| = M∗,

then all the zeros of P (z) lie in the strip

(3.4) | Im z| ≤ 1

2

(
1 +

M∗

|αn|

)
.



Theorem 3.2. Let P (z) be a polynomial of degree n given by (3.2). Then all the
zeros of P (z) lie in the strip

(3.5) | Im z| ≤ 1

2

n−1∑
k=0

∣∣∣ αk
αn

∣∣∣1/(n−k) .
For the proof of the above estimates an inequality for Hermite polynomials is
needed.

Using the identity H ′k(z) = 2kHk−1(z), we can write

Hk−1(z)

Hk(z)
=

1

2k
· H
′
k(z)

Hk(z)
=

1

2k

k∑
ν=1

1

z − zνk
,

where zνk denote the zeros of Hk(z). Therefore we have

(3.6)

∣∣∣∣Hk−1(z)

Hk(z)

∣∣∣∣≤ 1

2k

k∑
ν=1

1

|z − zνk|
.

By the fact that all the zνk-zeros of Hk are real, it follows that

(3.7)
1

|z − zνk|
≤ 1

|y|
(z = x+ iy).

From (3.6) and (3.7) it follows that∣∣∣ Hk−1(z)

Hk(z)

∣∣∣≤ 1

2|y|
.

For all k ≤ n− 1 and arbitrary non-real z it follows that

(3.8)

∣∣∣∣ Hk(z)

Hn(z)

∣∣∣∣= n∏
ν=k+1

∣∣∣∣Hν−1(z)

Hν(z)

∣∣∣∣< 1

(2|y|)n−k
.

This inequality is very important for the proof of Theorems 3.1 and 3.2. Using
(3.8), Turán [74] provided the following proofs.

Proof of Theorem 3.1. We obtain

(3.9) |P (z)| =
∣∣∣∣ n∑
k=0

αkHk(z)

∣∣∣∣≥ |αn| |Hn(z)|
{

1−
n−1∑
k=0

∣∣∣ αk
αn

∣∣∣ ∣∣∣ Hk(z)

Hn(z)

∣∣∣ }.
From (3.3) and (3.8) we get for

(3.10) |y| > 1

2

(
1 +

M∗

|αn|

)



the inequality

|P (z)| ≥ |αn| |Hn(z)|
{

1− M∗

|αn|

n∑
ν=1

( 1

2|y|

)ν}
> |αn| |Hn(z)|

{
1− M∗

|αn|
· 1

2|y| − 1

}
.

Because of the fact that Hn(z) does not vanish in the domain given in (3.10), it
follows that for such z-values, P (z) 6= 0. �

To prove that the strip in Theorem 3.1 cannot be replaced by a strip of the form

(3.11) | Im z| < θ

2

(
1 +

M∗

|αn|

)
with a fixed 0 < θ < 1, we consider the polynomial

(3.12) z 7→ P1(z) = Hn(z)− iaHn−1(z),

where a denotes a sufficiently large positive number. Therefore M∗ = a. The
equation P1(z) = 0 can take the form

(3.13)
Hn−1(z)

Hn(z)
=

1

ia

From (3.12) and (3.13) we obtain

n∑
ν=1

1

z − zνn
=

2n

ia
.

Assume for example that n is even, i.e., n = 2m, then (3.13) reads as follows

z

m∑
ν=1

1

z2 − z2νn
=

2m

ia
(zνn > 0).

If z = iy where y is a real number, then

(3.14)

m∑
ν=1

1

1 + (zνn/y)2
=

2my

a
.

However m is fixed, therefore we can choose a sufficiently large, such that

m∑
ν=1

1

1 +
[
zνn/

(
1+θ
4 a

)]2 > 1 + θ

2
m



or
1 + θ

4
a >

θ

2
(1 + a).

Therefore the equation (3.14) has a real root with y > 1
4 (1 + θ)a. This implies

that the polynomial z 7→ P1(z), defined by (3.12), has a zero iy0 such that

|y0| >
1

4
(1 + θ)a >

θ

2
(1 + a) =

θ

2
(1 +M∗),

implying that inequality (3.11) is not valid.

Proof of Theorem 3.2. From (3.8) and (3.9) we have

|P (z)| ≥ |αn| |Hn(z)|
{

1−
n−1∑
k=0

∣∣∣ αk
αn

∣∣∣ ( 1

2|y|

)n−k}

> |αn| |Hn(z)|
{

1−
n−1∑
k=0

(
1

2|y|
n−k

√∣∣∣ αk
αn

∣∣∣)n−k}.
Therefore if z is not a point in the strip (3.5), then all the following inequalities
hold ∣∣∣ αk

αn

∣∣∣1/(n−k) 1

2|y|
≤ 1,

i.e.,

|P (z)| ≥ |αn| |Hn(z)|
{

1−
n−1∑
k=0

∣∣∣ αk
αn

∣∣∣1/(n−k) 1

2|y|

}
> 0. �

Let ε be a small positive number and define

P (z) = Hn(z) + εHn−1(z) + ε2Hn−2(z) + · · ·+ εnH0(z).

Then by (3.5) all the zeros lie in the strip | Im z| ≤ (n/2)ε, which shrinks to the
real axis if ε→ 0. Therefore the strip (3.5) is best possible in that sense.

Turán [75] also considered the case of even polynomials and proved the following
results:

Theorem 3.3. If P (z) =
n∑
k=0

c2kH2k(z) with arbitrary coefficients and

max
0≤k≤n−1

|c2k| = M,

then all zeros of P (z) lie in the strip

| Im z| ≤ 1

2

(
1 +

5√
2n− 1

· M
|c2n|

)
.



Theorem 3.4. If z = x+ iy and P (z) =
n∑
k=0

c2kH2k(z) with max
0≤k≤n−1

|c2k| = M ,

then all zeros of P (z) lie in the hyperbole

|xy| ≤ 5

4

(
1 +

M

|c2n|

)
.

Denoting by x1 > x2 > · · · > xn−1 the zeros of Hn−1(z) and using the well-known
Christoffel-Darboux formula, Turán [75] obtained the formula

n−2∑
ν=0

Hν(xk)2

2νν!
=

1

2n(n− 1)!
Hn(xk)2.

An application of this simple formula gives the following result:

Theorem 3.5. If the coefficients of

P (z) =

n∑
k=0

ckHk(z)

are real and

(3.15)

n−2∑
k=0

2νν!c2ν < 2n(n− 1)!c2n

is fulfilled, then all zeros of P (z) are real and simple.

The condition (3.15) is obviously fulfilled if the coefficients ck do not decrease
“too quickly”. As a counterpart of the previous theorem, Turán [75] proved that
the same conclusion holds if the coefficients decrease sufficiently quickly. More
precisely, he proved:

Theorem 3.6. If P (z) has the form

P (z) =

n∑
k=0

(−1)kc2kH2k(z)

with positive coefficients c2k and for k = 1, 2, . . . , n− 1 we have

(3.16) c22k > 4c2k−2c2k+2,

then all zeros of P (z) are real.

Changing (3.16) by

c2
c0
>

1

4
,
c4
c2
>

1

4
, . . . ,

c2k
c2k−2

>
1

4
(k ≤ n),



then P (z) has at least 2k real zeros with odd multiplicities (see Turán [75]).

In 1966 Vermes [76] considered the location of the zeros of a complex polynomial
P (z) expressed in the form

(3.17) P (z) =

n∑
k=0

akqk(z),

where {qk(z)} is a given sequence of monic polynomials (deg qk(z) = k) whose
zeros lie in a prescribed region E. His principal theorem states that the zeros of
P (z) are in the interior of a Jordan curve S = {z ∈ C : |F (z)| = max(1, R)},
where F maps the complement of E onto |z| > 1 and R is the positive root of the
equation

n−1∑
k=0

λk|ak|tk − λn|an|tn = 0,

with λk > 0 depending on E only. In a special case he obtained the following
result:

Theorem 3.7. If all the zeros of the monic polynomials qk(z) (k ∈ N) lie in
[−1, 1] and the zeros of qk(z) and qk+1(z) separate each other, then all the zeros
of (3.17) are in the ellipse

x2

(R+R−1)2
+

y2

(R−R−1)2
=

1

4
(z = x+ iy),

where R = max(2 +
√

3 , %) and % is the only positive root of the equation

|a0|+ |a1|t+ |a2|t2 + · · ·+ |an−1|tn−1 − |an|tn = 0.

In particular, if the sequence {qk(z)} in Theorem 3.7 is a sequence of monic or-
thogonal polynomials then the zeros of qk(z) and qk+1(z) separate each other and
we have that all the zeros of P (z) are in the ellipse as given in this theorem.

We mention now a problem from the graph theory. Namely, it has been conjectured
that the β-polynomials of all graphs has only real zeros. Recently, Li, Gutman
and Milovanović [34] showed that the conjecture is true for complete graphs. In
fact, they obtained a more general result for polynomials given by

(3.18) β(n,m, t, x) = Hen(x) + tHen−m(x),

where Hen is one of the forms of the Hermite polynomials [2, p. 778]. Such
(monic) Hermite polynomials are orthogonal on (−∞,+∞) with respect to the

weight function x 7→ e−x
2/2 and their connection with the “standard” Hermite

polynomials Hk(x) can be expressed by Hek(x) = 2−k/2Hk(x/
√

2). Here, 1 ≤
m ≤ n and t is a real number. Clearly, for n ≥ 3 , |t| = 2 and 3 ≤ m ≤ n, the
previous formula represents the β-polynomial of the complete graph on n vertices,
pertaining to a circuit with m vertices.



Theorem 3.8. For all (positive integer) values of n, for all m = 1, 2, . . . , n and
for |t| ≤ n− 1 the polynomial β(n,m, t, x), given by (3.18), has only real zeros.

Proof. We use here the following facts for the Hermite polynomials Hen(x):

(a) The three-term recurrence relation

Hen(x) = xHen−1(x)− (n− 1)Hen−2(x);

(b) All zeros of Hen(x) are real and distinct;

(c)
d

dx
Hen(x) = nHen−1(x).

and conclude that Hen(x) has a local extreme xi if and only if Hen−1(xi) = 0.
So, the extremes of Hen(x) are distinct.

Let x1, x2, . . . , xn−1 denote the distinct zeros of Hen−1(x). If for all i = 1, 2 . . . ,
n − 1, the sign of β(n,m, t, xi) = Hen(xi) + tHen−m(xi) is the same as that of
Hen(xi), we can prove that β(n,m, t, x) has only real zeros. Indeed, from (c) we
have that xi (i = 1, 2, . . . , n− 1) are the extremes of Hen(x). Since Hen(x) does
not have multiple zeros, we know that Hen(xi) 6= 0 for all i = 1, 2, . . . , n− 1, and
that Hen(xi) and Hen(xi+1) have different signs (i = 1, 2, . . . , n − 2). Thus, we
can deduce that β(n,m, t, x) has at least as many real zeros as Hen(x), that is at
least n real zeros. On the other hand the degree of β(n,m, t, x) is n.

Then, if |Hen(xi)| > (n− 1)|Hen−m(xi)| for all i = 1, 2, . . . , n− 1, we prove that
β(n,m, t, x) has only real zeros for |t| ≤ n− 1.

Define now the auxiliary quantities an,m as

(3.19) an,m = max
1≤i≤n−1

∣∣∣∣Hen−m(xi)

Hen(xi)

∣∣∣∣ .
Because of the previous fact, if

(3.20) an,m ≤
1

n− 1

then β(n,m, t, x) has only real zeros for |t| ≤ n−1. Therefore, in order to complete
the proof of Theorem 3.8 we only need to verify the inequality (3.20).

Using the well-known three-term recurrence relation (a) for the Hermite polyno-
mials Hen(x), (3.19) reduces to

an,m =
1

n− 1
max

1≤i≤n−1

∣∣∣∣Hen−m(xi)

Hen−2(xi)

∣∣∣∣ =
1

(n− 1)(n− 2)
max

1≤i≤n−1

∣∣∣∣xiHen−m(xi)

Hen−3(xi)

∣∣∣∣
and we conclude immediately that

an,1 = 0, an,2 =
1

n− 1
(n ≥ 2),



and

an,3 =
1

(n− 1)(n− 2)
max

1≤i≤n−1
|xi|


=

1

n− 1
(n = 3),

<
2
√
n− 3

(n− 1)(n− 2)
≤ 1

n− 1
(n ≥ 4).

The upper bound for an,3 follows from the inequality |xi| < 2
√
n− 3, which holds

for all i = 1, 2, . . . , n− 1 and n ≥ 4 (see Godsil and Gutman [25, Theorem 7]).

Note that the relation an,1 = 0 provides a proof that the polynomial β(n, 1, t, x)
has only real zeros for n ≥ 1 and any real value of the parameter t.

The case when n ≥ m ≥ 4 can be verified using the condition (3.15), rewritten in
the form

n−2∑
k=0

k! c2k < (n− 1)! c2n .

Then, according to Theorem 3.5, the polynomial P (z) =
n∑
k=0

ckHek(z) has n

distinct real zeros. Considering the β-polynomial given by (3.18), we conclude

that it has all real zeros if |t| <
√

(n− 1)!/(n−m)!. On the other hand, it is

easily verified that for n > m ≥ 4 the expression
√

(n− 1)!/(n−m)! is greater
than n− 1. Notice that a4,4 = 1/3.

By this, the proof of Theorem 3.8 has been completed. �

Taking other orthogonal polynomials instead of Hermite polynomials, Specht [64]
– [67] obtained several results which are analogous to results of Turán. For details
on orthogonal polynomials see, for example, Szegő [69].

Let dµ be a positive Borel measure on the real line, for which all the moments
µk =

∫
R t

k dµ(t), k = 0, 1, . . . , are finite. We suppose also that supp(dµ) contains
infinitely many points, i.e., that the distribution function µ:R → R is a non-
decreasing function with infinitely many points of increase. It is well known that
then there exists an infinite sequence of orthogonal polynomials with respect to
the inner product ( . , . ) defined by

(f, g) =

∫
R
f(t)g(t) dµ(t).

The corresponding orthonormal and monic orthogonal polynomials will be denoted
by pn(t) and πn(t), respectively. Thus, we have

pn(t) = γnt
n + δnt

n−1 + lower degree terms, γn > 0,

(pn, pm) = δnm, n,m ≥ 0,

and

πn(t) =
pn(t)

γn
= tn + lower degree terms.



If µ is an absolutely continuous function, then we say that µ′(t) = w(t) is a weight
function. In that case, the measure dµ can be express as dµ(t) = w(t) dt, where
the weight function t 7→ w(t) is a non-negative and measurable in Lebesgue’s
sense for which all moments exists and µ0 > 0. If supp(w) = [a, b], where
−∞ < a < b < +∞, we say that {pn} is a system of orthonormal polynomials in
a finite interval [a, b]. For (a, b) we say that it is an interval of orthogonality .

The system of orthonormal polynomials {pn(t)}, associated with the measure
dµ(t), satisfy a three-term recurrence relation

tpn(t) = un+1pn+1(t) + vnpn(t) + unpn−1(t) (n ≥ 0),

where p−1(t) = 0 and the coefficients un = un(dµ) and vn = vn(dµ) are given by

un =

∫
R
tpn−1(t)pn(t) dµ(t) =

γn−1
γn

and vn =

∫
R
tpn(t)2 dµ(t).

Since p0(t) = γ0 = 1/
√
µ0 and γn−1 = unγn we have that γn = γ0/(u1u2 · · ·un).

Notice that un > 0 for each n.

The corresponding monic orthogonal polynomials {πn(t)} satisfy the following
three-term recurrence relation

(3.21) πn+1(t) = (t− αn)πn(t)− βnπn−1(t), n = 0, 1, 2, . . . ,

where αn = vn and βn = u2n > 0.

Because of orthogonality, we have that

αn =
(tπn, πn)

(πn, πn)
(n ≥ 0), βn =

(πn, πn)

(πn−1, πn−1)
(n ≥ 1).

The coefficient β0, which multiplies π−1(t) = 0 in three-term recurrence relation
(3.21) may be arbitrary. Sometimes, it is convenient to define it by β0 = µ0 =∫
R dµ(t). Then the norm of πk can be express in the form ‖πk‖ =

√
hk, where

(3.22) hk = (πk, πk) = β0β1 · · ·βk .

Consider now an arbitrary polynomial P (z) of degree n, given by

(3.23) P (z) = A0 +A1z + · · ·+Anz
n.

Then, it can be expanded, for example, in terms of the orthonormal polynomials
pk(z) (k = 0, 1, . . . , n) in the form

(3.24) P (z) = c0p0(z) + c1p1(z) + · · ·+ cnpn(z).

Specht [64] proved the following result:



Theorem 3.9. All the zeros of a complex polynomial P (z) expanded in the form
(3.24) lie in the strip

| Im z| ≤ γn−1
γn

( n−1∑
k=0

∣∣∣ ck
cn

∣∣∣2)1/2

,

where γk is the leading coefficient in the orthonormal polynomial pk(z).

In the case of the Legendre polynomials Pk(x), i.e., when

P (z) = c0P0(z) + c1P1(z) + · · ·+ cnPn(z),

Specht obtained the following estimate

| Im z| ≤ n√
2n− 1

1

|cn|

( n−1∑
k=0

|ck|2

2k − 1

)1/2

.

Giroux [24] proved a sharper result than Theorem 3.9.

Theorem 3.10. Let z1, . . . , zn be the zeros of the polynomial P (z) given by (3.24).
Then

(3.25)

n∑
k=1

| Im zk| ≤
γn−1
γn

( n−1∑
k=0

∣∣∣ ck
cn

∣∣∣2)1/2

,

with equality if and only if

c0 = · · · = cn−2 = 0 and Re(cn−1/cn) = 0.

Proof. Following Giroux [24] we start with the identity

n∑
k=0

|ck|2 =

∫
R
|P (t)|2 dµ(t) = ‖P‖2.

In particular, we have |cn−1|2 + |cn|2 ≤ ‖P‖2. Since

P (z) = cnγn

n∏
k=0

(z − zk) = cnγn

(
zn −

( n∑
k=1

zk

)
zn−1 + · · ·

)

and

P (z) =

n∑
k=0

ckpk(z) = cnγnz
n + (cnδn + cn−1γn−1)zn−1 + · · · ,



we have

cnδn + cn−1γn−1 = −cnγn
n∑
k=1

zk.

It is sufficient to prove the theorem when cn = 1. In that case, since δn is real, we

have Im cn−1 = −(γn/γn−1)
n∑
k=1

Im zk. Hence

γn
γn−1

∣∣∣∣ n∑
k=1

Im zk

∣∣∣∣= | Im cn−1| ≤ |cn−1| ≤
(
‖P‖2 − 1

)1/2
,

so that

1 +
( γn
γn−1

)2 ∣∣∣∣ n∑
k=1

Im zk

∣∣∣∣2≤ ‖P‖2.
Applying this result to the polynomial

Q(z) = P (z)
∏
ν

(z − z̄ν)/(z − zν),

where the zeros zν appearing in the product are precisely those for which Im zν < 0,
we get

1 +
( γn
γn−1

)2( n∑
k=1

| Im zk|
)2

≤ ‖Q‖2 = ‖P‖2.

This is the statement of the theorem (when cn = 1). Equality in (3.25) is attained
if only if c0 = · · · = cn−2 = 0, cn−1/cn is purely imaginary and the zeros zk
(k = 1, . . . , n) are either all above or all below the real axis. �

Remark. For every real number c, the zeros of pn(z) + icpn−1(z) are either all
above or all below the real axis.

Using an inequality of de Bruijn [6] (see also [45, p. 114]), Giroux [24] also proved:

Corollary 3.11. Let P (z) be a polynomial of degree n > 1 given by (3.24) and
let w1, . . . , wn−1 be the zeros of P ′(z). Then we have

n−1∑
k=1

| Imwk| ≤
n− 1

n

γn−1
γn

(n−1∑
k=0

∣∣∣ ck
cn

∣∣∣2)1/2

,

with equality if and only if P (z) is a multiple of the polynomial pn(z) + icpn−1(z)
with c real.

Another consequence of Theorem 3.10 is the following result:

Corollary 3.12. There is at least one zero of the polynomial (3.24) in the strip

| Im z| ≤ 1

n

γn−1
γn

(n−1∑
k=0

∣∣∣ ck
cn

∣∣∣2)1/2

.

Giroux [24] also proved:



Theorem 3.13. Let

f(x) = (x− x1)(x− x2) · · · (x− xn),

g(x) = (x− y1)(x− y2) · · · (x− yn−1),

with x1 < y1 < x2 < · · · < yn−1 < xn. Then, for any real number c, the
zeros of the polynomial h(x) = f(x) + icg(x) are all in the half strip Im z ≥ 0,
x1 ≤ Re z ≤ xn, or all are in the conjugate half strip.

Using the system of monic orthogonal polynomials {πk(z)}+∞k=0, defined by the
three-term recurrence relation (3.21), Gol’berg and Malozemov [26] considered
estimates for zeros of polynomials of the type

(3.26) Q(z) = πn(z) + b1πn−1(z) + · · ·+ bnπ0(z).

Setting βk = u2k > 0, c1 = b1 = α+ iβ,

c2 =
b2
un−1

, c3 =
b3

un−1un−2
, . . . , cn =

bn
un−1un−2 · · ·u1

and C =
n∑
k=2

|ck|2, Gol’berg and Malozemov [26] proved:

Theorem 3.14. Let x1 and xn be the minimal and the maximal zero of the poly-
nomial πn(z), respectively, and let ξ be an arbitrary zero of the polynomial Q(z),
defined by (3.26). Then

x1 −
1

2

(
α+

√
α2 + C

)
≤ Re ξ ≤ xn −

1

2

(
α−

√
α2 + C

)
and

−1

2

(
β +

√
β2 + C

)
≤ Im ξ ≤ −1

2

(
β −

√
β2 + C

)
.

Suppose now that an arbitrary polynomial P (z) of degree n is given by (3.23). Let

(3.27) P (z) = a0π0(z) + a1π1(z) + · · ·+ anπn(z) (an 6= 0)

be its representation in terms of monic orthogonal polynomials {πk(z)}. Compar-
ing (2.24) and (3.27) we see that ckγk = ak (k = 0, 1, . . . , n), so that the Specht’s
estimate given in Theorem 3.9 can be expressed in the form

(3.28) | Im z| ≤
( n−1∑
k=0

hk
hn−1

∣∣∣ ak
an

∣∣∣2)1/2

,

where hk is given by (3.22).



An interesting property of (3.28) is that its right hand side may be expressed in
terms of a norm (see Schmeisser [62]). Namely, since for the L2-norm of P (z) we
have

‖P‖2 =

∫
R
|P (t)|2 dµ(t) =

n∑
k=0

|ak|2‖πk‖2 =

n∑
k=0

hk|ak|2,

the inequality (3.28) can be rewritten as

(3.29) | Im z| ≤ 1

|an|
√
hn−1

‖P − anπn‖ =
1√
hn−1

∥∥∥ P

an
− πn

∥∥∥.
This may be interpreted as a perturbation theorem. Namely, since πn(z) has all its
zeros on the real line, (3.29) tells us that, apart from a constant, the deviation of
P (z)/an from πn(z), measured by the norm, is an upper bound for the distances of
the zeros of P (z) from the real line. Several refinements of (3.28) or its equivalent
form (3.29) were derived in [62]. We mention some of them.

Theorem 3.15. Denote by ξ1, . . . , ξn the zeros of πn(z). Then every polynomial
P (z) of the form (3.27) has all its zeros in the union U of the disks

Dk = {z ∈ C |z − ξk| ≤ r} (k = 1, . . . , n) ,

where

r =

√√√√n−1∑
k=0

hk
hn−1

∣∣∣ ak
an

∣∣∣2 .
Moreover, if m of these disks constitute a connected component of U , then their
union contains exactly m zeros of P (z).

Theorem 3.16. Let zν (ν = 1, . . . , n) be an arbitrary zero of the polynomial
(3.27). Then

∣∣∣ Im
(
zν +

1

2

an−1
an

) ∣∣∣≤ 1

2

√√√√(Im
an−1
an

)2

+

n−2∑
k=0

hk
hn−1

∣∣∣ ak
an

∣∣∣2 .
Theorem 3.17. Let z1, . . . , zn be the zeros of the polynomial (3.27). Then

n∑
ν=1

(Im zν)2 ≤
(

Im
an−1
an

)2

+
1

2hn−1

n−2∑
k=0

hk

∣∣∣ ak
an

∣∣∣2 .
Theorem 3.17 improves upon (3.28) but it does not imply Theorem 3.16. As a
consequence, Schmeisser [62] obtained the following individual bounds.



Corollary 3.18. Let z1, . . . , zn be the zeros of the polynomial (3.27) ordered as

|Im z1| ≤ |Im z2| ≤ · · · ≤ |Im zn| .

Then

|Im zν | ≤

√√√√ 1

n− ν + 1

((
Im

an−1
an

)2

+
1

2hn−1

n−2∑
k=0

hk

∣∣∣∣akan
∣∣∣∣2
)

for ν = 1, 2, . . . , n.

Notice that the estimate for zn is not as good as that of Theorem 3.16.

In the case of real polynomials Schmeisser [62] proved the following result:

Theorem 3.19. Let the polynomial (3.27) have real coefficients. Then each zero
zν (ν = 1, . . . , n) of P (z) satisfies the inequality

|Im zν | ≤

√√√√(n−2∑
k=0

hk
hn−2

∣∣∣∣akan
∣∣∣∣2
)1/2

− hn−1
hn−2

∆n−1

provided that the radicand is non-negative, else P (z) has n distinct real zeros which
separate those of πn−1. Here, ∆m is defined by

∆m = min
1≤ν≤m

√
πm−1(ξν)

π′m(ξν)
,

where ξ1, . . . , ξm are zeros of πm(z).

Schmeisser [62] considered also some estimates involving the distance function

dn(z) = min
ξ⊂Jn

|z − ξ| (z ∈ C),

where Jn is the smallest compact interval that contains the zeros of the monic
orthogonal polynomial πn(z). It is easy to see that

d1(z) ≥ d2(z) ≥ · · · ≥ dn(z) ≥ · · · ≥ | Im z|,

which means that any upper bound for dn(z) is also an upper bound for | Im z|.
Let P (z) be given by (3.23) or by its equivalent form (3.27). Taking the Cauchy
bound of P (z) as the unique positive zero of the associated polynomial (see The-
orem 2.1)

f(z) =

n−1∑
k=0

|Ak|zk − |An|zn,

Schmeisser [62] gave a short proof of the following result:



Theorem 3.20. Let P (z) be a polynomial given in the form (3.27). Then each
zero zν (ν = 1, . . . , n) of P (z) satisfies the inequality dn(zν) ≤ r, where r = r[P ]
is the Cauchy bound of P (z).

Using this fact and upper bounds for r[P ], he obtained several estimates for dn(zν):

dn(zν) ≤ 1 + max
0≤k≤n−1

∣∣∣∣akan
∣∣∣∣ ,

dn(zν) ≤ max

{
1,

n−1∑
k=0

∣∣∣∣akan
∣∣∣∣
}
,

dn(zν) ≤

(
n∑
k=0

∣∣∣∣akan
∣∣∣∣2
)1/2

,

dn(zν) ≤ 2 max
0≤k≤n−1

∣∣∣∣akan
∣∣∣∣1/(n−k) ,

dn(zν) ≤
∣∣∣∣ a0an

∣∣∣∣1/n +

∣∣∣∣ a1an
∣∣∣∣1/(n−1) + · · ·+

∣∣∣∣an−1an

∣∣∣∣ ,
dn(zν) ≤ max

0≤k≤n−1

(
n

∣∣∣∣akan
∣∣∣∣)1/(n−k)

.

Notice that in these estimates the parameters which determine the system of or-
thogonal polynomials, do not appear explicitly. The reason is that Theorem 3.20
holds for a much wider class of expansions.

Now we mention a few results which also were given in [62].

Theorem 3.21. Let z1, . . . , zn be the zeros of the polynomial (3.27) in an arbi-
trary order. Then

(3.30)

n∑
ν=1

hν−1dn(zν)2 · · · dn(zn)2 ≤
n−1∑
k=0

hk

∣∣∣∣akan
∣∣∣∣2 .

In this theorem, we can order the zeros as

(3.31) dn(z1) ≤ dn(z2) ≤ · · · ≤ dn(zn) .

The left hand side of (3.30) is a sum of non-negative terms and hn−1dn(zn)2 is one
of them. Hence dividing both sides by hn−1, we see that (3.30) is a refinement of



(3.28). Furthermore, if (3.31) holds, then we may estimate the left hand side of
(3.30) from below by

n∑
ν=k

hν−1dn(zν)2 · · · dn(zn)2≥
n∑
ν=k

hν−1dn(zk)2(n−ν+1) ≥ hk−1dn(zk)2(n−k+1),

where 1 ≤ k ≤ n. This allows the following individual bounds for the zeros of
P (z).

Corollary 3.22. Let z1, . . . , zn be the zeros of the polynomial (3.27) ordered as
in (3.31). Then

dn(zν) ≤

(
n−1∑
k=0

hk
hν−1

∣∣∣∣akan
∣∣∣∣2
)1/(2n−2ν+2)

(ν = 1, 2, . . . , n) .

Gautschi and Milovanović [21] considered special linear combinations of the form

(3.32) pn(z) = πn(z)− iθn−1πn−1(z),

where {πk(z)}+∞k=0 is a system of monic polynomials orthogonal with respect to
an even weight function x 7→ w(x) on (−a, a), 0 < a < +∞, and θn−1 is a real
constant. Then these monic polynomials satisfy a three-term recurrence relation of
the form (3.21) with αk = 0 and βk > 0. Since πk(−z) = (−1)kπk(z), k = 0, 1, . . . ,
the polynomial pn(z), defined by (3.32), can be expanded in the form

pn(z) = zn − iθn−1zn−1 + · · · ,

so that
n∑
k=1

zk = iθn−1, hence

(3.33)

n∑
k=1

Im zk = θn−1,

where z1, z2, . . . , zn are the zeros of the polynomial pn(z).

By Theorem 3.13 and (3.33) all zeros of the polynomial pn(z) lie in the half strip

(3.34) Im z > 0, −a < Re z < a if θn−1 > 0,

or

(3.35) Im z < 0, −a < Re z < a if θn−1 < 0,

strict inequality holding in the imaginary part, since pn(z) for θn−1 6= 0 cannot
have real zeros. Of course, if θn−1 = 0, all zeros lie in (−a, a).

Let Da be the disk Da = {z ∈ C : |z| < a} and ∂Da its boundary. Gautschi and
Milovanović [21] first proved the following auxiliary result:



Lemma 3.23. For each z ∈ ∂Da one has

(3.36)
∣∣∣ πk(z)

πk−1(z)

∣∣∣≥ πk(a)

πk−1(a)
(k = 1, 2, . . . ).

Their main result can be stated in the form:

Theorem 3.24. If the constant θn−1 satisfies

0 < θn−1 < πn(a)/πn−1(a),

then all zeros of the polynomial pn(z) lie in the upper half disk

|z| < a ∧ Im z > 0.

If −πn(a)/πn−1(a) < θn−1 < 0, then all zeros of the polynomial pn(z) are in the
lower half disk

|z| < a ∧ Im z < 0.

Proof. By (3.36) we have∣∣∣ πn(z)

πn−1(z)

∣∣∣≥ πn(a)

πn−1(a)
(z ∈ ∂Da),

hence, if πn(a)/πn−1(a) > |θn−1|,

|πn(z)| > |θn−1πn−1(z)| (z ∈ ∂Da).

Applying Rouché’s theorem to pn(z), we conclude that all zeros of pn(z) lie in the
open disk Da. Combining this with (3.34) or (3.35), we obtain the assertions of
the theorem. �

Remark. A class of orthogonal polynomials on the semicircle

Γ = {z ∈ C : z = eiθ, 0 ≤ θ ≤ π}

with respect to the complex-valued inner product

(f, g) =

∫
Γ

(iz)−1f(z)g(z) dz =

∫ π

0

f(eiθ)g(eiθ) dθ

was introduced and studied by Gautschi and Milovanović [22]–[23]. Such polyno-
mials can be expressed in the form (3.32), where πk(z) should be replaced by the

monic Legendre polynomial P̂k(z). Generalizing previous work, Gautschi, Lan-
dau, and Milovanović [20] studied a more general case of complex polynomials
orthogonal with respect to the complex-valued inner product

(f, g) =

∫ π

0

f(eiθ)g(eiθ)w(eiθ) dθ,



under suitable assumptions on the complex “weight function” w(z). Some further
results in this direction and applications of such polynomials were obtained by
Gautschi [19], Milovanović [41]–[42], [44], de Bruin [7], Milovanović and Rajković
[46]–[47], and Calio’, Frontini, and Milovanović [9].
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[11] A. L. Cauchy, Exercises de mathématique, In: Œuvres (2) Vol. 9 (1829), p. 122.

[12] M.-T. Chien, On the numerical range of tridiagonal operators, Linear Algebra Appl. 246
(1996), 203–214.
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bian).
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[48] D. S. Mitrinović, Analytic Inequalities, Springer, Berlin–Heidelberg–New York, 1970.

[49] P. Montel, Sur la limite supérieure des modules des zéros des polynômes, C.R. Acad. Sci.
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