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tures; Fredholm integral equation of the second kind.

1. Introduction

This is a survey on some results on quadrature processes and their appli-
cations, which I have obtained together with my collaborators or alone in the
last period and it represents an extended version of my public lecture given
recently in the Serbian Academy of Sciences and Arts (May 20, 2013). An
account of the classical Newton–Cotes rules, Gauss–Christoffel quadratures
and quadratures with multiple nodes (cf. [40, 27, 44, 77], [61] –[65]), as well
as several their generalizations and extensions (cf. [43, 53]), was given in
my previous lecture [45] (delivered at the 7th Meeting of the Department of
Mathematics, Physics and Geo Sciences in the Serbian Academy of Sciences
and Arts, October 26, 2007), so that this survey is its continuation.

The paper is organized as follows. In Section 2 we give a connection
between Gaussian type of quadratures and orthogonal polynomials and de-
scribe a role of the fundamental three–term recurence relation for orthog-
onal polynomials, as well as the basic concept on the constructive theory
of orthogonal polynomials on R. Section 3 is devoted to Gauss–Christoffel
quadrature formulae for non–classical weight functions on the real semi-
axis. Using recent progress in symbolic computation and variable–precision
arithmetic we show how to generate coefficients in the three–term recur-
rence relation directly by using the original Chebyshev method of moments
in sufficiently high precision or even in symbolic form. Five interesting
types of weight functions on R+ are investigated. Two methods for sum-
mation of slowly convergent series are presented in Section 4. Generalized
Birkhoff–Young interpolatory quadrature formulae for weighted integrals of
analytic functions in the complex plane are studied in Section 5. Their node
polynomials can be interpreted in terms of the type II multiple orthogonal
polynomials. Two kinds of nonstandard quadratures – interval quadratures
of Gaussian type and Gaussian quadratures based on operator values – are
considered in Section 6. Finally, Section 7 is devoted to Fredholm integral
equations of the second kind. Beside an important one–dimensional case of
the integral equation on the finite interval D = A = [−1, 1], with respect
to the Jacobi weight, we consider also a two–dimensional case on a triangle
D = T, which can be reduced to the square D = Q = A2. The proposed
methods are very efficient and they are based on the recent progress in
polynomial interpolation (cf. [35]).
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2. Gauss–Christoffel quadratures and orthogonal polynomials

In 1814 C.F. Gauss [14] developed his famous method of numerical in-
tegration which dramatically improves the earlier method of Newton and
Cotes. This discovery was the most significant event of the 19th century
in the field of numerical integration and perhaps in all of numerical anal-
ysis. An elegant alternative derivation of these formulas was provided by
Jacobi, and a significant generalization to arbitrary measures was given by
Christoffel, and therefore, today these formulae with maximal degree of pre-
cision are known as the Gauss–Christoffel quadrature formulae. Their error
term and convergence were proved by Markov and Stieltjes, respectively. It
was only in 1928 Uspensky gave the first proof for the convergence of Gaus-
sian formula on unbounded intervals with the classical measures of Laguerre
and Hermite. A nice survey of Gauss–Christoffel quadrature formulae was
written by Gautschi [15].

In modern terminology, the formulation of this classical theory can be
given as follows.

Let P be the space of real polynomials and Pn ⊂ P the space of poly-
nomials of degree at most n. Suppose dµ(t) is a positive measure on R with
finite or unbounded support, for which all moments µk =

∫
R t

kdµ(t) exist
and are finite, and µ0 > 0. Then, for each n ∈ N, there exists the n–point
Gauss–Christoffel quadrature formula∫

R
f(t)dµ(t) =

n∑
k=1

Akf(τk) +Rn(f), (2.1)

which is exact for all algebraic polynomials of degree at most 2n − 1, i.e.,
Rn(f) = 0 for each f ∈ P2n−1.

The Gauss–Christoffel quadrature formula (2.1) can be characterized as
an interpolatory formula for which its node polynomial πn(t) =

∏n
k=1(t− τk)

is orthogonal to Pn−1 with respect to the inner product defined by

(p, q) =

∫
R
p(t)q(t)dµ(t) (p, q ∈ P). (2.2)

Therefore, orthogonal polynomials play an important role and they are
today the basic tool in this theory. The inner product (2.2) gives rise to
a unique system of monic orthogonal polynomials πk( · ) = πk( · ; dµ), such
that

πk(t) ≡ πk(dµ; t) = tk + terms of lower degree, k = 0, 1, . . . ,
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and

(πk, πn) = ||πn||2δkn =

{
0, n ̸= k,

||πn||2, n = k.

2.1. Fundamental three–term recurrence relation. Because of the prop-
erty (tp, q) = (p, tq), these orthogonal polynomials satisfy the three–term
recurrence relation

πk+1(t) = (t− αk)πk(t)− βkπk−1(t), k = 0, 1, 2 . . . , (2.3)

with π0(t) = 1 and π−1(t) = 0, where (αk) = (αk(dµ)) and (βk) = (βk(dµ))
are sequences of recursion coefficients which depend on the measure dµ. The
coefficient β0 may be arbitrary, but is conveniently defined by β0 = µ0 =∫
R dµ(t).

There are many reasons way the coefficients αk and βk in the three–
term recurrence relation (2.3) are fundamental quantities in the constructive
theory of orthogonal polynomials (for details see [17]).

First, αk and βk provide a compact way of representing and easily calcu-
lating orthogonal polynomials, their derivatives, and their linear combina-
tions, requiring only a linear array of parameters. Also, the same recursion
coefficients αk and βk appear in the Jacobi continued fraction associated
with the measure dµ,

F (z) =

∫
R

dµ(t)

z − t
∼

β0
z − α0−

β1
z − α1−

· · · ,

which is known as the Stieltjes transform of the measure dµ (for details see
[22, p. 15], [35, p. 114]). For the n-th convergent of this continued fraction,
it is easy to see that

β0
z − α0−

β1
z − α1−

· · · βn−1

z − αn−1
=
σn(z)

πn(z)
, (2.4)

where σn are the so–called associated polynomials, defined by

σk(z) =

∫
R

πk(z)− πk(t)

z − t
dµ(t), k ≥ 0,

as well as that these polynomials satisfy the same fundamental relation (2.3),
i.e.,

σk+1(z) = (z − αk)σk(z)− βkσk−1(z), k ≥ 0,

with starting values σ0(z) = 0, σ−1(z) = −1.
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The function of the second kind,

ϱk(z) =

∫
R

πk(t)

z − t
dµ(t), k ≥ 0,

where z is outside the spectrum of dµ, also satisfy the same three–term
recurrence relation (2.3) and represent its minimal solution, normalized by
ϱ−1(z) = 1, as observed by Gautschi in [16].

Notice that the rational function (2.4) has simple poles at the zeros
z = xn,k, k = 1, . . . , n, of the polynomial πn(t). By λn,k we denote the
corresponding residues, i.e.,

λn,k = lim
z→xn,k

(z − xn,k)
σn(z)

πn(z)
=

1

π′n(xn,k)

∫
R

πn(t)

t− xn,k
dµ(t),

so that the continued fraction representation (2.4) gets the following form

σn(x)

πn(x)
=

n∑
k=1

λn,k
x− xn,k

.

The coefficients λn,k are exactly the weight coefficients (Christoffel num-
bers) in the Gauss–Christoffel quadrature formula (2.1) and they can be
expressed by the so–called Christoffel function λn(dµ; t) (cf. [35, Chapters
2 & 5]) in the form

Ak = λn(dµ; τk), k = 1, . . . , n,

and zeros of the polynomial πn(t) are the nodes of (2.1), i.e., τk = xn,k,
k = 1, . . . , n.

Using procedures of numerical linear algebra, notably the QR or QL
algorithm, it is easy to compute the zeros of the orthogonal polynomials
πn(t) rapidly and efficiently as eigenvalues of the Jacobi matrix of order n
associated with the measure dµ,

Jn(dµ) =



α0
√
β1 O

√
β1 α1

√
β2

√
β2 α2

. . .
. . .

. . .
√
βn−1

O
√
βn−1 αn−1


.
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The first components of the corresponding normalized eigenvectors vk =
[vk,1 . . . vk,n]

T (vT
k vk = 1) give also immediately the Christoffel numbers

Ak = λn,k = β0v
2
k,1, k = 1, . . . , n, where β0 = µ0 =

∫
R dµ(t) (cf. Golub and

Welsch [29]).

Unfortunately, the recursion coefficients are known explicitly only for
some narrow classes of orthogonal polynomials. One of the most impor-
tant classes for which these coefficients are known explicitly are surely the
so–called very classical orthogonal polynomials (Jacobi, the generalized La-
guerre, and Hermite polynomials), which appear frequently in applied anal-
ysis and computational sciences. Orthogonal polynomials for which the
recursion coefficients are not known we call strongly non–classical polyno-
mials. For these, if we know how to compute the first n recursion coeffi-
cients αk and βk, k = 0, 1, . . . , n − 1, then we can compute all orthogonal
polynomials of degree at most n by a straightforward application of the
three–term recurrence relation (2.3), construct the corresponding Gauss–
Christoffel quadratures for any number of nodes less than or equal to n, etc.

2.2. Constructive theory of orthogonal polynomials on R. In [17] Walter
Gautschi starts with an arbitrary positive measure dµ(t), which is given
explicitly or implicitly via moment information, and considers the actual
(numerical) construction of orthogonal polynomials as a basic computa-
tional problem: For a given measure dµ and for given n ∈ N, generate
the first coefficients αk(dµ) and βk(dµ), k = 0, 1, . . . , n − 1. In about two
dozen papers, he developed the so–called constructive theory of orthogonal
polynomials on R, including effective algorithms for numerically generating
orthogonal polynomials, a detailed stability analysis of such algorithms, the
corresponding software implementation, etc. (cf. [19], [48], [49]). Our col-
laboration started in that time (precisely in 1983) and the story about it
has recently been told by Walter Gautschi [25] on the occasion of my 60th
anniversary. I was then in my thirties, so his influence to my scientific work
and my further development was of crucial importance; for this I am very
grateful to Walter Gautschi!

In the numerical construction of recursion coefficients an important as-
pect is the sensitivity of the problem with respect to small perturbation in
the data (e.g., perturbations in the first 2n moments µk, k = 0, 1, . . . , 2n−1,
when we calculate the coefficients for k ≤ n−1). There is a simple algorithm,
due to Chebyshev, which transforms the moments to desired recursion co-
efficients, [µk]

2n−1
k=0 7→ [αk, βk]

n−1
k=0 , but its viability is strictly dependent on
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the conditioning of this mapping. Usually it is severely ill conditioned so
that these calculatios via moments, in finite precision on a computer, are
quite ineffective, especially for measures on unbounded supports. The only
salvation, in this case, is to either use symbolic computation, which however
requires special resources and often is not possible, or else to use the ex-
plicit form of the measure. In the latter case, an appropriate discretization
of the measure and subsequent approximation of the recursion coefficients
is a viable alternative.

There are three basic procedures for generating these recursion coeffi-
cients: (1) the method of (modified) moments, (2) the discretized Stieltjes–
Gautschi procedure, and (3) the Lanczos algorithm, and they play the central
role in the constructive theory of orthogonal polynomials. The basic refer-
ences are [17], [20], [22], and [35].

Remark 2.1 In this paper we restrict our attention only to the case of
orthogonal algebraic polynomials and quadrature rules with maximal alge-
braic degree of exactness. Also, one can consider orthogonality and Gaussian
type quadrature in some other functional spaces. For example, for quadra-
ture rules with maximal trigonometric degree of exactness and orthogonal
systems of trigonometric polynomials (of integer or semi–integer degree of
exactness) readers are referred to [69] –[75].

3. Gauss–Christoffel quadratures for non–classical weights on R+

3.1. Gaussian quadraures on the real semiaxis. In this section we consider
Gauss–Christoffel quadratures (2.1) on real semiaxis (0,+∞) for absolutely
continuous measures, which can be expressed as dµ(t) = w(t)dt, where the
weight function t 7→ w(t) is non–negative and measurable in Lebesgue’s
sense for which all moments exists and µ0 > 0. Numerical construction of
(Gaussian) quadrature parameters (the nodes τk and Christoffel numbers
Ak, k = 1, . . . , n) in

∫ +∞

0
f(t)w(t)dt =

n∑
k=1

Akf(τk) +Rn(f),

requires knowledge of the first n recursive coefficients αk and βk, k =
0, 1, . . . , n− 1.
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Recent progress in symbolic computation and variable–precision arith-
metic now makes it possible to generate the coefficients αk and βk in the
three–term recurrence relation (2.3) directly by using the original Cheby-
shev method of moments in sufficiently high precision or even in sym-
bolic form. Respectively symbolic/variable–precision software for orthogo-
nal polynomials is available: Gautschi’s package SOPQ in Matlab (cf. [49])
and our Mathematica package OrthogonalPolynomials [8], [58]. Thus,
all that is required is a procedure for symbolic or numerical calculation
of the moments in variable–precision arithmetic. Such an approach en-
ables us to overcome the numerical instability. The Gaussian parameters
can be obtained very easy by the stable Golub–Welsch procedure [29], real-
ized in theMathematica Package OrthogonalPolynomials as the function
aGaussianNodesWeights, which has different calling formats (see [8], [58]).

In the next subsection we consider a few very important cases of the
weights on the real semiaxis R+. Gaussian quadratures with respect to such
weights can be used in diverse areas of applied and numerical analysis, as well
as in many other areas of applied and computational sciences. For example,
they can be applied for computing special functions (Airy functions, modi-
fied Bessel functions of imaginary order, parabolic cilinder functions, etc.),
by selecting their suitable integral representations (cf. [21], [28]), summa-
tion of slowly convergent series (see [26], [41], [42], [47]), integral equations,
probability, approximation theory, etc.

3.2. Variable–precision recurrence coefficients. In this subsection we give
five cases of interesting non–classical weights on (0,+∞) for which we can
calculate the moments in symbolic form and then obtain the recurrence
coefficients with an arbitrary precision.

1◦ One side exponential weight w(t) = tγ exp(−tβ) or the half–range
Freud weight function, with γ > −1 and β > 0. The moments are given by

µk =

∫ +∞

0
tkw(t)dt =

1

β
Γ

(
k + γ + 1

β

)
, k ∈ N0.

For β = 1 it reduces to the classical generalized Laguerre case, and for γ = 0
and β = 2 to the case with the half–range Hermite weight function.

Gamma function can be evaluated to arbitrary numerical precision in
Mathematica (see [85]). To obtain the three–term recursion coefficients
using our package OrthogonalPolynomials, for example for γ = 1/2 and
β = 4 and n ≤ 40 with WorkingPrecision->80, one only needs to execute
the following commands:
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<< orthogonalPolynomials‘

gamma=1/2; beta=4; mom = Table[Gamma[(k+gamma+1)/beta],{k,0,80}];

{al,be}=aChebyshevAlgorithm[mom, WorkingPrecision -> 80];

Taking the WorkingPrecision sufficiently large, for example to be 120,
we get that the maximal relative error in the previous obtained recursion
coefficients is 4.85×10−39 and conclude that at least 38 decimal digits in the
{al,be} are exact. It means that we can compute the parameters (nodes
and weights) in all n–point Gaussian formulae for n ≤ 40 with the same
precision, because the Golub–Welsch algorithm is well–conditioned.

Recently, quadratures with these exponential weights have been used
in [30].

2◦ Bose–Einstein’s weight w(t) = ε(t) = t/(et − 1) on (0,+∞). The
moments are

µk(ε) =

∫ +∞

0
tkw(t)dt = (k + 1)!ζ(k + 2), k ∈ N0,

where the zeta function can be evaluated to arbitrary numerical precision.
Furthermore, for certain special arguments, Zeta (in Mathematica) auto-
matically evaluates to exact values. Thus, as in the previous case, a direct
application of the Chebyshev method of moments gives recursion coefficients,
as well as the parameters of quadratures.

A general problem with the weight function w(t) = [ε(t)]r, where r ∈
N, can be also consider in a similar way. In that case, the corresponding

moments µ
(r)
k (ε), r > 1, can be obtained recursively by

µ
(r)
k (ε) =

k + r

r − 1
µ
(r−1)
k (ε)− µ

(r−1)
k+1 (ε).

For example, µ
(2)
k (ε) = (k + 2)![ζ(k + 2)− ζ(k + 3)], k ∈ N0 (cf. [26], [23]).

Integrals with this weight frequently appear in solid state physics, e.g.,
the total energy of thermal vibration of a crystal lattice can be expressed
in the form

∫+∞
0 f(t)ε(t) dt, where f(t) is related to the phonon density of

states. Also, integrals of this type can be used for summation of slowly
convergent series (cf. [26]).

3◦ Fermi–Dirac weight w(t) = φ(t) = 1/(et + 1) on (0,+∞). The mo-
ments are given by

µk(φ) =

∫ +∞

0

tk

et + 1
dt =

{
log 2, k = 0,

(1− 2−k)k!ζ(k + 1), k > 0.
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Integrals with this weight are encountered in the dynamics of electrons in
metals, as well as in summation of the slowly convergent series (see [26]).

Gaussian quadratures with respect to the next two hyperbolic weights
can be applied in summation of slowly convergent series (see [41], [42], [47]).

4◦ Hyperbolic weights w1(t) = 1/ cosh2 t and w1(t) = sinh t/ cosh2 t on
(0,+∞). The moments can be calculated exactly as

µ
(1)
k =

∫ +∞

0
tkw1(t)dt =


1, k = 0,

log 2, k = 1,

Ckζ(k), k ≥ 2,

(3.1)

where Ck = (2k−1 − 1)k!/4k−1 (see [58]), and

µ
(2)
k =

∫ +∞

0
tkw2(t)dt =



1, k = 0,

k

(
π

2

)k

|Ek−1|, k (odd) ≥ 1,

2k

4k

(
ψ(k−1)(1/4)− ψ(k−1)(3/4)

)
, k (even) ≥ 2,

where Ek are Euler’s numbers, defined by the generating function

2

et + e−t
=

+∞∑
k=0

Ek
tk

k!
,

and ψ(z) is the so–called digamma function, i.e., the logarithmic derivative
of the gamma function, given by ψ(z) = Γ′(z)/Γ(z).

Mathematica evaluates derivatives ψ(n)(z) to arbitrary numerical pre-
cision, using the function PolyGamma[n,z]. In our case, executing the fol-
lowing commands:

<< orthogonalPolynomials‘

mom=Join[{1},Table[If[OddQ[k],k(Pi/2)^k Abs[EulerE[k-1]],

2k/4^k(PolyGamma[k-1,1/4]-PolyGamma[k-1,3/4])],{k,1,99}]];

{al,be}=aChebyshevAlgorithm[mom, WorkingPrecision -> 80];

we obtain the first 50 recurrence coefficients with the maximal relative error
of 2.51× 10−43.

5◦ The weight w(α,β)(t) = exp(−t−α − tβ), α, β > 0, on (0,+∞). In the
case α = β, the moments are

µ
(β,β)
k =

∫ +∞

0
tkw(t)dt =

2

β
K(k+1)/β(2), k ∈ N0,
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where Kr(z) is the modified Bessel function of the second kind. In the
Mathematica package this function is implemented as BesselK[r,z], and
its value can be evaluated with an arbitrary precision. As we have recently
shown in [38], the calculation of the recursive coefficients is a very sensitive
process. For example, if we need the first n = 100 coefficients for β = 2,
with relative errors less than ε = 10−52, then it is enough to put

<< orthogonalPolynomials‘

beta=2; mom=Table[2/beta BesselK[(k+1)/beta,2], {k,0,199}];

{al,be}=aChebyshevAlgorithm[mom, WorkingPrecision -> 150];

and then, in the worst case, the process causes a loss of about 98 decimal
digits!

The case α ̸= β is more complicated than the previous one for α = β,
especially for symbolic computations. However, in some cases for integer (or
rational) values of parameters, the moments can be expressed in terms of
the Meijer G–function. In a standard case, the Meijer G–function is defined
as (cf. [4, p. 207])

Gm,n
p,q

(
z

∣∣∣∣ a1, . . . , apb1, . . . , bq

)
≡ Gm,n

p,q

(
z

∣∣∣∣ a1, . . . , an; an+1, . . . , ap
b1, . . . , bm; bm+1, . . . , bq

)

=
1

2πi

∫
L

m∏
ν=1

Γ(bν − s)
n∏

ν=1
Γ(1− aν + s)

q∏
ν=m+1

Γ(1− bν + s)
p∏

ν=n+1
Γ(aν − s)

zs ds,

where an empty product is interpreted as 1, 1 ≤ m ≤ q, 1 ≤ n ≤ p, and
parameters aν and bν are such that no pole of Γ(bν − s), ν = 1, . . . ,m,
coincides with any pole of Γ(1 − bµ + s), µ = 1, . . . , n. Roughly speaking,
the contour L separates the poles of functions Γ(b1 − s), . . . , Γ(bm − s)
from the poles of Γ(1 − a1 + s), . . . , Γ(1 − an + s), and a discussion on
three different paths of integration is given in [4, p. 207]. An alternative
equivalent definition of the MeijerG–function can be done in terms of inverse
Mellin transform (cf. [83, p. 793]). The Meijer G–function is a very general
function which reduces to simpler special functions in many common cases.
In Mathematica, the Meijer G–function is implemented as

MeijerG[{{a1,...,an},{an1,,...,ap}},{{b1,...,bm},{bm1,...,bq}},z]

and it is suitable for both symbolic and numerical manipulation and its
value can be evaluated with an arbitrary precision. In many special cases,
MeijerG is automatically converted to other functions.
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Following [38] we mention here the corresponding moments µ
(α,β)
k ex-

pressed in terms of the Meijer G–function for a few specific values of the
parameters α and β:

µ
(1,2)
k =

1

2k+2
√
π
G3,1

2,4

(
1

4

∣∣∣∣ − ;−
−k+1

2 ,−k
2 , 0;−

)
, k ≥ 0;

µ
(2,1)
k =

2k√
π
G3,1

2,4

(
1

4

∣∣∣∣ − ;−
0, k+1

2 , k+2
2 ;−

)
, k ≥ 0;

µ
(3,1)
k =

3k+1/2

2π
G4,1

2,5

(
1

27

∣∣∣∣ − ;−
0, k+1

3 , k+2
3 , k+3

3 ;−

)
, k ≥ 0;

µ
(1/2,3/2)
k =

1

32k+5/2π
G4,1

2,5

(
1

27

∣∣∣∣ − ;−
−2k+2

3 ,−2k+1
3 ,−2k

3 , 0;−

)
, k ≥ 0.

A direct application of the Chebyshev method of moments gives the re-
cursive coefficients. This weight function has an application in the weighted
polynomial approximation on R+. In [38] we have also considered some
“truncated” Gaussian rules w.r.t. this weight function for α > 0 and β > 1
and proved their stability and convergence with the order of the best poly-
nomial approximation in suitable function spaces.

4. Summation of slowly convergent series

For slowly convergent series which are appeared in many problems in
mathematics, physics and other sciences, there are several numerical meth-
ods based on linear and nonlinear transformations. In general, starting from
the sequence of partial sums of the series, these transformations give other
sequences with a faster convergence to the same limit, i.e., to the sum of the
series. There is a rich literature on this subject (cf. references in the book
of Mastroianni and Milovanović [35]).

In this section we give an account on some summation processes for series
(n = ∞) and finite sums,

n∑
k=1

(±1)kf(k), (4.1)

with a given function z 7→ f(z) with certain properties with respect to vari-
able z, based on ideas related to Gauss–Christoffel quadratures. In a general
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case, the function f can depend on other parameters, e.g., f(z;x, . . .), so that
these summation proceses can be applied also to some classes of functional
series, not only to numerical series.

The basic idea in our methods is to transform the sum (4.1) to an integral
with respect to some measure dµ on R+, and then to approximate this
integral by a finite quadrature sum,

n∑
k=1

(±1)kf(k) =

∫
R+

g(t)dµ(t) ≈
N∑
ν=1

Aνg(xν), (4.2)

where the function g is connected with f in some way, and the weights

Aν ≡ A
(n)
ν and abscissae xν ≡ x

(n)
ν , ν = 1, . . . , N , are chosen in such a way

as to approximate closely the sum (4.1) for a large class of functions with
a relatively small number N ≪ n. In our approach we take a Gaussian
quadrature sum as the sum on the right–hand side in (4.2).

In the sequal, we mention only two methods for such kind of transforma-
tions: Laplace transform method and Contour integration over a rectangle.

4.1. Laplace transform method. For a fixed m ∈ N0, let

f(s) =

∫ +∞

0
tme−stg(t)dt, ℜs ≥ 1.

Then

n∑
k=1

(±1)kf(k) =
n∑

k=1

(±1)k
∫ +∞

0
tme−ktg(t)dt =

∫ +∞

0

(
n∑

k=1

(±e−t)k
)
tmg(t)dt,

i.e.,
n∑

k=1

(±1)kf(k) = ±
∫ +∞

0

tm

et ∓ 1
[1− (±1)ne−nt]g(t)dt. (4.3)

Thus, the summation of series are now transformed to the integration prob-
lem, which is very appropriated for infinite series (n = ∞), when the Bose–
Einstein and Fermi–Dirac weight functions,

ε(t) =
t

et − 1
and φ(t) =

1

et + 1
,

respectively, can be employed. These weight are studied in the previous
section and several examples with infinity series (n = ∞) can be found in
[26] and [47].
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In the case of finite series, applying Gaussian quadrature with Bose–
Einstein’s weight ε(t) to the integral on the right side in (4.3), the conver-
gence of the process (as n increases) slows down considerably. The reason for
this is the behavior of the function t 7→ hn(t) = 1− (±1)ne−nt, which tends
to a discontinuous function when n→ +∞. Notice that hn(0) = 1− (±1)n

has the values 0 or 2, and limn→+∞ hn(t) = 1.
For a fixed n, the factor [1 − (±1)ne−nt] can be included in the corre-

sponding weights, so that

µ
(n)
k (ε) =

∫ +∞

0
tkε(t)[1− e−nt]dt = µk(ε)− (k + 1)!ζ(k + 2, n+ 1)

and

µ
(n)
k (φ) =

∫ +∞

0
tkφ(t)[1− (−1)ne−nt]dt

= µk(φ) +
(−1)n

2


H
(n− 1

2

)
−H

(n
2

)
, k = 0,

k!

2k

[
ζ
(
k + 1,

n

2
+ 1

)
− ζ

(
k + 1,

n+ 1

2

)]
, k ≥ 1,

where H(k) is the k–th harmonic number and ζ(s, a) is the generalized
Riemann zeta function defined by ζ(s, a) =

∑+∞
ν=0(ν+a)

−s. In that case, the
corresponding Gaussian formulas (generated by these moments) converge
rapidly for smooth functions g. However, this approach would be interesting
only if someone calculates finite sums a large number of times with the same
number of terms. In the next subsection we consider another summation
method which is much more applicable for the finite sums.

4.2. Contour integration over a rectangle. We consider an alternative
summation/integration procedure for the series (4.1), when for k ≥ m, the
function f is analytic in the region

{z ∈ C | ℜz ≥ α, m− 1 < α < m}. (4.4)

In fact, we consider the series

Tm,n =
n∑

k=m

f(k) and Sm,n =
n∑

k=m

(−1)kf(k), (4.5)

where m ∈ Z and n is a finite number greather than m or n = +∞.



Quadrature processes and new applications 97

The method requires the indefinite integral F of f chosen so as to satisfy
certain decay properties (see [41], [45], [47]). Using contour integration over
a rectangle in the complex plane we are able to reduce Tm,n and Sm,n to
a problem of Gaussian quadrature rules on (0,+∞) with respect to the
hyperbolic weight functions considered in Subsection 3.2 (case 4◦),

w1(t) =
1

cosh2 t
and w2(t) =

sinh t

cosh2 t
. (4.6)

For a holomorphic function f in

G =
{
z ∈ C : α ≤ ℜz ≤ β, |ℑz| ≤ δ

π

}
,

where m − 1 < α < m, n < β < n + 1 (m,n ∈ Z,m < n), δ > 0, Γ = ∂G,
using Cauchy’s residue theorem, the series (4.5) can be expressed in the
forms

Tm,n =
1

2πi

∮
Γ
f(z)

π

tanπz
dz, Sm,n =

1

2πi

∮
Γ
f(z)

π

sinπz
dz.

After integration by parts, these formulas reduce to

Tm,n =
1

2πi

∮
Γ

( π

sinπz

)2
F (z)dz, Sm,n =

1

2πi

∮
Γ

( π

sinπz

)2
cosπz F (z)dz,

where F is an integral of f .
Assume the following conditions for the function F :

(C1) F is a holomorphic function in the region (4.4);

(C2) lim
|t|→+∞

e−c|t|F (x+ it/π) = 0, uniformly for x ≥ α;

(C3) lim
x→+∞

∫
R
e−c|t| |F (x+ it/π) |dt = 0,

where c = 2 or c = 1, when we consider Tm,n or Sn,m, respectively.

Setting α = m − 1/2, β = n + 1/2, and letting δ → +∞, the previous
integrals over Γ reduce to the integrals with respect to the weight functions
(4.6),

Tm,n =

∫ +∞

0
w1(t) [Φ (α, t/π)− Φ(β, t/π)] dt

and

Sm,n =

∫ +∞

0
w2(t) [(−1)mΨ(α, t/π) + (−1)nΨ(β, t/π)] dt,
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where

Φ(x, y) = −1

2
[F (x+ iy) + F (x− iy)] , Ψ(x, y) =

1

2i
[F (x+ iy)− F (x− iy)] .

Thus, the numerical construction of Gaussian quadratures with respect
to the hyperbolic weights w1 and w2, given in (4.6), provides appropriate
summation processes for the sums Tm,n and Sm,n, respectively.

We mention now a recent result on the generalized Mathieu series and
its alternating variant,

Sm(r) =
∑
n≥1

2n

(n2 + r2)m+1
, S̃m(r) =

∑
n≥1

(−1)n−1 2n

(n2 + r2)m+1
,

derived by contour integration using rectangular integration path (see [60]):

Theorem 4.1 The following integral representation formulae hold true

Sm(r) =
π

m

∫ ∞

0

[m/2]∑
j=0

(−1)j
(
m

2j

)(
r2 − x2 +

1

4

)m−2j

x2j[(
x2 − r2 +

1

4

)2

+ r2

]m w1(πx)dx,

S̃m(r) =
π

m

∫ ∞

0

[(m−1)/2]∑
j=0

(−1)j
(

m

2j + 1

)(
r2 − x2 +

1

4

)m−2j−1

x2j+1

[(
x2 − r2 +

1

4

)2

+ r2

]m w2(πx)dx,

where the weight functions w1 and w2 are given in (4.6).

By means of these established integral forms of generalized Mathieu se-
ries, we obtain also a new integral expression for the Bessel function of the
first kind of half integer order, solving a related Fredholm integral equation
of the first kind with nondegenerate kernel.

The series S1(r) was introduced and studied for the first time by Émile
Leonard Mathieu (1835–1890) in his book [34] devoted to the elasticity of
solid bodies.

Example 4.1. For the following simple example

n∑
k=1

1

(2k + 1)2
=

1

8
π2 − 1− 1

4
ψ′
(
n+

3

2

)
,
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we have
T1,n = T1,m−1 + Tm,n, 1 ≤ m < n.

For m = 1 the first sum on the right side in the previous formula is empty.
Here, f(z) = (2z+1)−2, and F (z) = −(2z+1)−1/2, the integration constant
being zero on account of the condition (C3). Thus,

Φ(x, y) = ℜ 1

2(2z + 1)
=

x+ 1/2

(2x+ 1)2 + 4y2
.

Now, we apply the Gaussian quadrature formulae with respect to the
hyperbolic weights w1 to Tm,n, so that

T1,n ≈ T1,m−1 +Q(N)
m,n =

m−1∑
k=1

1

(2k + 1)2
+

N∑
k=1

Ak [Φ (α, τk/π)− Φ(β, τk/π)] ,

with α = m− 1/2 and β = n+ 1/2.
For example, for n = 10000, n = 100000, and n = +∞, with the 50–point

Gaussian quadrature we obtain the values

T1,104 = 0.23367555263594067943632186977207496889924865,

T1,105 = 0.23369805016116959818951969508876368316979552,

T1,+∞ = 0.23370055013616982735431137498451889191421243.

Table 1 shows the relative errors

r
(m,n)
N =

∣∣∣∣(T1,m−1 +Q
(N)
m,n)− T1,n

T1,n

∣∣∣∣ = ∣∣∣∣Q(N)
m,n − Tm,n

T1,n

∣∣∣∣
for N = 5(5)40 and m = 1(1)4. Numbers in parentheses indicate decimal
exponents. Notice that the exact value of the sum T1,n is a rational number
and it can be calulated exactly.

As we can see the results can be significantly improved if we apply
quadrature process to sums with a bigger m. The rapidly increasing of
convergence of the summation process as m increases in due to the poles
±imπ of Φ(m − 1/2, t/π) moving away from the real line. It is interesting
to note that a similar approach with the “Laplace transform method” does
not lead to acceleration of convergence (cf. [41]).

Example 4.2. As an interesting example we consider

T1(a) =
+∞∑
k=1

1√
k(k + a)

. (4.7)
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Table 1: Relative errors r
(m,n)
N in Gaussian approximation of the finite sum

T1,n, n = 10000, for N = 5(5)40 and m = 1(1)4

N m = 1 m = 2 m = 3 m = 4

5 7.78(−6) 1.78(−8) 6.76(−10 2.69(−11)
10 1.13(−8) 1.24(−12) 5.24(−15) 2.21(−17)
15 7.44(−12) 2.63(−16) 3.56(−19) 2.36(−24)
20 8.48(−13) 2.65(−18) 3.57(−22) 2.14(−25)
25 2.57(−14) 1.88(−20) 4.55(−25) 7.46(−29)
30 8.88(−16) 5.73(−23) 4.89(−28) 6.33(−32)
35 3.95(−17) 1.33(−24) 3.85(−30) 1.45(−34)
40 2.05(−18) 3.05(−26) 3.13(−32) 4.56(−37)

This series with a = 1 appeared in a study of spirals and defines the well–
known Theodorus constant (see [10]). The first 1 000 000 terms of the series
T1(1) give the result 1.8580 . . ., i.e., T1 ≈ 1.86 (only 3–digit accuracy).

Using the method of Laplace transform, Gautschi (see [18, Example 5.1])
calculated (4.7) for a = .5, 1, 2, 4, 8, 16, and 32. As a increases, the
convergence of the Gauss quadrature formula slows down considerably. For
example, when a = 8, the corresponding quadrature with N = 40 nodes
gives a result with the relative error 2.6(−8).

In a special case for a = 1, Gautschi [18] (see also [24]) proved that

T1(1) =
2√
π

∫ +∞

0

D(
√
t)√
t

w(t)dt, (4.8)

where D is Dawson’s integral D(x) = e−x2 ∫ x
0 et

2
dt and w is the correspond-

ing weight function,

w(t) = t−1/2ε(t) =
t1/2

et − 1
.

In the construction of Gaussian quadratures with respect to this weight, the
moments are

µk =

∫ +∞

0

tk+1/2

et − 1
dt = Γ

(
k +

3

2

)
ζ
(
k +

3

2

)
, k = 0, 1, . . . ,

where the gamma function and the Riemann zeta function are computable by
variable–precision calculation. Using the Chebyshev algorithm in sufficiently
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high precision, Gautschi [24] obtained Gaussian quadratures and applied to
(4.8) for N = 5(10)75.

Now, we directly apply the method of contour integration over the rect-
angle to (4.7), i.e.,

T1(a) =
m−1∑
k=1

1√
k(k + a)

+ Tm(a), Tm(a) =
+∞∑
k=m

1√
k(k + a)

, (4.9)

and then use Gaussian quadrature formula with respect to the weight w1(t) =
1/ cosh2 t on R+ to calculate Tm(a).

In order to construct Gaussian rules for N ≤ 100 we need recursion
coefficients αk and βk for k ≤ N − 1 = 99, i.e., the moments (3.1) for
k ≤ 2N − 1 = 199. Taking the WorkingPrecision to be 160, we obtain the
first hundred recursion coefficients αk and βk, with the relative errors less
than 1.86× 10−78.

For the series (4.9) we have

f(z) =
1√

z(z + a)
and F (z) =

2√
a

(
arctan

√
z

a
− π

2

)
,

where the integration constant is taken so that F (∞) = 0. Thus,

T1(a) ≈ Q(N)
m (a) =

m−1∑
k=1

1√
k(k + a)

+
N∑
k=1

AkΦ(m− 1/2, τk/π),

with Φ(x, y) = −1
2 [F (x+ iy) + F (x− iy)], where τk and Ak are nodes and

Christoffel numbers of the N–point Gaussian rule.

Table 2: Gaussian approximation Q
(N)
m (1) for m = 10

N Q
(N)
10 (1)

5 1.8600250792211916
15 1.860025079221190307180695915717174
25 1.860025079221190307180695915717143324666524143
35 1.86002507922119030718069591571714332466652412152345153
45 1.8600250792211903071806959157171433246665241215234514930491992
55 1.86002507922119030718069591571714332466652412152345149304919950359838

The relative errors in the previous approximate formuala for T1(1) are presented
in Fig. 1 for N = 5(5)100 and different values of m. For example, the Gaussian



102 G. V. Milovanović

Figure 1: The relative errors in calculating T1(1) for N = 5(5)100 and
different values of m

approximation Q
(N)
m (a) for a = 1, m = 10, and N = 5(10)55 are presented in

Table 2. The first digit in error is underlined.

As we can see, the method is very efficient. Numerical results also show that the
convergence is slightly faster if the parameter a is larger. For example, if a = 1000,
then taking m = 20 and N = 5(5)25, the corresponding relative errors in Gaus-
sian approximations are 2.32(−20), 1.06(−33), 6.01(−43), 1.18(−51), 1.89(−59),
respectively.

5. Generalized Birkhoff–Young quadratures

Recently we have introduced the generalized Birkhoff–Young interpolatory quadra-
ture formula for weighted integrals of analytic functions in the unit disk Ω =

{
z :

|z| ≤ 1
}
(cf. [46]),

I(f) :=

∫ 1

−1

f(z)w(z)dz = QN (f) +RN (f), (5.1)

where w : (−1, 1) → R+ is an even nonnegative weight function, for which all

moments µk =
∫ 1

−1
zkw(z)dz, k = 0, 1, . . ., exist and µ0 =

∫ 1

−1
w(z)dz > 0.

For a given fixed integer m ≥ 1 and for each N ∈ N, we put N = 2mn + ν,
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where n = [N/(2m)] and ν ∈ {0, 1, . . . , 2m− 1}, and define the node polynomial as

ωN (z) = zνpn,ν(z
2m) = zν

n∏
k=1

(z2m − rk), 0 < r1 < · · · < rn < 1. (5.2)

Then the corresponding interpolatory quadrature rule QN (f) has the form

QN (f) =

ν−1∑
j=0

Cjf
(j)(0) +

n∑
k=1

m∑
j=1

Ak,j

[
f
(
xke

iθj
)
+ f

(
−xkeiθj

)]
, (5.3)

where

xk = 2m
√
rk, k = 1, . . . , n; θj =

(j − 1)π

m
, j = 1, . . . ,m.

For ν = 0, the first sum in QN (f) is empty. RN (f) in (5.1) is the corresponding
remainder.

The polynomial pn,ν in (5.2) can be interpreted in terms of the type II multiple
orthogonal polynomials (cf. [1], [87], [66], [67]) and we can prove the following
result [46]:

Theorem 5.1 Let m be a fixed positive integer and w be a nonnegative even

weight function w on (−1, 1), for which all moments µk =
∫ 1

−1
zkw(z)dz, k ≥ 0,

exist and µ0 > 0. For any N ∈ N there exists a unique interpolatory quadrature
QN (f), with a maximal degree of exactness

dmax = 2(m+ 1)n+

{
ν − 1, ν even,

ν, ν odd,

if and only if the polynomial pn,ν(t) is the type II multiple orthogonal polynomial,
with respect to the weight functions wj(t),∫ 1

0

tℓpn,ν(t)wj(t)dt = 0, ℓ = 0, 1 . . . ,

[
n− j

m

]
,

where wj(t) = t(s+2j)/(2m)−1w(t1/(2m)), j = 1, . . . ,m.

In the case m = 1, the node polynomial ω2n+ν(z) = zνpn,ν(z
2), with ν = 0 or

ν = 1, is a monic polynomial of degree 2n+ν, which is orthogonal to P2n+ν−1 with
respect to the even weight function w on (−1, 1), so that the quadrature formula
(5.1), with (5.3), is in fact a standard Gaussian formula on (−1, 1) with 2n + ν
nodes. The polynomial sequences

pn,0(t) = ω2n(
√
t) and pn,1(t) =

ω2n+1(
√
t)√

t
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Figure 1: Distribution of nodes for m = 2 (left) and m = 6 (right)

are orthogonal on (0, 1) with respect to the weight functions w(
√
t)/

√
t and w(

√
t)
√
t,

respectively (see [35, Theorem 2.2.11]). Notice that the origin is appeared as a
quadrature node only when ν = 1.

Distributions of nodes for m = 2 and m = 6 are presented in Figure 1.
The first quadrature rule of this type was appeared in 1950 by Birkhoff and

Young [5]. They proposed a quadrature formula of the form

z0+h∫
z0−h

f(z)dz ≈ h

15

{
24f(z0) + 4

[
f(z0 + h) + f(z0 − h)

]
−
[
f(z0 + ih) + f(z0 − ih)

]}
,

with the error term RBY
5 (f), for numerical integration over a line segment in the

complex plane, where f(z) is a complex analytic function in
{
z : |z− z0| ≤ r

}
and

|h| ≤ r. This five point quadrature formula is exact for all algebraic polynomials
of degree at most five and its remainder RBY

5 (f) can be estimated by (see [88] and
[11, p. 136])

|RBY
5 (f)| ≤ |h|7

1890
max
z∈S

|f (6)(z)|,

where S denotes the square with vertices z0 + ikh, k = 0, 1, 2, 3. By a reduction of
the line segment [z0 − h, z0 + h] to [−1, 1], this five–point rule reduces to∫ 1

−1

f(z)dz =
8

5
f(0) +

4

15

[
f(1) + f(−1)

]
− 1

15

[
f(i) + f(−i)

]
+R5(f). (5.4)

In 1978 Tošić [86] obtained a significant improvement of (5.4) in the form∫ 1

−1

f(z)dz =
16

15
f(0) +

1

6

(
7

5
+

√
7

3

)[
f(r) + f(−r)

]
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+
1

6

(
7

5
−
√

7

3

)[
f(ir) + f(−ir)

]
+RT

5 (f),

where r = 4
√
3/7 and

RT
5 (f) =

1

793800
f (8)(0) +

1

61122600
f (10)(0) + · · · .

More than three decades ago, in a joint paper with D- ord-ević [59] we extended this
formula to the following nine point rule,∫ 1

−1

f(z)dz = Af(0) + C11

[
f(r1) + f(−r1)

]
+ C12

[
f(ir1) + f(−ir1)

]
+C21

[
f(r2) + f(−r2)

]
+ C22

[
f(ir2) + f(−ir2)

]
+R9(f ; r1, r2),

where 0 < r1 < r2 < 1, and proved that for

r1 = r∗1 =
4

√
63− 4

√
114

143
and r2 = r∗2 =

4

√
63 + 4

√
114

143
,

this quadrature rule has the algebraic degree of precision p = 13, with the error–
term

R9(f ; r
∗
1 , r

∗
2) =

1

28122661066500
f (14)(0) + · · · ≈ 3.56 · 10−14f (14)(0).

Evidently, it is a special case, which can be obtained from Theorem 5.1 for N = 9
and m = 2. In that case, n = 2 and ν = 1, so that dmax = 2(m+1)n+ s = 13, and

p2,1(z) = z2 − 126

143
z +

15

143
.

A special case with the Chebyshev weight of the first kind w(z) = 1/
√
1− z2 was

considered recently in [68].

6. Nonstandard quadratures of Gaussian type

If the information data {f(τk)}nk=1 in the standard quadrature∫
R
f(t)dµ(t) =

n∑
k=1

wkf(τk) +Rn(f). (6.1)

are replaced by {(Ahkf)(τk)}nk=1, where Ah is an extension of some linear operator
Ah : P → P, h ≥ 0, we get a non–standard quadrature formula∫

R
f(t)dµ(t) =

n∑
k=1

wk(Ahkf)(τk) +Rn(f). (6.2)
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Notice that we use the same notation for the linear operator defined on the space
of all algebraic polynomials and for its extension to the certain class of integrable
functions X (f ∈ X). As a typical example for such operators is the average
operator

(Ahf)(x) =
1

2h

∫ x+h

x−h

f(t)dt, h > 0. (6.3)

In the case h = 0 this operator is interpreted as the identity operator A0 = I, so
that, for continuous f , its value at x is f(x), i.e.,

(A0f)(x) = lim
h→0

(Ahf)(x) = (If)(x) = f(x).

Quadratures (6.2) with the average operator (6.3) are known as the interval quadra-
ture formulae and they studied by several authors (cf. Omladič, Pahor, and Suhadolc [81],
Pitnauer and Reimer [82], Kuz’mina [31], Sharipov [84], Babenko [3], Motornyi
[78]).

In many applications, especially in experimental physics and engineering, it is
not possible to accurately measure the values f(τν), ν = 1, . . . , n, only their mean
values, so that instead of the standard quadrature (6.1) one can use only an interval
quadrature with the average operator (6.3) (see Fig. 6.1 (left)).

Standard quadraures can be interpreted as quadratures with an operator defined
by

(Ahf)(x) =
1

2h

∫ x+h

x−h

f(x)dt = f(x), (6.4)

so that (Ahkf)(τk) = f(τk), k = 1, . . . , n (see Fig. 6.1 (right)).

Fig. 6.1. The information data: (left) in an interval quadrature with the average
operator; (right) in the standard quadrature interpreted as a nonstandard one with
the operator (6.4)

Instead of (6.3) it is possible to consider also a weighted average operator in the
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form

(Ah
wf)(x) =

(Ahfw)(x)

(Ahw)(x)
=

∫ x+h

x−h

f(t)w(t)dt∫ x+h

x−h

w(t)dt

, (6.5)

or even simpler as

(Bh
wf)(x) = (Ahfw)(x) =

1

2h

∫ x+h

x−h

f(t)w(t)dt, (6.6)

where h > 0 and w is a given weight function on a finite interval [a, b], i.e., a
nonnegative Lebesgue integrable function, such that for each subinterval (α, β) ⊆
[a, b], α < β, we have

∫ β

α
w(t)dt > 0.

6.1. Gaussian interval quadrature formulae. In this subsection, for a given
weight function w : I → R+ and for h = (h1, . . . , hn), hν ≥ 0, ν = 1, . . . , n, we use
the weighted average operator (6.5) and define the following interval quadrature
formula of Gaussian type on I as∫

I

f(x)w(x)dx =
n∑

ν=1

σν
w(Iν)

∫
Iν

f(x)w(x)dx+Rn(f), (6.7)

which is exact for all algebraic polynomial of degree at most 2n−1, i.e., Rn(P2n−1) =
0, where Iν = (xν − hν , xν + hν), ν = 1, . . . , n, are nonoverlapping intervals, whose
union is the proper subset of I. Quantities w(Iν), ν = 1, . . . , n, are given by

w(Iν) =

∫
Iν

w(x)dx, ν = 1, . . . , n.

The midpoints xν of the intervals Iν , ν = 1, . . . , n, are called the nodes of the
interval quadrature rule (6.7), and the quantities σν , ν = 1, . . . , n, are called the
weights.

Notice that for a continuous function f in (6.7), we have

lim
hν→0+

1

w(Iν)

∫
Iν

f(x)w(x)dx = f(xν), ν = 1, . . . , n,

so that the Gaussian interval quadrature rule, for h = 0, reduces to the standard
Gaussian quadrature rule.

Remark 6.1 If we take the weighted average operator in the form (6.6), then
(6.7) becomes ∫

I

f(x)w(x)dx =
n∑

ν=1

wν

2hν

∫
Iν

f(x)w(x)dx+Rn(f), (6.8)

where wν = 2hνσν/w(Iν), ν = 1, . . . , n.
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For a finite interval I = [a, b], in 2001 Bojanov and Petrov [6] proved that
the Gaussian interval quadrature rule (6.8) exists, with positive weight coefficients
wν , ν = 1, . . . , n, as well as that for hν = h, 1 ≤ ν ≤ n, this Gaussian interval
quadrature formula is unique. In that case, for each f ∈ C2n[a, b] there exists a
point ξ ∈ (a, b) such that

Rn(f) =
f (2n)(ξ)

(2n)!

∫ b

a

Q2n(x)w(x)dx,

where Q2n(x) is a unique monic polynomial of degree 2n such that∫ xν+h

xν−h

Q2n(x)w(x)dx =

∫ xν+h

xν−h

xQ2n(x)w(x)dx = 0, ν = 1, . . . , n.

Moreover, in [7] Bojanov and Petrov proved the uniqueness of (6.8) for the Legendre
weight (w(x) = 1) for any set of lengths hν ≥ 0, ν = 1, . . . , n, satisfying the
condition that Iν are nonoverlapping intervals, whose union is the proper subset of
I = [a, b]. In concluding remarks they noted that the extention of the uniqueness
result to weighted quadratures for any fixed weight function w could be very difficult
problem.

Using properties of the topological degree of non–linear mappings, Milovanović
and Cvetković [50] proved that Gaussian interval quadrature formula (6.8) is unique
for the Jacobi weight function

w(x) = (1− x)α(1 + x)β , α, β > −1, (6.9)

on I = [−1, 1], and also proposed an appropriate algorithm for numerical construc-
tion of such kind of quadratures. For the special case of the Chebyshev weight of
the first kind w(x) = 1/

√
1− x2 and the special set of lengths an analytic solution

was obtained in [50]. An alternative and much simpler algorithm for the numerical
construction of the interval Gaussian quadratures with respect to the Jacobi weight
(6.9) has been derived in [51].

The corresponding interval quadrature rules of Gauss–Lobatto type with re-
spect to the Jacobi weight function (6.9),∫

I

f(x)w(x)dx =
σ0

w(I0)

∫
I0

f(x)w(x)dx+
n∑

ν=1

σν
w(Iν)

∫
Iν

f(x)w(x)dx

+
σn+1

w(In+1)

∫
In+1

f(x)w(x)dx+RL
n+2(f),

where I0 = (−1,−1 + h0), Iν = (xν − hν , xν + hν), ν = 1, . . . , n, and In+1 =
(1−hn+1, 1), have been considered in [54], as well as special cases with respect to the
Chebyshev weight of the first kind. Similar results for the Gauss–Radau quadrature
rule have been also proved in [54], as well as the corresponding algorithms for
numerical construction of these type of quadratures.
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The case of interval quadratures of the Gaussian type on unbounded intervals
has been for the first time treated in [52], where the existence and uniqueness of
the Gaussian interval quadrature formula with respect to the generalized Laguerre
weight function w(x) = xαe−x on R+ have been presented, including an algorithm
for the numerical construction of such a formula. The corresponding problem with
the Hermite weight w(x) = e−x2

on R has been studied in [55]. Thus, in this way
we have completed results for all classical weight functions.

Recently, we have considered interval quadrature formulas of Gaussian type
with respect to the nonclassical exponential weight functions of the form w(x) =
e−Q(x) on unbounded intervals I = R or I = R+ (see [9]), where Q is supposed
to be continuous function on I and given such that all algebraic polynomials are
integrable with respect to the weight w.

Theorem 6.1 Given h = (h1, . . . , hn) ∈ Rn, hν ≥ 0, ν = 1, . . . , n, there ex-
ists the unique Gaussian interval quadrature rule (6.7) with respect to the weight
function w on I, where intervals Iν = (xν−hν , xν+hν), ν = 1, . . . , n, are nonover-
lapping. In the case of the weight w supported on I = R+, in addition, we have
x1 − h1 > 0.

The results obtained in [9] can be applied also to corresponding quadratures
over the finite interval (−1, 1).

6.2. Gaussian quadratures based on operator values. Another approach in
quadrature formulae of Gaussian type for intervals of the same length with the av-
erage operator (6.3) appeared in 1992 in Omladič’s paper [80]. The middle points
of the intervals are zeros of some kind of orthogonal polynomials. More precisely,
Omladič proved that the nodes xν , ν = 1, . . . , n, of his quadratures are zeros of the
average Legendre polynomials phn(x) ≡ pn(x), which satisfy the three–term recur-
rence relation

pn+1(x) = x pn(x)−
n2(1− n2h2)

4n2 − 1
pn−1(x), n ≥ 1.

In order to generalize this approach we put H = Hδ = [0, δ), δ > 0, and
consider families of linear operators Ah, h ∈ H, acting on the space of all algebraic
polynomials P, such that the degrees of polynomials are preserved, i.e.,

deg(Ahp) = deg(p), (6.10)

and
lim

h→0+
(Ahp)(x) = p(x), x ∈ C, (6.11)

for any p ∈ P and each h ∈ H. By definition we put deg(0) = −1, so that degree
preserving property also means that the zero polynomial is the image only of the
zero polynomial.
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For a given family of linear operators Ah, h ∈ H, we consider the non–standard
interpolatory quadrature of Gaussian type∫

R
f(x)dµ(x) =

n∑
k=1

wk(Ahf)(xk) +Rn(f), (6.12)

which is exact for all algebraic polynomials of degree at most 2n− 1.
In [56] we have proved the following result:

Theorem 6.2 Let Ah, h ∈ H, be a family of linear operators satisfying the
conditions (6.10) and (6.11) and dµ be a finite positive Borel measure on the real
line with its support supp (dµ) ⊂ R. For any n ∈ N there exists ε > 0, such that for
every h ∈ Hε = [0, ε) there exists the unique interpolatory quadrature formula (6.12)
of Gaussian type, with nodes xk ∈ Co(supp (dµ)) and positive weights wk > 0,
k = 1, . . . , n.

Also, we have proposed a stable numerical algorithm for constructing such
quadrature formulae. In particular, for some special classes of linear operators of
the form

(Ahp)(x) =
1

2h

∫ x+h

x−h

p(t) dt,

(Ahp)(x) =
m∑

k=−m

akp(x+ kh) or (Ahp)(x) =
m−1∑
k=−m

akp

(
x+ (k +

1

2
)h

)
,

and

(Ahp)(x) =

m∑
k=0

bkh
k

k!
Dkp(x),

where m is a fixed natural number and Dk = dk/dxk, k ∈ N0, we obtain interesting
explicit results connected with theory of orthogonal polynomials. Details can be
found in [56].

Finally, following a starting idea from [33], for finite positive Borel measures
supported on the real line we have considered a new type of quadrature rule with
maximal algebraic degree of exactness (see Milovanović and Cvetković [57]), which
involves function derivatives. We have proved the existence of such quadrature
rules and described their basic properties. An additional motivation for this type
of quadrature comes also from its applications to initial–value problems for ordinary
differential equations.

7. Fredholm integral equations of the second kind
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Integral equations appear in many fields including continuum and quantum
mechanics, kinetic theory of gases, optimization and optimal control systems, com-
munication theory, potential theory, geophysics, electricity and magnetism, biology
and population genetics, mathematical economics, queueing theory, etc. Most of
the boundary value problems involving differential equations can be converted into
problems in integral equations, but also there are certain problems which can be
formulated only in terms of integral equations.

We are interested only in the Fredholm integral equations of the second kind
(FK2),

f(y) + µ

∫
D
k(x,y)f(x)w(x)dx = g(y), y ∈ D, (7.1)

where the kernel k(x,y), the weight w, and g are known functions, µ ∈ R is a
parameter, and f is a unknown function.

A computational approach to the solution of integral equations is an essential
branch of numerical analysis. There are many numerical methods for solving in-
tegral equations (cf. [2], [32], [35, pp. 362–385]). Numerical methods for linear
integral equations lead to algebraic systems of linear equations and sometimes the
conditional number of the corresponding matrices are large. The solution of an
integral equation can be done in a polynomial form, as a peacewise polynomial,
spline, etc.

In the sequel we consider an important one–dimensional case of the integral
equation (7.1) on D = A = [−1, 1],

f(y) + µ

∫
A

k(x, y)f(x)w(x)dx = g(y), y ∈ A, (7.2)

with respect to the Jacobi weight, as well as a two–dimensional case on a triangle
D = T, which can be reduced to the squareD = Q = A2. The proposed methods are
very efficient and they are based on the recent progress in polynomial interpolation
(cf. [35]).

7.1. One–dimensional case on [−1, 1]. We consider the Fredholm integral equa-
tions of the second kind FK2 (7.2) on A = [−1, 1], when

w(x) = vα,β(x) = (1− x)α(1 + x)β , α, β > −1,

and give a numerical method for their solving in the spaces of continuous functions
equipped with certain uniform weighted norms. Letting

(Kf)(y) = µ

∫ 1

−1

k(x, y)f(x)w(x)dx, (7.3)

the equation (7.2) can be written in the operator form

(I +K)f = g, (7.4)
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where I denotes the identity operator. Assuming the continuity of the kernel k(x, y)
we use Nyström methods and we can prove the stability and convergence, as well as
the well–conditioning of the corresponding matrices. The last property is derived
only from the continuity of the kernel and not from its special form.

Taking another Jacobi weight, vγ,δ(x) = (1 − x)γ(1 + x)δ, with γ, δ ≥ 0, we
define the space of functions as

Cvγ,δ =
{
f ∈ C0((−1, 1)) : lim

x→±1
(fvγ,δ)(x) = 0

}
,

equipped with the norm ∥f∥C
vγ,δ

= ∥fvγ,δ∥∞. Moreover, we denote by

En(f)vγ,δ = inf
Pn∈Pn

∥(f − Pn)v
γ,δ∥∞

the error of best weighted approximation of a function f in Cvγ,δ by means of
polynomials of degree at most n.

Using the n–point Gaussian quadrature with respect to the Jacobi weight
vα,β(x) we approximate the operator K from (7.3) by the operator Kn defined
as

(Knf)(y) = µ
n∑

k=1

λk(v
α,β)k(xk, y)f(xk),

where xk, k = 1, . . . , n, are the zeros of the (orthonormal) Jacobi polynomial
pn(v

α,β) and λk(v
α,β), k = 1, . . . , n, are the corresponding Christoffel numbers.

In that way, we solve the following approximating equations

(I +Kn)fn = g, n = 1, 2, . . . . (7.5)

Multiplying both sides of (7.5) by vγ,δ and collocating it at the zeros xi, i = 1, . . . , n,
we obtain the system of linear equations

n∑
k=1

[
δi,k + µ

vγ,δ(xi)

vγ,δ(xk)
k(xk, xi)λk(v

α,β)

]
ak = g(xi)v

γ,δ(xi), i = 1, . . . , n, (7.6)

where ak = fn(xk)v
γ,δ(xk), k = 1, . . . , n, are the unknowns. If for a sufficiently

large n (say n > n0), the system (7.6) admits the unique solution (a∗1, . . . , a
∗
n), then

we construct the Nyström interpolant

f∗n(y) = g(y)− µ

n∑
k=1

k(xk, y)
λk(v

α,β)

vγ,δ(xk)
a∗k. (7.7)

Under restriction of parameters, 0 ≤ γ < 1−α and 0 ≤ δ < 1−β, and properties
of the kernel,

lim
n

sup
|y|≤1

vγ,δ(y)En(ky) = 0 and lim
n

sup
|x|≤1

En(kx)vγ,δ = 0, (7.8)
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we can prove (cf. [37]) that K : Cvγ,δ → Cvγ,δ is a compact operator,

sup
n

∥Kn∥C
vγ,δ→C

vγ,δ
≤ A < +∞, lim

N
sup
n

sup
∥fvγ,δ∥∞=1

EN (Knf)vγ,δ = 0,

(∀f ∈ Cvγ,δ) lim
n

∥(K −Kn)f∥C
vγ,δ

= 0,

and
lim
n

∥(K −Kn)Kn∥C
vγ,δ→C

vγ,δ
= 0.

Theorem 7.1 Under restriction of parameters, 0 ≤ γ < 1 − α and 0 ≤ δ <
1−β, the conditions (7.8), Ker(I +K) = {0} in Cvγ,δ and g ∈ Cvγ,δ , the system of
equations (7.6) has a unique solution for any n > n0 and the sequence {f∗n}n, defined
by (7.7), converges in Cvγ,δ to the exact solution f∗ of (7.4), with the following error
estimate

∥f∗ − f∗n∥C
vγ,δ

≤

C

{
∥f∥C

vγ,δ
sup
|y|≤1

vγ,δ(y)En−1(ky) + sup
|y|≤1

vγ,δ(y)∥ky∥∞En−1(f)vγ,δ

}
,

where the constant C is independent of n and f∗. Moreover, if Vn is the matrix of
the system of equations (7.6), then cond(Vn) ≤ cond(I +Kn) < const.

The error estimate can be also given in the Sobolev–type space

W r(vγ,δ) =
{
f ∈ Cvγ,δ : f (r−1) ∈ AC((−1, 1)) and ∥f (r)φrvγ,δ∥∞ < +∞

}
,

with r ≥ 1 and equipped with the norm

∥f∥W r(vγ,δ) := ∥fvγ,δ∥∞ + ∥f (r)φrvγ,δ∥∞,

where φ(x) =
√
1− x2 and AC((−1, 1)) denotes the space of all functions which

are absolutely continuous in every compact set of the interval (−1, 1). For brevity
we will set W r(v0,0) =W r.

Namely, under the assumptions on α, β, γ, δ, replacing (7.8) by

sup
|y|≤1

vγ,δ(y)∥ky∥W r < +∞ and sup
|x|≤1

∥kx∥W r(vγ,δ) < +∞

and assuming that g ∈W r(vγ,δ), the estimate from Theorem 7.1 becomes

∥(f∗ − f∗n)v
γ,δ∥∞ = O(n−r).

The proofs, examples and other details can be found in [37]. Similar results can be
done for Fredholm integral equations of the second kind with respect to the weight

function w(x) = xαe−xβ

, α > −1, β > 1/2, over A = [0,+∞) (see [36], [37]).
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7.2. Fredholm equations in two variables on a triangle. Recently in [79], Oc-
corsio and Russo have extended the previous results to the numerical solution of
two–dimensional Fredholm integral equations by Nyström and collocation methods
based on the zeros of Jacobi orthogonal polynomials.

In this subsection we consider the approximation of the solution of the cor-
responding Fredholm integral equation of the second kind in two variables on a
triangle with vertices at the points (0, 0), (0, 1), (1, 0), i.e.,

T =
{
(x1, x2) : 0 ≤ x1 + x2 ≤ 1, x1 ∈ [0, 1]

}
.

Thus, we consider the Fredholm equation (7.1), over D = T, where y = (y1, y2),
x = (x1, x2), dx = dx1dx2, k and g are given functions defined on T, f is the
unknown function, and the weight function w is given by

w(x1, x2) = xp−1
1 xq−1

2 (x1 + x2)
a(1− x1 − x2)

b, p, q > 0, p+ q + a > 0, b > −1.

There are several applications of this type of integral equations in problems arising
in fracture mechanics, aerodynamics, two dimensional electromagnetic scattering,
etc.

By using a suitable transformation, we can obtain an integral equation on the
square Q = [−1, 1] × [−1, 1], where the corresponding weight appearing into the
integral is the product of a pair of Jacobi weights. Namely, for any x = (x1, x2) ∈ T
and u = (u1, u2) ∈ Q, we introduce the following transformation between the
triangle T and the square Q,

x1 =
1

4
(1 + u1)(1 + u2), x2 =

1

4
(1 + u1)(1− u2), (7.9)

with the Jacobian,

J(x1, x2) =
∂(x1, x2)

∂(u1, u2)
= −1

8
(1 + u1), |J(x1, x2)| =

1

8
v0,1(u1).

Notice that many other maps T ↔ Q are possible, such as, for instance (see [12],
[13]),

x1 =
1

4
(1 + u1)(1− u2), x2 =

1

2
(1 + u2).

However, we use the map (7.9) since, as we will see, it allows us to obtain an integral
equation on the square Q, with a weight function product of two Jacobi weights.

Thus, the two–variables Fredholm integral equation (7.1) over D = T, by using
the map (7.9), transforms to the integral equation

F (v) + ν

∫
Q

h(u,v)F (u)Ω(u)du = G(v), v ∈ Q,
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with a new parameter ν = µ/22p+2q+a+b−1, where

F (v) = F (v1, v2) = f

(
(1 + v1)(1 + v2)

4
,
(1 + v1)(1− v2)

4

)
,

G(v) = G(v1, v2) = g

(
(1 + v1)(1 + v2)

4
,
(1 + v1)(1− v2)

4

)
,

Ω(u) = Ω(u1, u2) = w

(
(1 + u1)(1 + u2)

4
,
(1 + u1)(1− u2)

4

)
,

and the kernel h(u,v) = h(u1, u2, v1, v2) = k(x1, x2, y1, y2) given by

h(u,v) =

k

(
(1 + u1)(1 + u2)

4
,
(1 + u1)(1− u2)

4
,
(1 + v1)(1 + v2)

4
,
(1 + v1)(1− v2)

4

)
.

Here, the weight Ω(u) reduces to a product of two Jacobi weights,

Ω(u) = vb,p+q+a−1(u1)v
q−1,p−1(u2),

where vγ,δ(t) = (1− t)γ(1 + t)δ.
By this way, possible singularities of the kernel k on the boundary of T are

moved to corresponding singularities along the border of the square and “absorbed”
into the Jacobi weights. In [39] we proposed a global approximation of the solution
of the integral equation (7.1) over D = T by means of a Nyström method based on
the tensor product of two univariate Gaussian rules. For such a method we proved
the stability and convergence, as well as the error estimates in weighted uniform
spaces.
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[4] H. Bateman, A. Erdélyi, Higher Transcendental Functions, Vol. I, Krieger, New York,
1981.

[5] G. Birkhoff, D.M. Young, Numerical quadrature of analytic and harmonic functions,
J. Math. Phys. 29 (1950), 217–221.



116 G. V. Milovanović
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formulae, in: G.V. Milovanović (Ed.), Numerical Methods and Approximation The-
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quadratures with multiple nodes, Math. Comput. Modelling 39 (2004), 325–347.

[78] V. P. Motornyi, On the best quadrature formulae in the class of functions with bounded
r–th derivative, East J. Approx. 4 (1998), 459–478.

[79] D. Occorsio, M.G. Russo, Numerical methods for Fredholm integral equations on the
square, Appl. Math. Comput. 218 (2011), 2318–2333.
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