
ON THE INEQUALITIES OF ZYGMUND AND DE BRUIJN

ROMAN R. AKOPYAN1,2, PRASANNA KUMAR3 AND GRADIMIR V. MILOVANOVIĆ4,5

Abstract. For the polar derivative DαP (z) = nP (z) + (α − z)P ′(z) of a
polynomial P (z) of degree n, most of the Lp inequalities available in the lit-
erature are for restricted values of α, and in this paper we extend few such
fundamental results to all of α in the complex plane.

1. Introduction and Statement of Results

Let us denote by Pn, the space of polynomials of degree not more than n, and let
Pn(K) be the collection of polynomials from Pn having no zeros in the disc |z| < K
with K > 0. It is customary to assume that for a polynomial P (z) ∈ Pn of exact
degree n−m, the point at z = ∞ is a zero of P (z) of multiplicity m. We know by
a classical result due to Bernstein (see [18]), which states that if P (z) ∈ Pn is of
degree n, then

max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)|. (1.1)

The inequality (1.1) is sharp and equality holds, if P (z) has all its zeros at the
origin. If P (z) ∈ Pn(1) is of degree n, then Erdős conjectured and later Lax [12]
proved that

max
|z|=1

|P ′(z)| ≤ n

2
max
|z|=1

|P (z)|. (1.2)

The inequality (1.2) is best possible for P (z) = (z + 1)n. Some generalizations of
the inequality (1.2) to the class of Hurwitz polynomials may be seen in the recent
paper of Kumar [11].

For p > 0 and any P (z) ∈ Pn, we now consider the Lp−mean value on the circle
which is defined by

Mp(P ) :=


1

2π

 2π

0

P (eiθ)
p dθ

1/p

.

It is known [9] that Mp(P ) is nondecreasing for p ∈ (0,∞), and is a norm of P (z)
for p ≥ 1. Moreover, the limits p → 0 and p → ∞ exist and

lim
p→0+

Mp(P ) = exp


1

2π

 2π

0

log
P (eiθ)

 dθ


=: M0(P ),

lim
p→∞

Mp(P ) = max
|z|=1

|P (z)| = : M∞(P ).

With reference to [13], the mean value M0(P ) has often been called the Mahler
measure of P .
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Zygmund [20] extended the Bernstein’s inequality (1.1) to Lp norm as

Mp(P
′) ≤ nMp(P ) (1.3)

for any P (z) ∈ Pn of degree n and for any p ≥ 1. The result (1.3) is sharp and
equality holds if P (z) has all its zeros at the origin.

The above inequality of Zygmund was extended by Arestov [1] for 0 < p < 1.
De Bruijn [5] improved Zygmund’s result for the class of polynomials having no

zeros in the disc |z| < 1. He proved that, if P (z) ∈ Pn(1) is of degree n, then for
any p ≥ 1,

Mp(P
′) ≤ n

Mp(P )

Mp(E)
, (1.4)

where E(z) := 1 + z. Equality holds in (1.4) for P (z) = 1 + zn.
Rahman and Schmeisser [17] showed that de Bruijn’s inequality (1.4) is true for

all positive values of p.
If P (z) ∈ Pn is of degree n, then the polar derivative of P (z) with respect to a

complex number α is defined as

DαP (z) = nP (z) + (α− z)P ′(z).

Note that DαP (z) is a polynomial of degree at most n− 1, and

lim
α→∞

DαP (z)

α
= P ′(z)

uniformly with respect to z for |z| ≤ R, R > 0. The polar derivative of a polynomial
appeared apparently in the works of E. Laguere and G. Szegö as a generalization
of the classical derivative of a polynomial in connection with the issues related to
the location of the zeros of polynomials, and is a classical object of research. In
particular, the operator Dα for |α| ≥ 1 is a Bn−operator [16, §14.5].

The Bernstein-type inequalities and their generalizations have been extended to
the polar derivatives of complex polynomials significantly, for which we refer to
the monographs [15] and [16]. Before going into the details, let us introduce some
notations. For any subset πn of Pn, let us denote by Kp(Dα, πn), the smallest
exact possible πn−constant in the inequality

Mp(DαP ) ≤ Kp(Dα, πn)Mp(P ), P ∈ πn. (1.5)

The exact values of Kp(Dα, πn) are known only for some parameter values.
They are most interesting in the cases πn = Pn and πn = Pn(K).

In the case of classical Bernstein inequality (1.1), i.e., for the classical derivative
whenever α = ∞ and for all p, 0 ≤ p ≤ ∞, the equality

lim
α→∞

Kp(Dα, Pn)

|α| = n

is well known (see Zygmund [20], Arestov [1]) as mentioned earlier with the inequal-
ity (1.3). The inequality (1.5) in this case turns into an equality on the polynomials
czn.

On the space Pn, consider the operator I, defining a one-to-one mapping of Pn

onto itself according to the formula

IPn(z) = znPn(1/z). (1.6)

Similarly we define the operator IPn(z) = znPn(1/z) and use it conveniently.
Now it is easy to see that the following proposition holds.
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Proposition 1.1. For any non-zero complex number α, and any subclass πn of
Pn, the equality

Kp(Dα, πn) = |α|Kp(D1/α, Iπn)

holds for 0 ≤ p ≤ ∞, where Iπn is the class of polynomials, which is the image of
class πn when mapped by the operator I. In particular, on the space Pn the equality

Kp(Dα, Pn) = |α|Kp(D1/α, IPn)

holds.

The exact Bernstein’s inequality (1.1) for the polar derivative of polynomials
from Pn for |α| ≥ 1 in the uniform norm was first obtained by Aziz in 1988 [3]. In
fact he proved that, if P (z) ∈ Pn is of degree n, then

max
|z|=1

|DαP (z)| ≤ n|α|max
|z|=1

|P (z)|, (1.7)

whenever |α| ≥ 1. This result is sharp and equality holds for P (z) = zn whenever
α ≥ 1.

In the same paper, Aziz [3] established the polar derivative version of the in-
equality (1.2) by proving that, if P (z) ∈ Pn(1) is of degree n, then for any complex
number α with |α| ≥ 1,

max
|z|=1

|Dα{P (z)}| ≤ n

2
(1 + |α|) max

|z|=1
|P (z)|. (1.8)

The inequality (1.8) is best possible for P (z) = 1 + zn whenever α ≥ 1.
Taking Proposition 1.1 into account with the input of p = ∞, we obtain the

following.

Corollary 1.2. For any complex number α

K∞(Dα, Pn) = nmax{1, |α|}.
Again the inequality (1.5) on Pn turns into an equality for |α| ≥ 1 on the polyno-
mials zn and for |α| < 1 on the constants.

One can see in the literature that the inequalities for the polar derivative DαP (z)
of a polynomial P (z) are available mostly for restricted values of α, and for more
information we refer to [7].

To the best of our knowledge, the Lp extension of the inequality (1.7) for any
complex values of α is not available and therefore an attempt is made in this paper
to settle this problem to some extent.

The inequality (1.8), and its extension in Lp settings are available only for |α| ≥
1, and one of the more generalized results in this direction is due to Govil and
Kumar [8], which is given by

Mp(Dα(P )) ≤ n(t0 + |α|)
Mp(Et0,1)

Mp(P ) (1.9)

or equivalently

Kp(Dα, Pn(1)) ≤
n(t0 + |α|)
Mp(Et0,1)

for any p ≥ 0, and for every complex number α with |α| ≥ 1, where all the zeros
zm, 1 ≤ m ≤ n (counting multiplicity) of any polynomial P (z) ∈ Pn(1) of degree
n are such that |zm| ≥ Km, 1 ≤ m ≤ n. Here Et0,1(z) := t0 + z, and t0 =
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1 + n
n

m=1(Km − 1)−1
−1

if Km > 1 (1 ≤ m ≤ n), and t0 = 1 if Km = 1 for
some m, 1 ≤ m ≤ n.

When Km = K for all m, then for any p ≥ 0 and for every complex number α
with |α| ≥ 1, we have

Kp(Dα, Pn(K)) ≤ n(K + |α|)
Mp(EK,1)

, (1.10)

where EK,1(z) := K + z.
As a particular case, when K = 1 in the above inequality (1.10), we obtain the

bound for Lp copy of the inequality (1.8), which states that, for any p ≥ 0 and for
every complex number α with |α| ≥ 1,

Kp(Dα, Pn(1)) ≤ n(1 + |α|)
Mp(E)

, (1.11)

where E(z) = 1 + z.
The case p = ∞ in (1.11) gives the inequality (1.8).
Let us prove some fundamental results that will fill the long-standing gaps in

the literature on the inequalities for polar derivatives of complex polynomials in Lp

environment. To begin with, let us present our first result on the Lp version of the
inequality (1.7) not only for |α| ≥ 1, as given in the hypotheses of (1.7), but also
for |α| < 1. The result states that

Theorem 1.3. For any complex number α and p ≥ 0, we have

Kp(Dα, Pn) ≤ nmin


1 + |α|, 2max{1, |α|}

Mp(E)


(1.12)

whenever E(z) = 1 + z. When p = ∞, the bound in (1.12) is best possible and
consequently the equality in (1.5) holds for P (z) = zn whenever |α| ≥ 1 and πn =
Pn.
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Figure 1. The constant Mp(E) for 0 ≤ p ≤ 80
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It is known that

Mp(E) =






1, if p = 0,


2p Γ(p+1
2 )

√
π Γ(p2 + 1)

1/p

, if 0 < p < ∞,

2, if p = ∞,

where Γ denotes the gamma function (see Figure 1). Note that M1(E) = 4/π and

M2(E) =
√
2.

It may be remarked that for any non-negative values of p, the equality Mp(E) =
Mp(z

n + c), holds whenever |c| = 1. Since M0(E) = 1, the exact bound in the
inequality (1.5) for the case p = 0 is quite interesting and significant, and stated
below.

Corollary 1.4. For any complex number α,

K0(Dα, Pn) = n(1 + |α|)
and the inequality (1.5) for p = 0 and πn = Pn, turns into equality on polynomials
c(z + a)n whenever |a| = 1 and arg(a) = arg(α).

Apparently, on Pn, the inequality (1.5) for p = 0 is sharp and the equality is
attained for P (z) = (1+z)n when α = 0 and for P (z) = (1 + αz/|α|)n when α ∕= 0.

Since M∞(E) = 2, we obtain the inequality

M∞(DαP (z)) ≤ nmax{1, |α|}M∞(P ) (1.13)

that extends the inequality due to Aziz [3, p. 188] given by

M∞(DαP (z)) ≤ n|α|M∞(P ) for |α| ≥ 1

to all values of α. The inequality (1.13) is best possible for any complex number α.
As mentioned earlier, the equality is attained for P (z) = zn whenever |α| ≥ 1.
When |α| < 1, the sequence of polynomials Pk(z) = 1 + zn/kn shows that for
k → ∞ the πn−constant cannot be replaced by a smaller number in this case.

Remark 1.5. It is quite natural to think about the lower estimate for Kp(Dα, Pn).
We can conclude from the examples zn + c and (z + c)n that

Kp(Dα, Pn) ≥ nmax


Mp(αz + 1)

MP (E)
,

(1 + |α|)M(n−1)p(E)

Mnp(E)



for any complex values of α and p ≥ 0.

As explained earlier, the exact constant Kp(Dα, Pn(1)) of the inequality for
the classical derivative for α = ∞, and 0 ≤ p ≤ ∞ (see [12], [5], [17] and [2]) is
expressed by

lim
|α|→∞

Kp(Dα, Pn(1))

|α| =
n

Mp(E)

for 0 ≤ p ≤ ∞. The inequality (1.5) on Pn(1) turns into equality on the polynomials
c(zn + a), with |a| = 1, and in the case of p = ∞, on any arbitrary polynomial
having all its zeros on the unit circle.

The exact inequality (1.5) for polynomials in Pn(1) for |α| ≥ 1 in the uniform
norm is obtained by Aziz in 1988 [3]. For |α| < 1 in the inequality (1.5) without
any restrictions on the zeros of polynomials, the extremal polynomial has all its
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zeros at the point z = ∞ and therefore, the exact constant in this case coincides
with the constant in the inequality without restrictions. As a result, the equality

K∞(Dα, Pn(1)) =
n

2
(1 + max{1, |α|})

is true for all complex values of α. In this case the inequality (1.5) turns into
equality for |α| ≥ 1 on the polynomials zn + c with |c| = 1, and for |α| ≤ 1 on
constants.

Thus the inequality (1.8), and its various generalizations in general Lp settings
have been proved for |α| ≥ 1 (see [7]) and the inequality (1.5) with the πn− constant
given in (1.9) is one such result and as mentioned earlier, the case |α| < 1 is still
open. So let us establish the consolidated bound for Mp(DαP ) for any values of α
as follows.

Theorem 1.6. For any p ≥ 0 and any complex number α, we have

Kp(Dα, Pn(1)) ≤






n(1 + |α|)
Mp(E)

, if |α| ≥ 1,

n(1 + |α|)
Mp(E1,α)

, if |α| < 1,

where E(z) is as defined in Theorem 1.3, and E1,α(z) := 1 + αz. In the case
p = ∞, the above bound for πn−constant is best possible and equality in (1.5) on
Pn(1) holds for P (z) = 1 + zn whenever |α| ≥ 1.

In fact, the case p = ∞ in the above inequality extends the inequality (1.8) to
all complex values of α as given below.

Corollary 1.7. For any complex number α, we have

K∞(Dα, Pn(1)) ≤






n

2
(1 + |α|), if |α| ≥ 1,

n, if |α| < 1.

This πn−constant when πn = Pn(1) is best possible and equality in this case holds
in (1.5) for P (z) = zn + 1 whenever |α| ≥ 1 and for |α| < 1, the sequence of
polynomials Pk(z) = 1 + zn/kn shows that as k → ∞, the bound n cannot be
replaced by any smaller value.

The corresponding result for the case p = 0 is also quite interesting and given
below.

Corollary 1.8. For any complex values of α, the equality

K0(Dα, Pn(1)) = K0(Dα, Pn) = n(1 + |α|)
hold.

The above equality in Corollary 1.8 is a consequence of the fact that the inequal-
ity for polynomials without restrictions turns into equality for polynomials with
zeros on the unit circle.

Remark 1.9. For any P (z) ∈ Pn(1) of degree n, the Mahler measure is M0(P ) =
|P (0)|. Hence for p = 0, and |α| ≥ 1 the inequality (1.5) with πn−constant given
in Theorem 1.6 for |α| ≥ 1 may be rewritten as

1

2π

 2π

0

log
DαP (eiθ)

 dθ ≤ log

n(1 + |α|) |P (0)|


.
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Remark 1.10. As a factor depending on α but not on p, the term 1 + |α| in Theo-
rem 1.6 is best possible. Indeed, equality is attained when p = ∞ and P (z) = 1+zn

with |α| ≥ 1. Also it may be a challenge to find the unique smallest number
Kp(Dα, πn) depending on α and p that can replace the terms 1 + |α| given in
Theorems 1.3 and 1.6.

Remark 1.11. The lower estimate for Kp(Dα, Pn(1)) would also be useful and again
from the examples zn + c and (z + c)n we can arrive that

Kp(Dα, Pn(1)) ≥ nmax


Mp(αz + 1)

MP (E)
,

(1 + |α|)M(n−1)p(E)

Mnp(E)



for any complex values of α.

On the class of polynomials Pn(K), K ≥ 1, the sharp πn−constants in the
inequality (1.5) for the classical derivative was given by M. A. Malik [14]. In view
of this, Theorem 1.6 can be generalized to the class of polynomials having no zeros
in a disc |z| < K, K ≥ 1, as follows.

Theorem 1.12. Let K ≥ 1. Then for any p ≥ 0, and for every complex number α,
we have

Kp(Dα, Pn(K)) ≤






n(K + |α|)
Mp(EK,1)

, if |α| ≥ 1,

n(K + |α|)
Mp(EK,α)

, if |α| < 1,

where EK,1(z) := K + z and EK,α(z) := K + αz. In the case p = ∞, the above
πn−constant and the inequality (1.5) in this case is best possible and equality holds
for the polynomial (z +K)n with real α ≥ 1, and K ≥ 1.

In the lines of the inequality (1.9), the above result can be further sharpened as
follows.

Theorem 1.13. If P (z) is a polynomial of degree n and zm are its zeros such that
|zm| ≥ Km ≥ 1, 1 ≤ m ≤ n, then for any p ≥ 0, and for every complex number α,

Mp(Dα(P )) ≤






n(t0 + |α|)
Mp(Et0,1)

Mp(P ), if |α| ≥ 1,

n(t0 + |α|)
Mp(Et0,α)

Mp(P ), if |α| < 1,

where Et0,1(z) := t0+z and Et0,α(z) := t0+αz and t0 = 1+n
n

m=1(Km − 1)−1
−1

if Km > 1 (1 ≤ m ≤ n), and t0 = 1 if Km = 1 for some m, 1 ≤ m ≤ n.
In the case p = ∞, the above inequality is best possible if Km = K ≥ 1, 1 ≤ m ≤

n, and equality holds for the polynomial (z +K)n with real α ≥ 1, and K ≥ 1.

Remark 1.14. Since Theorem 1.13 contains Theorems 1.6 and 1.12, we prove only
Theorem 1.13. Also observe that the case |α| ≥ 1 in Theorem 1.13 is already
established as given in (1.9), and therefore we present the proof only for |α| < 1.

As mentioned earlier, surprisingly, the corresponding result for p = ∞ in The-
orems 1.6, 1.12 and 1.13 for the case |α| < 1 are same, and they are independent
of the location of zeros as given in Corollary 1.7. But it may be observed that for
|α| ≥ 1, the results behave differently (see also [7]) as functions of α, and K or t0
accordingly.
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The next result which seems to be of independent interest, and it can be obtained
using the above Theorem 1.13.

Theorem 1.15. If P (z) is a polynomial of degree n, and zm are its zeros such
that 0 < |zm| ≤ Km ≤ 1, 1 ≤ m ≤ n, then for any p ≥ 0, and for every complex
number α,

Mp(Dα(P )) ≤






n|α|(1 + |α|s0)
Mp(Eαs0,1)

Mp(P ), if |α| > 1,

n(1 + |α|s0)
Mp(Es0,1)

Mp(P ), if |α| ≤ 1,

where Eαs0,1(z) := αs0 + z, and s0 = 1 + n (
n

m=1 Km/(1−Km))
−1

if Km < 1
(1 ≤ m ≤ n), and s0 = 1 if Km = 1 for some m, 1 ≤ m ≤ n. Again in the case
p = ∞, the above inequality is sharp in the case Km = K ≤ 1, 1 ≤ m ≤ n and
equality holds for the polynomial (z+K)n with non-negative real α ≤ 1 and K ≤ 1.

Remark 1.16. For the case |α| ≤ 1, Theorem 1.15 is already established by Govil
and Kumar [8], and therefore we will be proving only the case |α| > 1.

Before closing this section, let us make a remark on lower bound for M∞(DαP )
in Corollary 1.7 whenever |α| < 1.

From the definition of the polar derivative of a polynomial P (z) of degree n, it
follows that, for |α| < 1, and for any real values of θ,

|DαP (eiθ)| ≥ |nP (eiθ)|− (1 + |α|)|P ′(eiθ)|
and therefore

M∞(DαP ) ≥ nM∞(P )− (1 + |α|)M∞(P ′).

If P (z) has no zeros in |z| < 1 then the inequality (1.2) applies here and therefore
we get

M∞(DαP ) ≥ n

2
(1− |α|)M∞(P ),

which brings us to the following result.

Proposition 1.17. If P (z) is a polynomial of degree n having all its zeros outside
the open unit disc, then for any α with |α| < 1, we have

M∞(DαP )) ≥ n

2
(1− |α|)M∞(P ). (1.14)

The result is sharp and equality holds in the above inequality whenever α = 0 for
the polynomial zn + 1.

It may be observed that when α = 0, the above inequality (1.14) gives the well
known Turán’s inequality [19], a generalization of which was recently proved by
Kumar [10].

2. Lemmas

We need the following lemmas to prove our results. First lemma is a simple
exercise [8].

Lemma 2.1. Let z1, z2 ∈ C and 0 ≤ α ≤ 2π. Then for any p ≥ 0, we have
 2π

0

z1 + z2e
iα
p dα =

 2π

0

|z1|+ |z2|eiα
p dα.
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Next lemma is contained in the paper due to de Bruijn [5, inequality (19)], but
we present a different proof over here.

Lemma 2.2. Let A,B ∈ C. Then for any real values of γ, and p ≥ 0
 2π

0

A+Beiγ
p dγ ≥ 2πmax{|A|p, |B|p }.

Proof. In view of the Lemma 2.1, it suffices to prove Lemma 2.2 for positive values
of A and B. Without loss of the generality, assume that A ≥ B > 0, and set
r = B/A ∈ (0, 1]. Then consider the function

f(p) =

 2π

0

|1 + reiθ|p dθ.

Since the map p → |1+ reiθ|p is convex for each choice of r and θ, it follows that
f(p) is also convex. Moreover,

f ′(0) = Re

 2π

0

log(1 + reiθ) dθ


= Re



|z|=r

log(1 + z)

iz
dz


= 0.

Hence f(0) = 2π is the global minimum of f(p) or equivalently

f(p) ≥ f(0) = 2π,

which completes the proof. □

The following lemma is motivated by a proof in [16, p. 554].

Lemma 2.3. Let P (z) ∈ Pn(1) be of degree n. Then for any γ ∈ R, we have

zP ′(z) + eiγ

nP (z)− zP ′(z)


∈ Pn(1). (2.1)

Proof. Suppose that P (z) = c
m

µ=1(z − zµ), where c ∕= 0, m ≤ n and |zµ| ≥ 1 for
µ = 1, . . . ,m. For any given z and ζ in the open unit disk, we have

n− (z − ζ)
P ′(z)

P (z)
=

n

ν=1

Aν ,

where

Aν :=






ζ − zν
z − zν

, for ν = 1, . . . ,m,

1, for ν = m+ 1, . . . , n.

Now consider the image of K := {w ∈ C : |w| ≥ 1} ∪ {∞} under the Möbius
transform

ψ : w → ζ − w

z − w
.

Since ψ(∞) = 1 and ψ(w) ∕∈ {0,∞} for w ∈ K, we conclude that ψ(K) is a closed
disk that contains all the numbers A1, . . . , An but not the point 0. Hence, by a
convexity argument,

0 ∕= 1

n

n

ν=1

Aν ∈ ψ(K),

which implies that nP (z) − (z − ζ)P ′(z) ∕= 0. This holding for any |z| < 1 and
|ζ| < 1, it also holds for |z| < 1 and ζ = ze−iγ . Thus, (2.1) holds true. □
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Now we shall employ a rather deep result of Arestov [1]. First we introduce a
notation. For l = (l0, . . . , ln) ∈ Cn+1, let Λl be the linear operator that associates
with each polynomial P (z) =

n
k=0 akz

k of degree at most n the polynomial

(ΛlP ) (z) :=

n

k=0

lkakz
k .

Definition 2.4. We call the operator Λl admissible if it has the following property:
whenever P (z) is a polynomial of degree at most n not vanishing for |z| < 1, then
either (ΛlP )(z) ≡ 0 or (ΛlP )(z) ∕= 0 for |z| < 1.

The following lemma is part of a result of Arestov [1, Theorem 4]; also see [16,
Theorem 13.2.11].

Lemma 2.5. Let φ(t) = ψ(log t), where ψ is a convex nondecreasing function on R.
Then for any P (z) ∈ Pn and any admissible operator Λl, we have

 2π

0

φ
ΛlP


(eiθ)

 dθ ≤
 2π

0

φ

c(l, n)

P (eiθ)
 dθ, (2.2)

where c(l, n) = max(|l0| , |ln|).

Lemma 2.6. Let a, b be any complex numbers and suppose that |a| ≥ |b| > 0. Then
for any p > 0, the function

f(x) :=

 2π

0

|a+ xb eiγ |p dγ (2.3)

is increasing on (0, 1) and f(x) < f(1) for all x ∈ (0, 1).

Proof. In view of Lemma 2.1, it suffices to prove (2.3) for non-negative values of
a, b with a ≥ b > 0.

In fact the result can be verified using subordination property. Since the function
g(z) = a+ bz is analytic in the open unit disc |z| < 1, the function gp(z) = |g(z)|p
is subharmonic in the open unit disc for any p > 0. Therefore

f(x) :=

 2π

0

gp(xe
iθ) dθ

is an increasing function of x ∈ (0, 1), which establishes (2.3).
But let us present an alternative proof in detail. The function (1 + z)p/2 has an

analytic branch φ(z) in the open unit disc such that φ(x) > 0 for all x ∈ (−1, 1).
This branch has the binomial series as power series expansion given by

φ(z) =

∞

j=0


p/2

j


zj ,

where

p/2

j


=

1

j!
· p
2

p
2
− 1


· · ·

p
2
− (j − 1)


.
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Note that the series converges absolutely for |z| < 1. Using this function φ(z) and
and its expansion, we can write the integrand in (2.3) as

|a+ xbeiγ |p = apφ


xb

a
eiγ


φ


xb

a
e−iγ



= ap
∞

j=0

∞

k=0


p/2

j


p/2

k


xb

a

j+k

eiγ(j−k).

Since the series is absolutely convergent, we can perform the integration termwise
with respect to γ over [0, 2π]. Observe that for the terms with j ∕= k, the integral
vanishes and thus we obtain

f(x) = ap
∞

j=0


p/2

j

2 
xb

a

2j

.

This shows that f(x1) < f(x2) for 0 < x1 < x2 < 1, which proves the first part. The
second part on the comparison of f(x) with f(1) follows from the continuity. □

Lemma 2.7. Let a, b be any two positive real numbers and l ≥ 1 such that a ≥ bl.
Suppose γ is any real such that 0 ≤ γ ≤ 2π. Then

|l +meiγ |(a+mb) ≤ (l +m)|a+ eiγmb|

for any 0 ≤ m < 1.

Proof. We need to show that

a+mb

l +m
≤


a+ eiγmb

l + eiγm

 ,

which is equivalent to

b+
a− bl

l +m
≤

b+
a− bl

l + eiγm

 .

Observe that Re

1/(l + eiγm)


is an increasing function of γ which increases from

1/(l+m) to 1/(l−m) in [0,π] and decreases in the reverse order in [π, 2π]. Therefore,
Re


1/(l + eiγm)


≥ 1/(l +m) for any real value of γ, and therefore

b+
a− bl

l +m
≤ Re


b+

a− bl

l + eiγm


≤

b+
a− bl

l + eiγm

 .

Hence the proof is complete. □

Finally we need the following result due to Gardner and Govil [6].

Lemma 2.8. If P (z) = an
n

m=1(z − zm) ∈ Pn(1) is of degree n such that |zm| ≥
Km ≥ 1, 1 ≤ m ≤ n, then on |z| = 1,

t0|P ′(z)| ≤ |nP (z)− zP ′(z)|,

where t0 is as given in Theorem 1.13.
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3. Proofs of Theorems

Proof of Theorem 1.3. Let R = max{|α|, 1}. For p > 0, we consider the term

T :=

 2π

0

(1 + eiγ)
p dγ

 2π

0

Dα{P (eiθ)}
p dθ. (3.1)

Obviously it may be rewritten and estimated as

T =

 2π

0

 2π

0

(1 + eiγ)
p Dα{P (eiθ)}

p dγ dθ

=

 2π

0

 2π

0

(1 + eiγ)
p nP (eiθ)− eiθP ′(eiθ) + αP ′(eiθ)

p dγ dθ

≤
 2π

0

 2π

0

(1 + eiγ)
p
nP (eiθ)− eiθP ′(eiθ)

+
αP ′(eiθ)


p

dγ dθ

≤ Rp

 2π

0

 2π

0

(1 + eiγ)
nP (eiθ)− eiθP ′(eiθ)

+
P ′(eiθ)




p

dγ dθ

≤ (2R)p
 2π

0

 2π

0


P ′(eiθ)

+ eiγ
nP (eiθ)− eiθP ′(eiθ)




p

dγ dθ

= (2R)p
 2π

0

 2π

0

eiθP ′(eiθ)
+ eiγ

nP (eiθ)− eiθP ′(eiθ)
p dγ dθ, (3.2)

where we have used the fact

P ′(eiθ)

+ eiγ
nP (eiθ)− eiθP ′(eiθ)


 =


nP (eiθ)− eiθP ′(eiθ)

+ eiγ
P ′(eiθ)


.

(3.3)
Now employing Lemma 2.1 to the integral with respect to γ in (3.2) and inter-

changing the order of integration afterwards, we find that

T ≤ (2R)p
 2π

0

 2π

0

eiθP ′(eiθ) + eiγ

nP (eiθ)− eiθP ′(eiθ)

p dθ dγ. (3.4)

It is easily verified that the linear mapping

P (z) → zP ′(z) + eiγ

nP (z)− zP ′(z)



is an operator Λl with the vector l ∈ Cn+1 given by

lk := k

1− eiγ


+ neiγ (k = 0, 1, . . . , n).

By Lemma 2.3, this operator is admissible in the sense of Definition 2.4. Further-
more, for t > 0 and p > 0, we have tp = ψ(log t), where ψ is a nondecreasing,
convex function on R. Hence Lemma 2.5 applies to the inner integral in (3.4).
Since max(|l0| , |ln|) = n, we obtain

 2π

0

eiθP ′(eiθ) + eiγ

nP (eiθ)− eiθP ′(eiθ)

p dθ ≤ np

 2π

0

P (eiθ)
p dθ. (3.5)
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Finally, integrating both sides with respect to γ over [0, 2π] and combining the
resulting inequality with (3.4) and the definition of T in (3.1), we arrive at

 2π

0

|1 + eiγ |p dγ
 2π

0

Dα{P (eiθ)}
p dθ ≤ (2R)p2πnp

 2π

0

P (eiθ)
p dθ,

which proves one part of the requirement with the fact that R = |α| if |α| ≥ 1, and
R = 1 if |α| < 1 by obtaining the inequality (1.5), where

Kp(Dα, Pn) =






2n|α|
Mp(E)

, if |α| ≥ 1,

2n

Mp(E)
, if |α| < 1,

and E(z) = 1 + z.
Let us establish the remaining part of our claim. For any p > 0, and using the

inequality (3.5), we get

S = np(1 + |α|)p
 2π

0

|P (eiθ)|pdθ =
1

2π
np(1 + |α|)p

 2π

0

 2π

0

|P (eiθ)|p dθ dγ

≥ 1

2π
(1 + |α|)p

 2π

0

 2π

0

eiθP ′(eiθ) + eiγ(nP (eiθ)− eiθP ′(eiθ)
p dθ dγ

for any γ with 0 ≤ γ ≤ 2π. Therefore, using Lemma 2.1, we have

S ≥ 1

2π
(1 + |α|)p

 2π

0

 2π

0

|P ′(eiθ)|+ eiγ |nP (eiθ)− eiθP ′(eiθ)|
p dγ dθ

=
1

2π

 2π

0

 2π

0

|P ′(eiθ)|+ eiγ |nP (eiθ)− eiθP ′(eiθ)|


+|α|
|nP (eiθ)− eiθP ′(eiθ)|+ eiγ |P ′(eiθ)|

p dθ dγ,

where we used again the property given in (3.3). Therefore using the triangle
inequality and then by doing some rearrangements, we will have

S ≥ 1

2π

 2π

0

 2π

0

|P ′(eiθ)|+ |α||nP (eiθ)− eiθP ′(eiθ)|

+ eiγ

|nP (eiθ)− eiθP ′(eiθ)|+ |α||P ′(eiθ)|

p dγ dθ.

Now, applying Lemma 2.2, we get

S ≥
 2π

0

|nP (eiθ)− eiθP ′(eiθ)|+ |αP ′(eiθ)|
p dθ

≥
 2π

0

nP (eiθ)− eiθP ′(eiθ) + αP ′(eiθ)
p dθ,

and therefore we have

S ≥
 2π

0

DαP (eiθ)
p dθ.

Now raising to the power 1/p on both sides of the above inequality we get

Mp(DαP ) ≤ n(1 + |α|)Mp(P ). (3.6)
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Thus, the second estimate for πn−constant in this case is

Kp(Dα, Pn) ≤ n(1 + |α|).

The bound n(1+ |α|) in (3.6) was first observed by Aziz and Rather [4]. Combining
the above two estimates of Kp(Dα, Pn) we get the desired bound for p > 0. The
cases p = 0 and p = ∞ are deduced by a limiting process. Thus the proof is
complete. □

Proof of Theorem 1.13. We have for any p > 0 and |α| < 1,

 2π

0

Dα


P (eiθ)

p dθ
 2π

0

|t0 + αeiγ |p dγ

=

 2π

0

 2π

0

|t0 + αeiγ |p
Dα


P (eiθ)

p dθ dγ

=

 2π

0

 2π

0

|t0 + αeiγ |p
nP (eiθ)− eiθP ′(eiθ) + αP ′(eiθ)

p dθ dγ

≤
 2π

0

 2π

0

|t0 + |α|eiγ |p

|nP (eiθ)− eiθP ′(eiθ)|+ |α| |P ′(eiθ)|

p
dγ dθ,

where we used Lemma 2.1. Therefore
 2π

0

Dα


P (eiθ)

p dθ
 2π

0

|t0 + αeiγ |p dγ

≤
 2π

0

 2π

0

(t0 + |α|eiγ)

|nP (eiθ)− eiθP ′(eiθ)|+ |α||P ′(eiθ)|

p dγ dθ. (3.7)

Since the zeros zm of P (z) satisfy |zm| ≥ Km ≥ 1, it follows by Lemma 2.8 that

t0|P ′(eiθ)| ≤ |nP (eiθ)− eiθP ′(eiθ)|.

The above by using Lemma 2.7, we have for every complex number α with |α| < 1,

|nP (eiθ)− eiθP ′(eiθ)|+ |α||P ′(eiθ)|


|t0 + |α|eiγ |

≤ (t0 + |α|)
|nP (eiθ)− eiθP ′(eiθ)|+ eiγ |α||P ′(eiθ)|

 . (3.8)

Now, if we use the above inequality (3.8) in (3.7), and again using Lemma 2.1, we
get

 2π

0

Dα


P (eiθ)

p dθ
 2π

0

|t0 + αeiγ |pdγ

≤ (|α|+ t0)
p

 2π

0

 2π

0

|nP (eiθ)− eiθP ′(eiθ)|+ eiγ |α||P ′(eiθ)|
p dγ dθ.

By applying Lemma 2.6 to the inner integral above and, then using the inequality
(3.3) and Lemma 2.1 we get

 2π

0

Dα


P (eiθ)

p dθ
 2π

0

|t0 + αeiγ |pdγ

≤ (|α|+ t0)
p

 2π

0

 2π

0

eiθP ′(eiθ) + eiγ

nP (eiθ)− eiθP ′(eiθ)

p dγ dθ. (3.9)
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Again using the inequality that appeared in the proof of Theorem 1.3 given by
 2π

0

eiθP ′(eiθ) + eiγ

nP (eiθ)− eiθP ′(eiθ)

p dθ ≤ np

 2π

0

P (eiθ)
p dθ

in (3.9), we obtain
 2π

0

Dα


P (eiθ)

p dθ
 2π

0

|t0+αeiγ |pdγ ≤ (|α|+ t0)
p2πnp

 2π

0

|P (eiθ)|pdθ, (3.10)

and the desired inequality can now be obtained by raising to the power 1/p on both
sides of (3.10), and then doing some rearrangement of terms. Again the cases p = 0
and p = ∞ are deduced by a limiting process. Thus the proof is complete. □

Proof of Theorem 1.15. This result is a consequence of Theorem 1.12 and Propo-
sition 1.1. For the sake of completeness, we present the proof over here. Since
P (z) has all its zeros zm such that 0 < |zm| ≤ Km, Km ≤ 1, the polynomial

IP (z) = Q(z) = znP (1/z) has zeros 1/zm with |1/zm| ≥ 1/Km ≥ 1. Therefore,
applying Theorem 1.13 to the polynomial Q(z), we get for any complex number
|α| < 1 and p ≥ 0,

Mp(DαQ) ≤ n(|α|+ s0)

Mp(Es0,α)
Mp(Q).

If |α| > 1, then 1/|α| < 1, and hence by replacing α by 1/α in the above
inequality, we get for |α| > 1,

Mp(D1/α Q) ≤ n(s0, |1/α|)
Mp(E1/α,s0)

Mp(Q).

Using the Proposition 1.1 with operator I in the above inequality we get

Mp(DαP ) ≤ n|α|(|1 + |α|s0)
Mp(E1,αs0)

Mp(Q).

Since |Q(eiθ)| = |P (eiθ)|, the above inequality reduces to desired inequality, and
therefore the proof is complete. □

Acknowledgments. The authors are deeply grateful to the referees for their
valuable comments and constructive suggestions for improvements of this paper and
its better presentation. The second author was supported in part by the Serbian
Academy of Sciences and Arts (Φ-96).

References

1. V. V. Arestov, On integral inequalities for trigonometric polynomials and their derivatives,
Izv. Akad. Nauk SSSR Ser. Math., 45 (1981), 3–22 (in Russian); English translation: Math.
USSR-Izv., 18 (1982), 1–17.

2. V. V. Arestov, Integral inequalities for algebraic polynomials with a restriction on their zeros,
Anal. Math., 17 (1991), 11–20.

3. A. Aziz, Inequalities for the polar derivative of a polynomial, J. Approx. Theory 55 (1988),
183–193.

4. A. Aziz and N. A. Rather, On an inequality concerning the polar derivative of a polynomial,
Proc. Indian Acad. Sci. (Math. Sci.), 117 (2007), 349–357.

5. N. G. de Bruijn, Inequalities concerning polynomials in the complex domain, Nederl. Akad.
Wetensch. Proc. Ser. A, 50 (1947), 1265–1272.

6. R. B. Gardner and N. K. Govil, Inequalities concerning the Lp norm of a polynomial and its
derivative, J. Math. Anal. Appl., 179 (1993), 208–213.



16 AKOPYAN, KUMAR AND MILOVANOVIĆ
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