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Abstract
In this paper, we introduce two novel forward-backward splitting algorithms (FBSAs) for
nonsmooth convex minimization. We provide a thorough convergence analysis, emphasiz-
ing the new algorithms and contrasting them with existing ones. Our findings are validated
through a numerical example. The practical utility of these algorithms in real-world appli-
cations, including machine learning for tasks such as classification, regression, and image
deblurring reveal that these algorithms consistently approach optimal solutions with fewer
iterations, highlighting their efficiency in real-world scenarios.

Keywords Iterative algorithm · Variational inequalities · Relaxed (κ ,ω)-cocoercive
mappings · Nonexpansive mappings

1 Introduction

A large number of problems encountered in distinct disciplines like variational inequalities,
mini-max, optimization problems, etc. can be modelled as the finding zero points of sum of
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two nonlinear operators in a Hilbert space H as follows (see [1–4]):

0 ∈ (�1 + �2)x, (1)

in which �1 : H → 2H is a multivalued mapping and �2 : H → H is a mapping. Since most
of the problems encountered in applied and computational fields such as signal processing,
machine learning, and image recovery can be modeled as the inclusion composed of the sum
of two nonlinear operators, splitting methods have attracted the attention of many researchers
(see [5–7]). These methods are very useful as they process each operator separately instead
of processing the sum of the operators. Here, it is possible to divide the handled process into
two parts as the case in which the value of the operator is determined by forward calculations
and the case in which the operator’s resolvent is determined by backward calculations.

For the identity operator I : H → H, a mapping J�1 = (I +�1)
−1 is named the resolvent

of �1.
The forward-backward algorithm (FBA) is one of the well-known splitting methods when

�2 in (1) is single-valued. Each step of this algorithm combines forward calculation of �2

and backward calculation of �1 to reach the solution of (1). A standard forward-backward
splitting algorithm (FBSA) is formulated as follows (see [8]):

AlgorithmFBSA : un+1 = (I + ��1)
−1(I − ��2)un, n ≥ 0,

with an appropriate u0 ∈ H and � > 0. This algorithm involves both the proximal point
algorithm and the gradient methods (see [9, 10]). Lions and Mercier [8] proposed two split-
ting algorithms for the evolutionary and stationary problems composed of the sum of two
multivalued monotone mappings:

Splitting algorithm 1 : vn+1 = (2J�1
� − I )(2J�2

� − I )vn, n ≥ 0;
Splitting algorithm 2 : vn+1 = J�1

� (2J�2
� − I )vn + (I − J�2

� )vn, n ≥ 0,

in which C = �1 or C = �2 such that JC� = (I + �C)−1. They proved various convergence
results for these algorithms and implemented these results to the minimization problems and
to the obstacle problem.

Due to their diverse range of applications, these algorithms have proven to be highly
valuable. Consequently, a substantial number of FBSA have been introduced and thoroughly
investigated within the context of monotone operators (see [11–19]) and references therein.

In the next section, we will recall some recently defined algorithms in this context and
present some key facts which will be used to derive the main results of this exposition.

2 Preliminaries and formulations

Throughout this exposition, unless otherwise stated, (H, ‖ · ‖ ) stands for a real Hilbert space
in which ‖ · ‖ is defined by the inner product 〈 ·, · 〉, ∅ 	= C ⊆ H denotes convex and closed
set and T : C → C be a mapping.

Definition 1 A mapping �2 : H → H is called: (i) monotone if

(∀ν1, ν2 ∈ H) 〈�2ν1 − �2ν2, ν1 − ν2〉 ≥ 0;
(ii) φ-strongly monotone if there exists a constant φ > 0 such that

(∀ν1, ν2 ∈ H) 〈�2ν1 − �2ν2, ν1 − ν2〉 ≥ φ ‖ν1 − ν2‖2 ;
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(iii) φ-inverse strongly monotone (φ-ism) if there exists a constant φ > 0 such that

(∀ν1, ν2 ∈ H) 〈�2ν1 − �2ν2, ν1 − ν2〉 ≥ φ ‖�2ν1 − �2ν2‖2 ;
(iv) firmly nonexpansive if

(∀ν1, ν2 ∈ H) 〈ν1 − ν2, �2ν1 − �2ν2〉 ≥ ‖�2ν1 − �2ν2‖2 ;
(v) expanding if there exists a constant h > 1 such that

(∀ν1, ν2 ∈ H) ‖�2ν1 − �2ν2‖ ≥ h ‖ν1 − ν2‖ .

Definition 2 Amultivalued mapping �1 : H → 2H is called (i)monotone if for all κ1, κ2 ∈
H, ν1 ∈ �1κ1, ν2 ∈ �1κ2, 〈ν1 − ν2, κ1 − κ2〉 ≥ 0; (ii) strongly monotone if there exists a
constant φ > 0 such that for all κ1, κ2 ∈ H, ν1 ∈ �1κ1, ν2 ∈ �1κ2,

〈ν1 − ν2, κ1 − κ2〉 ≥ φ ‖κ1 − κ2‖2 ;
(iii) maximal monotone if �1 monotone and (I + ��1)H = H holds for all � > 0 in which
I is the identity mapping in H.

Let�1 be amultivaluedmonotonemappingwith the graphGr(�1). If amonotonemapping
�2 with graph Gr(�2) such that Gr(�1) ⊂ Gr(�2) cannot be found, then �1 is called a
maximal monotone mapping.

Remark 1 (i) The sum �1 + �2 is monotone, if �1 and �2 are monotone. (ii) A mapping
κ �1 for κ ≥ 0 is monotone, if �1 is monotone. (iii) A mapping �−1

1 is monotone, if �1 is
monotone.

Remark 2 [6] If�1 : H → 2H is a multivaluedmaximal monotone operator, then there exists
a unique p ∈ H such that x ∈ (I + ��1)p for each x ∈ H and � > 0.

Definition 3 [20, p. 182] Let �1 be a maximal monotone operator with resolvent J�1
� =

(I + ��1)
−1. For every � > 0, the Yosida approximation of �1 defined by

�1� = 1

�

(
I − J�1

�

)
.

Definition 4 [6] PC : H → C is called metric projection for u ∈ H such that d(u,C) =
‖u − PC (u)‖ = inf {‖u − p‖ : p ∈ C}, in which PC (u) ∈ C is the singleton set.

Remark 3 [21] PC is firmly-nonexpansive of H and hence a nonexpansive mapping of H.

We also use the following notation J�1,�2
� = J�1

� (I − ��2) (see [6]).
To advance research in applied and computational domains, it is crucial to develop new

algorithms that exhibit improved convergence rates and to thoroughly investigate their qual-
itative properties. One such algorithm, known as the Normal-S algorithm, was introduced by
Sahu [22]. Research has demonstrated that the Normal-S algorithm achieves a higher con-
vergence rate compared to other well-known iteration algorithms such as Picard [23], Mann
[24], Ishikawa [25], Noor [26], and S [27] for the class of contraction mappings (as detailed
in [22]). Building on the successes of the Normal-S algorithm and the ongoing research in
this area, Gursoy proposed the Picard-S algorithm (as described in [28]). The Picard-S algo-
rithm is particularly intriguing and merits further exploration due to its ability to converge
more rapidly. Importantly, it operates independently of the aforementioned algorithms and
exhibits favorable behavior when applied to both contractive and nonexpansive mappings.
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These properties make the Picard-S algorithm a promising solution for operator equations
in various scientific and computational research scenarios. As a special case of Picard-S
algorithm, Karakaya et al. proposed a PMP algorithm [29].

Sahu et al. [6] proposed below FBSAs based on several well-known algorithms to solve
the problem (1):

AlgorithmM − FBSA :
vn+1 = (1 − η(1)

n )vn + η(1)
n (J�1,�2

� vn), η
(1)
n+1 ∈ [0, 1];

AlgorithmS − FBSA : zn = (1 − η(3)
n )wn + η(3)

n (J�1,�2
� wn),

wn+1 = (1 − η(2)
n )J�1,�2

� wn + η(2)
n (J�1,�2

� zn), η
(2)
n+1, η

(3)
n+1 ∈ [0, 1];

with appropriate v0, w0 ∈ H, � > 0 and the corresponding η
(i)
0 ∈ [0, 1] (i = 1, 2, 3). Notice

that in the case η
(1)
n = 1 for all n (n ≥ 0), M-FSBA transforms into P-FSBA [6]. Likewise,

when η
(2)
n = 1 for all n (n ≥ 0), S-FSBA transforms into NS-FSBA [6].

Sahu et al. [6] obtained some convergence results; they also demonstrated theoretically
and experimentally that these algorithms are faster than the classical FBA (forward-backward
algorithm).

Drawing inspiration from the mentioned algorithms and their successes, we introduce two
new FBSAs: PS-FBSA and PMP-FBSA, respectively:

AlgorithmPS − FBSA : en = (1 − η(6)
n )cn + η(6)

n (J�1,�2
� cn),

dn = (1 − η(5)
n )J�1,�2

� cn + η(5)
n (J�1,�2

� en), cn+1 = J�1,�2
� dn, η(5)

n , η(6)
n ∈ [0, 1];

AlgorithmPMP − FBSA : en = (J�1,�2
� cn),

dn = (1 − η(7)
n )en + η(7)

n (J�1,�2
� en), cn+1 = J�1,�2

� dn, η
(7)
n+1 ∈ [0, 1],

with appropriate c0 ∈ H, � > 0 and the corresponding η
(i)
0 ∈ [0, 1] (i = 5, 6, 7). Observe

that if η
(6)
n = 1 for all n ∈ N, then PS-FBSA reduces to PMP-FBSA.

In the present work, we establish strong convergence results for three algorithms: PS-
FBSA,NS-FBSA, and S-FBSA. Specifically, we demonstrate the equivalence of convergence
between PS-FBSA and NS-FBSA, and we provide a comparison of their convergence rates.
We also applied them to solve the convex minimization problem. We show the validity of
our findings through a nontrivial numerical example. As a practical application, in clas-
sification/regression of the machine learning problem and in image deblurring tasks, the
performances of the newly proposed algorithms with that of their predecessors are com-
pared. By conducting some numerical experiments, we confirm that these new algorithms
converge to the optimum value with fewer steps, and we show that the newly proposed algo-
rithms exhibit much better approximations to the optimum value even when fewer steps are
used. We need the following facts to derive the main results of this exposition:

Lemma 1 [30, Corollary 2.14] For a1, a2 ∈ H and 	 ∈ [0, 1], it holds that
‖	a1 − (	 − 1)a2‖2 = 	‖a1‖2 − (	 − 1)‖a2‖2 + 	(	 − 1)‖a1 − a2‖2.

Lemma 2 [31] Let {ρ(ν)
n }∞n=0, ν = 1, 2, 3, be three nonnegative sequences. Assume that

ρ
(2)
n = o(ρ(3)

n ),
∑∞

n=1 ρ
(3)
n = ∞, and ρ

(3)
n ∈ (0, 1) for all n ≥ n0. If ρ

(1)
n+1 ≤ (1 −

ρ
(3)
n )ρ

(1)
n + ρ

(2)
n , then limn→∞ ρ

(1)
n = 0.
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Lemma 3 [32] Let {ρ(ν)
n }∞n=0, ν = 1, 2, be two nonnegative sequences. Assume that

limn→∞ ρ
(2)
n = 0 and μ ∈ (0, 1). If ρ(1)

n+1 ≤ μρ
(1)
n + ρ

(2)
n , then limn→∞ ρ

(1)
n = 0.

Definition 5 (see [33]) If limn→∞ ‖�(1)
n − �1‖/‖�(2)

n − �2‖ = 0, where {�(ν)
n }∞n=0, ν =

1, 2, are two sequences with limn→∞ �
(ν)
n = �ν , ν = 1, 2, then it is said that {�(1)

n }∞n=0

converges faster than {�(2)
n }∞n=0.

Definition 6 (see [34]) Let {�(ν)
n }∞n=0 and {�(ν)

n }∞n=0 (ν = 1, 2) be four sequences, such that

�
(ν)
n ≥ 0 for each n ∈ N, limn→∞ �

(ν)
n = �∗, and n limn→∞ �

(ν)
n = 0, ν = 1, 2. Suppose

that for each n ∈ N the following error estimates are available (and the best possible [35])
‖�(ν)

n − �∗‖ ≤ �
(ν)
n (ν = 1, 2). If {�(1)

n }∞n=0 converges faster than {�(2)
n }∞n=0 (in the sense

of Definition 5), then we say that {�(1)
n }∞n=0 converges to �∗ faster than {�(2)

n }∞n=0.

3 Convergence Analysis of forward–backward splitting algorithms

Let ∅ 	= C be a subset ofH,�2 : C → H a φ-ism and expanding operator, and�1 : C → 2H
a multivalued maximal monotone operator. Our purpose is to reach the solution p ∈ H such
that 0 ∈ �1 p + �2 p. For this purpose, we use the following fixed-point characterization:

0 ∈ (�1 + �2)p ⇐⇒ p = J�1
� (I − ��2)p. (2)

The following two propositions play a key role in the proof of the subsequent theorems.

Proposition 4 (see Proposition 3.1 in [6]) For all u1, u2 ∈ H and � > 0, we have
∥∥J�1

� u1 − J�1
� u2

∥∥2 ≤ ‖u1 − u2‖2,
in which �1 : H → 2H is a multivalued maximal monotone operator.

Proposition 5 For � > 0 and for all u1, u2 ∈ C, we have

‖(I − ��2)u1 − (I − ��2)u2‖ ≤ θ‖u1 − u2‖,
in which θ = √

1 + �2/φ2 − 2�φ. If � < φ
√
2�φ <

√
�2 + φ2, then θ < 1 which implies

that (I − ��2) : C → H is a contraction mapping.

Proof Let u1, u2 ∈ C . For � > 0, we have

∥∥(I − ��2)u1 − (I − ��2)u2
∥∥2 = ‖u1 − u2‖2 + �2 ‖�2u1 − �2u2‖2 − 2� 〈�2u1 − �2u2, u1 − u2〉 .

If (i) �2 is φ-ism then, �2 is 1
φ
-Lipschitzian. Hence, we have

�2‖�2u1 − �2u2‖2 ≤ �2

φ2 ‖u1 − u2‖2;

If (ii) �2 is φ-ism, then −2� 〈�2u1 − �2u2, u1 − u2〉 ≤ −2�φ‖�2u1 − �2u2‖2;
If (iii) �2 is expanding, then

−2�φ‖�2u1 − �2u2‖2 ≤ −2�φh2‖u1 − u2‖2 < −2�φ‖u1 − u2‖2.
Exploiting (i)–(iii), we get

∥∥(I − ��2)u1 − (I − ��2)u2
∥∥2 ≤ θ2‖u1 − u2‖2. ��
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Now, we proceed to demonstrate the convergence theorem for the algorithm S-FBSA.

Theorem 6 Let {wn}∞n=0 be a sequence generated by the algorithm S-FBSA, with � > 0

such that � < φ
√
2�φ <

√
�2 + φ2 and P(�1+�2)−1(0)w0 = p∗. Then, for any initial point

w0 ∈ C, the sequence {wn}∞n=0 converges strongly to p∗ so that

(∀n ∈ N) ‖wn+1 − p∗‖ ≤ θn+1 ‖w0 − p∗‖ ,

where θ is defined in Proposition 5.

Proof From the algorithm S-FBSA, Lemma 1 and Proposition 4, we have

‖zn − p∗‖2 ≤ (1 − η(3)
n ) ‖wn − p∗‖2 + η(3)

n

∥∥J�1,�2
� wn − J�1,�2

� p∗
∥∥2

= (1 − η(3)
n ) ‖wn − p∗‖2 + η(3)

n

∥∥J�1
� (I − ��2)wn − J�1

� (I − ��2)p∗
∥∥2

≤ (1 − η(3)
n ) ‖wn − p∗‖2 + η(3)

n ‖(I − ��2)wn − (I − ��2)p∗‖2 .

By using Proposition 5, we attain

‖zn − p∗‖2 ≤ (1 − η(3)
n ) ‖wn − p∗‖2 + η(3)

n

[
1 + �2

φ2 − 2�φ

]
‖wn − p∗‖2

= [
1 − η(3)

n (1 − θ2)
]‖wn − p∗‖2,

which implies

‖zn − p∗‖2 ≤ ‖wn − p∗‖2 , (3)

as [1 − η
(3)
n (1 − θ2)] ≤ 1. Also, we have

‖wn+1 − p∗‖2 ≤ (1 − η(2)
n )

∥∥(J�1
� (I − ��2)wn − J�1

� (I − ��2)p∗)
∥∥2

+η(2)
n

∥∥J�1
� (I − ��2)zn − J�1

� (I − ��2)p∗
∥∥2

≤ (1 − η(2)
n ) ‖(I − ��2)wn − (I − ��2)p∗)‖2

+η(2)
n ‖(I − ��2)zn − (I − ��2)p∗‖2 .

By using Proposition 5 and the inequality (3), we attain ‖wn+1 − p∗‖ ≤ θ‖wn − p∗‖
≤ θn+1 ‖w0 − p∗‖, which implies that limn→∞ ‖wn − p∗‖ = 0 as θ < 1. ��

Remark 4 By imposing an additional condition
∑n

k=1 η
(1)
k = ∞ on η

(1)
n , one can obtain the

convergence of M-FSBA to p∗ similar to the proof of Theorem 6.

The following theorem is a direct consequence of Theorem 6 by setting η
(2)
n = 1 for all

n ∈ N.

Theorem 7 Let {an}∞n=0 be a sequence generated by the algorithmNS-FBSA [6] with � > 0,

such that � < φ
√
2�φ <

√
�2 + φ2 and P(�1+�2)−1(0)a0 = p∗. Then, for any initial point

a0 ∈ C, {an}∞n=0 converges strongly to p∗, so that

(∀n ∈ N) ‖an+1 − p∗‖ ≤ θn+1 ‖a0 − p∗‖ , (4)

where θ is defined in Proposition 5.

The following theorem provides the convergence result for the algorithm PS-FBSA.
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Theorem 8 Let {cn}∞n=0 be a sequence generated by the algorithm PS-FBSA, with � > 0

such that � < φ
√
2�φ <

√
�2 + φ2 and P(�1+�2)−1(0)c0 = p∗. Then, for any initial point

c0 ∈ C, {xn}∞n=0 converges strongly to p∗, so that

(∀n ∈ N) ‖cn+1 − p∗‖ ≤ θn+1 ‖c0 − p∗‖ ,

where θ is defined in Proposition 5.

Proof From the algorithm PS-FBSA, Lemma 1, and Proposition 4, we have

‖en − p∗‖2 ≤ (1 − η(6)
n ) ‖cn − p∗‖2 + η(6)

n

∥∥J�1
� (I − ��2)cn − J�1

� (I − ��2)p∗
∥∥2

≤ (1 − η(6)
n ) ‖cn − p∗‖2 + η(6)

n

∥∥(I − ��2)cn − (I − ��2)p∗
∥∥2.

By using Proposition 5, we obtain

‖en − p∗‖2 ≤ (1 − η(6)
n ) ‖cn − p∗‖2 + η(6)

n

[
1 + �2

φ2 − 2�φ

]
‖cn − p∗‖2

= [1 − η(6)
n (1 − θ2)] ‖cn − p∗‖2 ,

which yields ‖en − p∗‖2 ≤ ‖cn − p∗‖2 as [1 − η
(6)
n (1 − θ2)] ≤ 1. Also,

‖dn − p∗‖2 ≤ (1 − η(5)
n )

∥∥J�1
� (I − ��2)cn − J�1

� (I − ��2)p∗
∥∥2

+η(5)
n

∥∥J�1
� (I − ��2)en − J�1

� (I − ��2)p∗
∥∥2

≤ (1 − η(5)
n ) ‖(I − ��2)cn − (I − ��2)p∗‖2

+η(5)
n ‖(I − ��2)en − (I − ��2)p∗‖2 .

By using again Proposition 5, we get

‖dn − p∗‖2 ≤ (1 − η
(5)
n )

[
1 + �2

φ2 − 2�φ

]
‖cn − p∗‖2 + η

(5)
n

[
1 + �2

φ2 − 2�φ

]
‖en − p∗‖2

≤ [
1 − η

(5)
n (1 − θ2)

] ‖cn − p∗‖2 ,

which yields ‖dn − p∗‖2 < ‖cn − p∗‖2 as [1 − η
(5)
n (1 − θ2)] ≤ 1. Finally,

‖cn+1 − p∗‖2 ≤ ‖(I − ��2)dn − (I − ��2)p∗)‖2 .

As in the proof of Theorem 6, we get ‖cn+1 − p∗‖ ≤ θn+1 ‖c0 − p∗‖, which gives
limn→∞ ‖cn − p∗‖ = 0 as θ < 1. ��

The convergence result for PMP-FBSA can be derived by applying Theorem 8 with the
specific choice of η

(6)
n = 1 for all n ∈ N.

Theorem 9 Let {cn}∞n=0 be a sequence generated by the algorithm PMP-FBSA, with � > 0

such that � < φ
√
2�φ <

√
�2 + φ2 and P(�1+�2)−1(0)c0 = p∗. Then, for any initial point

c0 ∈ C, the sequence {cn}∞n=0 converges strongly to p∗, so that

(∀n ∈ N) ‖cn+1 − p∗‖ ≤ θ2(n+1) ‖c0 − p∗‖ , (5)

where θ is defined in Proposition 5.
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The following theorem asserts the equivalence of the convergences of PS-FBSA and
NS-FBSA, meaning that if PS-FBSA is convergent, then NS-FBSA is convergent, and vice
versa.

Theorem 10 Let {an}∞n=0 and {cn}∞n=0 be sequences generated by the algorithms NS-

FBSA [6] and PS-FBSA, respectively, in which {η(ν)
n }∞n=0 ⊂ [0, 1] for ν = 4, 5, 6. Let

� < φ
√
2�φ <

√
�2 + φ2 for � > 0, θ be as in Proposition 5, and let

B̂n = (2θ2 + θ) max
ν∈{4,5,6}

{
1 − η(ν)

n (1 − θ)
}
, gn = B̂n

η
(5)
n (1 − θ)

(n ≥ 0). (6)

Then the following claims hold: (i) If
∑∞

n=0 η
(5)
n = ∞ and the sequence {gn}∞n=0 is

bounded, then limn→∞(an − cn) = 0, with

‖an+1 − cn+1‖ ≤ [1 − η(5)
n (1 − θ)]‖an − cn‖ + B̂n‖an − p∗‖,

for each n ∈ N, and limn→∞ cn = p∗ = P(�1+�2)−1(0)c0.
(ii) If limn→∞ cn = p∗ = P(�1+�2)−1(0)c0, then limn→∞(cn − an) = 0 with

‖cn+1 − an+1‖ ≤ θ‖cn − an‖ + B̂n‖cn − p∗‖,
for each n ∈ N, and limn→∞ an = p∗ = P(�1+�2)−1(0)a0.

Proof (i) It is known from Theorem 7 that limn→∞ ‖an − p∗‖ = 0. We prove now that
limn→∞ ‖an − cn‖ = 0 and limn→∞ ‖cn − p∗‖ = 0. By Propositions 4, 5, and the algo-
rithms NS-FBSA [6] and PS-FBSA, we conclude that

‖an+1 − cn+1‖ ≤ ‖(I − ��2)bn − (I − ��2)p∗)‖ + ‖(I − ��2)dn − (I − ��2)p∗)‖
≤ θ ‖bn − p∗‖ + θ ‖dn − p∗‖ . (7)

Similarly, we have ‖bn − p∗‖ ≤ [
1 − η

(4)
n (1 − θ)

] ‖an − p∗‖,
‖dn − p∗‖ ≤ (1 − η(5)

n )θ ‖cn − p∗‖ + η(5)
n θ ‖en − p∗‖ ,

and ‖en − p∗‖ ≤ [
1 − η

(6)
n (1 − θ)

] ‖cn − p∗‖, so that

‖dn − p∗‖ ≤ (1 − η(5)
n )θ ‖cn − p∗‖ + η(5)

n θ [1 − η(6)
n (1 − θ)] ‖cn − p∗‖ .

Using these inequalities, we get

‖an+1 − cn+1‖ ≤ θ [1 − η(4)
n (1 − θ)]‖an − p∗‖ + θ2(1 − η(5)

n )‖cn − p∗‖
+θ2η(5)

n [1 − η(6)
n (1 − θ)]‖cn − p∗‖,

or equivalently

‖an+1 − cn+1‖ ≤ An‖an − cn‖ + Bn‖an − p∗‖, (8)

where

An = θ2(1 − η(5)
n ) + θ2η(5)

n [1 − η(6)
n (1 − θ)],

Bn = θ [1 − η(4)
n (1 − θ)] + θ2(1 − η(5)

n ) + θ2η(5)
n [1 − η(6)

n (1 − θ)].
Since θ < 1 and

{
η

(ν)
n

} ⊂ [0, 1] (ν = 4, 5, 6), we have An ≤ 1 − η
(5)
n (1 − θ),

θ2(1 − η(5)
n ) ≤ θ2[1 − η(5)

n (1 − θ)], θ2η(5)
n [1 − η(6)

n (1 − θ)] ≤ θ2[1 − η(6)
n (1 − θ)],
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as well as

Bn ≤ B̂n = (2θ2 + θ) max
ν∈{4,5,6}

{
1 − η(ν)

n (1 − θ)
}
.

Using these inequalities, (8) becomes

‖an+1 − cn+1‖ ≤ [1 − η(5)
n (1 − θ)]‖an − cn‖ + B̂n‖an − p∗‖. (9)

For each n ∈ N, we set ρ
(1)
n = ‖an − cn‖ ≥ 0, ρ

(3)
n = η

(5)
n (1 − θ) ∈ (0, 1), and

ρ
(2)
n = B̂n‖an − p∗‖.
Note that

∑∞
n=0 η

(5)
n = ∞. Since the sequence {gn}∞n=0 is bounded, there exists a constant

M > 0 such that for each n ∈ N, |gn | < M .
Let ε > 0. Since limn→∞ ξn = 0 inwhich ξn = ‖an − p∗‖ and ε/M > 0, there existsn0 ∈

N such that for each n ≥ n0, |ξn | < ε/M . Hence for each n ≥ n0, |gnξn | < ε and, therefore,
ρ

(2)
n = o(ρ(3)

n ). As (9) satisfies all the conditions of Lemma 2, limn→∞ ‖an − cn‖ = 0.
Since limn→∞ ‖an − p∗‖ = 0 and ‖cn − p∗‖ ≤ ‖an − cn‖ + ‖an − p∗‖, we conclude that
limn→∞ ‖cn − p∗‖ = 0.

(ii) Now, we prove that limn→∞ ‖cn − an‖ = limn→∞ ‖an − p∗‖ = 0. By Propositions
4, 5, NS-FBSA [6] and PS-FBSA, we have

‖cn+1 − an+1‖ ≤ ‖(I − ��2)dn − (I − ��2)p∗)‖ + ‖(I − ��2)bn − (I − ��2)p∗)‖
≤ θ ‖dn − p∗‖ + θ ‖bn − p∗‖ .

As in (i), we find

‖cn+1 − an+1‖ ≤ θ
[
1 − η(4)

n (1 − θ)
]‖cn − an‖ + Bn‖cn − p∗‖, (10)

where Bn is defined as in (i). Using inequalities from (i), as well as the inequality θ [1 −
η

(4)
n (1 − θ)] ≤ θ , we conclude that the inequality (10) reduces to

‖cn+1 − an+1‖ ≤ θ‖cn − an‖ + B̂n‖cn − p∗‖, (11)

where B̂n is defined in (6).
Similarly as in (i), for each n ∈ N, we set ρ

(1)
n = ‖cn − an‖ ≥ 0, θ ∈ (0, 1), and

ρ
(2)
n = B̂n‖cn − p∗‖. Since

{
B̂n

}∞
n=0 is a bounded sequence, there exists R > 0 such that

|B̂n | < R for each n ∈ N. Let ε > 0. Since limn→∞ ηn = 0 in which ηn = ‖cn − p∗‖ and
ε/R > 0, there exists n0 ∈ N such that |ηn | < ε/R, for all n ≥ n0. Therefore, for each
n ∈ N, we have |B̂n | < ε. Thus, limn→∞ ρ

(2)
n = 0.

As (11) satisfies all the conditions ofLemma3,wehave limn→∞ ‖cn−an‖ = 0.According
to limn→∞ ‖cn − p∗‖ = 0 and ‖an − p∗‖ ≤ ‖cn − an‖ + ‖cn − p∗‖, we conclude that
limn→∞ ‖an − p∗‖ = 0. ��

In the next result, we compare the convergence rates of PS-FBSA and NS-FBSA as
they approach the solution of problem (1). More precisely, we demonstrate that PS-FBSA
converges faster to the solution of this problem compared to NS-FBSA.

Theorem 11 Let {an}∞n=0 and {cn}∞n=0 be sequences generated by the algorithms NS-

FBSA [6] and PS-FBSA, respectively, with {η(ν)
n }∞n=0 ⊂ [0, 1] for ν = 4, 5, 6, in which

limn→∞ η
(5)
n η

(6)
n = 1 and limn→∞ η

(4)
n = 1. Let � < φ

√
2�φ <

√
�2 + φ2 for � > 0

and θ be as in Proposition 5. Then, {cn}∞n=0 converges faster than {an}∞n=0 to the solution
p∗ = P(�1+�2)−1(0)c0 provided that a0 = c0 	= p∗.
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Proof According to Theorems 7 and 8, we have the following estimates (which are the best
possible) for each n ∈ N,

‖an+1 − p∗‖ ≤ θn+1 ‖a0 − p∗‖
n∏

i=0

√
[1 − η

(4)
i

(
1 − θ2

)] = ϑ(2)
n

and

‖cn+1 − p∗‖ ≤ θ2(n+1) ‖c0 − p∗‖
n∏

i=0

√
[1 − η

(5)
i η

(6)
i

(
1 − θ2

)] = ϑ(1)
n .

Observe that limn→∞ ϑ
(1)
n = limn→∞ ϑ

(2)
n = 0. Thus, all the conditions of Definition 6 are

met. For each n ∈ N we define

�n = ‖ϑ(1)
n − 0‖

‖ϑ(2)
n − 0‖

= θn+1�n,

in which

�n =
n∏

k=0

√√√√1 − η
(5)
k η

(6)
k (1 − θ2)

1 − η
(4)
k (1 − θ2)

· ‖c0 − p∗‖
‖a0 − p∗‖ .

Then

�n+1

�n
= θ

�n+1

�n
= θ

√√√√1 − η
(5)
n+1η

(6)
n+1

(
1 − θ2

)

1 − η
(4)
n+1

(
1 − θ2

) .

By applying the assumptions limn→∞ η
(5)
n η

(6)
n = 1 and limn→∞ η

(4)
n = 1, we get

limn→∞ �n+1/�n = limn→∞ θ < 1, and by ratio test
∑∞

n=0 �n converges. Hence,

lim
n→∞ �n = lim

n→∞
‖ϑ(1)

n − 0‖
‖ϑ(2)

n − 0‖
= 0.

By Definition 5, {ϑ(1)
n }∞n=0 converges faster than {ϑ(2)

n }∞n=0 and hence {cn}∞n=0 converges
faster than {an}∞n=0 to p∗ = P(�1+�2)−1(0)c0. ��

3.1 An application to convexminimization problem

In this section, the following convex minimization problem will be tackled:

min{ f (u) : u ∈ C}. (12)

inwhich f : C → R is a convexmapping. Assume that f : C → R is a Fréchet differentiable
convex function. It is well-known that p∗ is a solution of (12) if and only if p∗ = PC (p∗ −
�∇ f (p∗)) in which ∇ f : C → H is the gradient of f and � > 0.

Let us consider J�1,�2
� = J�1

� (I − ��2) again. Let �1 = �−1(P−1
C − I ) for any � > 0.

It follows from Remarks 1 and 3 that �1 is a monotone operator. Also, (I + ��1)C =
P−1
C C = H holds for any � > 0. That is, �1 is maximal monotone and its resolvent is

J�1
� = (I + ��1)

−1 = PC . However, if we take ∇ f instead of �2 : C → H in J�1,�2
� , we

get J�1
� (I − ��2) = PC (I − �∇ f ) for any � > 0. As a result, if p holds (2), it is also a

123



Journal of Global Optimization

solution of minimization problem (12) when �1 = �−1(P−1
C − I ) and �2 = ∇ f . The next

result is a straight consequence of Theorems 6 and 8 for these choices of �1 and �2.

Corollary 12 Assume that p∗ is a solution of (12). Let f : C → R be a Fréchet differentiable
convex function such that its gradient ∇ f is φ-ism and expanding operator for � > 0 such
that � < φ

√
2�φ <

√
�2 + φ2. Let �1 = �−1(P−1

C − I ) and �2 = ∇ f be in the all
algorithmsM-FBSA, S-FBSA, PS-FBSA, PMP-FBSA. Then, the algorithmM-FBSA, with∑∞

n=0 η
(1)
n = ∞, and the algorithms S-FBSA, PS-FBSA, PMP-FBSA converge strongly to

p∗.

Example 1 Let H = �2 be a standard Hilbert space of the real sequences with the

inner product 〈u, v〉 = ∑∞
k=0 ukvk and the norm ‖u‖ =

√∑∞
k=0 |uk |2. Then, the set

C = {
u = {uk}∞k=0 : ‖u‖ ≤ 1

} ⊂ H is convex and closed. Let f : C → R be defined
by f (u) = ‖u‖2. For all u, v ∈ C and η ∈ (0, 1), we have

f (ηu + (1 − η) v) = ‖ηu + (1 − η)v‖2 =
∞∑
k=0

|ηuk + (1 − η) vk |2

≤ η

∞∑
k=0

|uk |2 + (1 − η)

∞∑
k=0

|vk |2 = η f (u) + (1 − η) f (v),

which implies f is a convex function. Observe that the set of solution of (12) for f is
S = {0} = {(0, 0, . . .)}. By definition (cf. [36, p. 169]) we conclude that f is Fréchet
differentiable at u, with the Fréchet derivative ∇ f u = (

2u0, 2u1, . . .
) = 2u. Since for each

u, v ∈ H,

〈∇ f u − ∇ f v,u − v〉 = 〈2u − 2v,u − v〉 = 2
∞∑
k=0

|uk − vk |2 = 1

2
‖∇ f u − ∇ f v‖2 ,

we conclude that ∇ f is 1
2 -ism. Also, for each u, v ∈ H we have

‖∇ f u − ∇ f v‖2 = ‖2u − 2v‖2 = 4
∞∑
k=0

|uk − vk |2 = 4 ‖u − v‖2 ,

which implies that ∇ f is 2-expanding mapping. Moreover, PC : H → C is defined as

PC (u) =
{
u, u ∈ C,

u/‖u‖, u /∈ C .

Also, it is easy to see that � < φ
√
2�φ <

√
�2 + φ2 holds for � = 1/9 and φ = 1/2.

By un = {
u(n)
k

}∞
k=0 = (

u(n)
0 , u(n)

1 , . . .
)
we denote the nth iteration obtained by any of the

previous algorithms. We take η
(ν)
n = 1/(n + 2) for ν = 1, 3, 6, 7 and η

(ν)
n = 1/(n + 2)2 for

ν = 2, 5.
The convergence behaviors of the algorithmsP-FBSA,M-FBSA, S-FBSA,NS-FBSA, PS-

FBSA, PMP-FBSA are listed in Tables 1 and 2 and illustrated in Fig. 1. In these tables we give
the obtained values after the first iteration (n = 1), as well as ones after n = 250, 500, 750
and 1000 iterations. Numbers in parentheses indicate decimal exponents, e.g., 1.2937(−28)
means 1.2937 × 10−28.
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Table 1 Convergence behavior of the algorithms P-FBSA, M-FBSA and S-FBSA

n P-FBSA M-FBSA S-FBSA

1 (0.388889, 0.194444, . . .) (0.444444, 0.222222, . . .) (0.378086, 0.189043, . . .)

250 (2.58733(−28), 1.2937(−28), . . .) (0.158162, 0.079081, . . .) (2.473(−28), 1.236(−28), . . .)

500 (1.33886(−55), 6.6943(−56), . . .) (0.135667, 0.067833, . . .) (1.280(−55), 6.398(−56), . . .)

750 (6.92816(−83), 3.46408(−83), . . .) (0.124003, 0.062001, . . .) (6.621(−83), 3.311(−83), . . .)

1000 (3.5851(−110), 1.7925(−110), . . .) (0.116335, 0.058168, . . .) (3.426(−110), 1.713(−110), . . .)

Table 2 Convergence behavior of the algorithms NS-FBSA, PS-FBSA and PMP-FBSA

n NS-FBSA PS-FBSA PMP-FBSA

1 (0.345679012, 0.172839506, . . .) (0.294067215, 0.147033608, . . .) (0.268861, 0.1344307, . . .)

250 (8.18436(−29), 4.09218(−29), . . .) (1.2795(−55), 6.3976(−56), . . .) (4.235(−56), 2.118(−56), . . .)

500 (3.63278(−56), 1.81639(−56), . . .) (3.426(−110), 1.713(−110), . . .) (9.728(−111), 4.86(−111), . . .)

750 (1.71822(−83), 8.59111(−84), . . .) (9.174(−165), 4.587(−165), . . .) (2.381(−165), 1.19(−165), . . .)

1000 (8.3415(−111), 4.1707(−111), . . .) (2.457(−219), 1.228(−219), . . .) (5.98(−220), 2.991(−220), . . .)

Fig. 1 Convergence behaviour of ‖un‖

Tables 1 and 2 show that the sequences {un}∞n=0, generated by the algorithms P-FBSA,
M-FBSA, S-FBSA, NS-FBSA, PS-FBSA, and PMP-FBSA, with the initial guess u0 ={
1/2k+1

}∞
k=0, converge to 0 = {0}∞k=0. Figure1 shows that the sequence ‖un − 0‖ = ‖un‖

converges to 0.
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4 Applications

In this section, we inquire about the application of the newly defined FBAs on convex min-
imization. We define new iterative shrinkage algorithms corresponding to PS-FBSA and
PMP-FBSA and apply them to the image deblurring problem.

Let g : H → (−∞,∞] and f : H → R be proper lower semi-continuous convex
functions. Assume that g is a non-smooth function and f is differentiable on H and has an
L-Lipschitz continuous gradient for some L > 0. Here we consider the following problem:

min {F(x) = f (x) + g(x) : x ∈ H} ,

which is equivalent to 0 ∈ ∇ f (x∗) + ∂g(x∗). The set of all solutions of this problem is
denoted by X∗.

4.1 Application to supervised learning

In this section, the Least Absolute Shrinkage and Selection Operator-LASSO problem is
taken as the basis to perform this process, along with the algorithms mentioned in this
paper. We apply these adapted algorithms to four real data sets and, we present a detailed
and comparative analysis among them. The outcome of this experiment sets forth that the
algorithms PS-FBSA and PMP-FBSA have better computation time, lower cost function
value, and higher estimation accuracy than algorithms M-FBSA and S-FBSA in general.

Let us consider a dataset X ∈ R
m×d in which every row is a sample and every coloumns

are attributes of the samples. Y ∈ R
m denotes the set of outcomes, that is, labels of the

samples. Now, we can employ the following minimization problem:

min
{
F (w) = 1

2
‖Xw − Y‖22 + δ ‖w‖1 : w ∈ R

d
}
. (13)

Let �1(w) = proxδκn
(w) = (∣∣wi

∣∣ − δκn
)
+ sgn

(
wi

)
in which sgn is the signum function

and �2(w) = (
w − δκn Xt (Xw − Y )

)
. Then, we have

J�1,�2
δκn

(w) = proxδκn‖·‖1(w − δκn X
t (Xw − Y )). (14)

The P-FSBA algorithm associated to J�1,�2
δκn

in (14) is

Algorithm ISTA : wn+1 = T (wn), n ≥ 0, w0 ∈ R
d (κ0, δ > 0),

and it can be used to approximate the solution of (13).
In a similar manner, M-ISTA [6], S-ISTA [6], NS-ISTA [6], PS-ISTA, and PMP-ISTA can

be defined by utilizingM-FSBA, S-FSBA, NS-FSBA, PS-FSBA, and PMP-FSBA associated
with J�1,�2

δκn
in (14), respectively (Table 3).

The datasets employed in numerical experiments are listed as follows:

+ ARCENE: It is derived from features showing the abundance of proteins in human serum
of a given mass value and includes a set of distracting features called ’probes’ which are
not predictive. A total of 900 samples with 10000 attributes are contained in this dataset.1

+ Heart Disease (Cleveland): With this dataset, researchers aim to distinguish individuals
who have heart disease from healthy individuals. A total of 303 samples with 14 attributes
are contained in this dataset.1

1 https://archive.ics.uci.edu/ml/index.php.
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Table 3 Comparing the effectiveness of algorithms ISTA-PMP ISTA

ISTA M-ISTA S-ISTA

# of iterations 1585 1591 1447

F
(
w∗)

13.81401722 13.81411474 13.72394014

ARCENE The Best rMse 0.35145778 0.351461535 0.348954979

rMse (Test) 0.27687903 0.27688189 0.27475253

Time (s) 361.743 361.342 419.633

# of iterations 25066 25076 15511

F
(
w∗)

120.09814552 120.0981276 119, 6709659

CLEVELAND The Best rMse 0.88424808 0.88424801 0.8824663

rMse (Test) 0.67817932 0.67817932 0.67794317

Time (s) 15.148 16.673 5.840

# of iterations 16244 16253 10781

F
(
w∗)

466.63645322 466.63650778 466.24032396

CNAE9 The Best rMse 0.77800836593 0.77800853 0.7767118

rMse (Test) 0.7588156 0.75881596 0.75711847

Time (s) 416.185 416.465 197.668

# of iterations 100000 100000 76557

F
(
w∗)

5551.16531732 5551.17630421 5527.54820185

ISOLET The Best rMse 2.22942 2.22943697 2.17014111

rMse (Test) 3.76784608 3.76783122 3.8192689

Time (s) 9816.789 9879.204 5784.561

NS-ISTA PS-ISTA PMP-ISTA

# of iterations 1445 1278 1277

F
(
w∗)

13.72382997 13.68401091 13.68390731

ARCENE The Best rMse 0.34895153 0.34767863 0.34767474

rMse (Test) 0.27475036 0.27382289 0.27382058

Time (s) 418.531 449.972 449.944

# of iterations 15506 11536 11534

F
(
w∗)

119.67103542 119.52367232 119.52360218

CLEVELAND The Best rMse 0.88246659 0.88184886 0.88184857

rMse (Test) 0.67794319 0.67789085 0.67789085

Time (s) 5.476 2.890 2.514

# of iterations 10777 8215 8213

F
(
w∗)

466.24031897 466.1140877 466.1140287

CNAE9 The Best rMse 0.77671178 0.77627494 0.77627473

rMse (Test) 0.75711848 0.7564296 0.7564292

Time (s) 197.037 122.615 122.230

# of iterations 76552 52244 52240

F
(
w∗)

5527.54822498 5527.39823113 5527.39830966

ISOLET The Best rMse 2.17014097 2.16721879 2.16722057

rMse (Test) 3.81926902 3.82214176 3.82214007

Time (s) 5966.230 2826.811 2805.983
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Fig. 2 Comparing the effectiveness of algorithms ISTA-PMP ISTA based on reduction in function values
F(wn) in each step

Fig. 3 Comparing the effectiveness of algorithms ISTA-PMP ISTA based on ‖F(wn)− F(w∗)‖ in each step

Fig. 4 Comparing the effectiveness of algorithms ISTA-PMP ISTA based on rMSE in each step

+ CNAE: This is a dataset consisting of 9 categories that belong to free-text job description
documents of Brazilian companies and is cataloged in a table called the National Clas-
sification of Economic Activities (CNAE). A total of 1080 samples with 586 attributes
are contained in this dataset.1

+ ISOLET: In this data set, whose purpose is to capture letters from sounds and 150 people
pronounce each letter in the alphabet twice, a total of 1559 samples with 617 attributes
are contained.1

The preprocessing of the datasets, application of the algorithms, and preparation of the
result analyzes have been carried out in theMatlab�. The optimal values of κ = (κn) have
been found by using a backtracking algorithm.

As a preprocess, all datasets were split into 60% training and 40% test data with a bias
added. The stopping criteria for every algorithm is either |F (wn) − F (wn−1)| < 10−5 or
the maximum number of iteration steps n = 105.

We compare the performance of algorithms on each dataset in terms of the calculation
times, F (wn) (Fig. 2) and ‖F (wn) − F (w∗)‖ (Fig. 3), the accuracy of prediction (rMSE)
for training samples (Fig. 4), as well as the accuracy of prediction (rMSE) for testing samples.
The graphs presented in Figs. 2-4 are plotted on the log scale.

123



Journal of Global Optimization

Fig. 5 (Top) Orginal images; (bottom) Blurred images

4.2 Application to image deblurring problem

The wavelet based deblurring problem defined by

min
x

Fdeb = ‖Ax − b‖22 + λ‖x‖1, (15)

in which A : R
n×d → R

n×d is Haar wavelet transform of a blurring matrix, x ∈ R
n×d is

the original image, and b ∈ R
n×d is the blurred image and λ > 0 is a control parameter. In

[37], problem (15) has been argued detailed and the interested reader can consult [38–40].
Gradient projection algorithms are widely used numerical tools to solve this problem.

Let �1(u) = proxλtn (u) = (∣∣ui ∣∣ − λtn
)
+sgn

(
ui

)
in which tn is an appropriate stepsize

and �2(u) = (
u − 2tn At (Au − b)

)
. Then

T (u) := J�1,�2
λtn

(u) = proxλtn‖·‖1
(
u − 2tn A

t (Au − b)
)
.

In this case, the iterative shrinkage-thresholding (ISTA) defined as un+1 = T (un). M-
ISTA, S-ISTA, NS-ISTA, PS-ISTA and PMP-ISTA algorithms can be defined in a similar
manner as above. Taking advantage of the supporting Matlab� library files provided by
Beck and Teboulle, we use Matlab� functions to produce blurred images from classical
test images of Cameraman, Lena, Peppers, and Goldhill. Original and blurred images are
shown in Figs. 5.

We present the comparison results regarding the performances of PS-ISTA, PMP-ISTA,
ISTA,M-ISTA, S-ISTA, and NS-ISTA in image deblurring tasks. The deblurred Cameraman,
Lena, Peppers, Goldhill images are shown in Fig. 6, including PSNR ratio.

We present the deblurring function value at nth iteration with n = 100 and n = 20 for the
Cameraman, Lena, Peppers, and Goldhill in Figs. 7, 8, 9, 10, respectively. As it is understood
from these figures, the function values for PS-ISTA and PMP-ISTA are decreasing rapidly
during the first 20 steps and are lower than the others even at n = 100.

We also present the Frobenius norm of the difference of two successive iterations, that
is, ‖un − un−1‖fro value at nth iteration with n = 100 and n = 20 for Cameraman, Lena,
Peppers, and Goldhill in Figs. 11, 12, 13, 14, respectively.
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Fig. 6 Comparison results for deblurred Cameraman, Lena, Peppers, Goldhill images (from top to bottom)
by ISTA, M-ISTA, S-ISTA, NS-ISTA, PS-ISTA, PMP-ISTA

Fig. 7 Function value Fn in each step for Cameraman: (a) n = 100 and (b) n = 20

5 Conclusion

In this study, we proved some strong convergence theorems through Picard-S and PMP
forward-backward algorithms originated from Picard-S [28] and PMP [29] fixed point algo-
rithms. In addition to showing there is an equivalency between convergence of NS-FBSA [6]
and PS-FBSA, we compared the rate of convergence of these algorithms. Wemodified all the
algorithms handled in this paper and applied them to the convex minimization problem. We
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Fig. 8 Function value Fn in each step for Lena: (a) n = 100 and (b) n = 20

Fig. 9 Function value Fn in each step for Peppers: (a) n = 100 and (b) n = 20

Fig. 10 Function value Fn in each step for Goldhill: (a) n = 100 and (b) n = 20
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Fig. 11 ‖un − un−1‖fro for Cameraman: (a) n = 100 (b) n = 20

Fig. 12 ‖un − un−1‖fro for Lena: (a) n = 100 (b) n = 20

Fig. 13 ‖un − un−1‖fro for Peppers: (a) n = 100 (b) n = 20
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Fig. 14 ‖un − un−1‖fro for Goldhill: (a) n = 100 (b) n = 20

furnished an academic example in support of Corollary 12 and to illustrate the convergence
behaviors of the algorithms M-FBSA, S-FBSA, PS-FBSA, PMP-FBSA. We applied these
algorithms to the image deblurring problem and machine learning (classification/regression)
with datasets derived from real-world problems. The numerical experiments presented in
Sect. 4 reveal that the newly defined algorithms PS-FBSA and PMP-FBSA outperform the
algorithms M-FBSA and S-FBSA in solving the problems tackled herein. Our results refine
and correct the corresponding results in [41, 42].
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