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Abstract
The main objective of this paper is to present a new extension of the familiar Mathieu series
and the alternating Mathieu series S(r) and ˜S(r) which are denoted by Sμ,ν(r) and˜Sμ,ν(r),
respectively. The computable series expansions of their related integral representations are
obtained in terms of the exponential integral E1, and convergence rate discussion is provided
for the associated series expansions. Further, for the series Sμ,ν(r) and ˜Sμ,ν(r), related
expansions are presented in terms of theRiemannZeta function and theDirichlet Eta function,
also their series built in Gauss’ 2F1 functions and the associated Legendre function of the
second kind Qν

μ are given. Our discussion also includes the extended versions of the complete
Butzer–Flocke–HaussOmega functions. Finally, functional bounding inequalities are derived
for the investigated extensions of Mathieu-type series.

Keywords Mathieu and alternating Mathieu series · Neumann function Yν · Euler–Abel
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1 Introduction and preliminaries

During the studyof elasticity of solid bodies, ÉmileLeonardMathieu (1835–1890) introduced
and investigated the famous infinite functional series called Mathieu series of the form [20]

S(r) =
∑

n≥1

2n

(n2 + r2)2
, r > 0.

The alternating version of Mathieu series, introduced and investigated by Pogány et al. in
[27, p. 72, Eq. (2.7)], is

˜S(r) =
∑

n≥1

(−1)n−1 2n

(n2 + r2)2
, r > 0.

Elegant integral forms of theMathieu series S(r) and the alternatingMathieu series˜S(r)was
established by Emersleben [13]:

S(r) = 1

r

∫ ∞

0

x sin(r x)

ex − 1
dx, (1.1)

and Pogány et al. [27, p. 72, Eq. (2.8)]:

˜S(r) = 1

r

∫ ∞

0

x sin(r x)

ex + 1
dx . (1.2)

Milovanović and Pogány [22] discovered other integral forms for Mathieu and alternating
Mathieu series; Tomovski and Pogány [29] deducedCauchy principal value integrals for these
series; moreover, see [7, 9, 12] for this integral form, and [8, 25, 26] for another similarly
focused study. The present authors studied and investigated a multi-parameter extension of
the well-known Mathieu series and the alternating Mathieu series in a recent paper [24].

We emphasize the integral representations [22, pp. 185–186, Corollary 2.2]

S(r) = π

∫ ∞

0

r2 − x2 + 1
4

(

x2 − r2 + 1
4

)2 + r2

dx

cosh2(πx)
, (1.3)

˜S(r) = π

∫ ∞

0

x
(

x2 − r2 + 1
4

)2 + r2

sinh(πx) dx

cosh2(πx)
, (1.4)

which will have a special treatment below.
Let N,Z, and C be the sets of positive integers, integers, and complex numbers, respec-

tively. The Bessel function of the first kind of the order ν is defined by

Jν(z) =
∑

k≥0

(−1)k
( z
2

)ν+2k

k! Γ (ν + k + 1)
, −z /∈ N; ν ∈ C, (1.5)

where the principal branch of Jν(z) should be considered (it corresponds to the principal
value of zν) and Jν(z) is analytic in the z-plane cut along the interval (−∞, 0]. Moreover,
for ν ∈ Z, the Bessel function of the first kind is entire in z on the whole complex plane, see
[15, p. 5].

The Bessel function of the second kind (Neumann function or Weber–Bessel function) of
order ν is expressible in terms of the Bessel function of the first kind defined as [30, p. 64)]

Yν(z) = cos(νπ) Jν(z) − J−ν(z)

sin(νπ)
= cot(νπ) Jν(z) − csc(νπ) J−ν(z), ν /∈ Z. (1.6)
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Extension of Mathieu series and alternating Mathieu series… 193

Also, Bessel functions of half-integer order have the connection or recurrence formula [17,
p. 925, Eq. (8.465)]

Yn+ 1
2
(z) = (−1)n−1 J−n− 1

2
(z) .

On the other hand, see [23, p. 228, Eq. (10.16.1)],

J 1
2
(z) = Y− 1

2
(z) =

√

2

π z
sin(z) .

We can realize the extension of the Mathieu series by considering the related integral rep-
resentation extending the integrand by a weight function. Namely, rewrite (1.1) into the
form

S(r) =
√

π

2r

∫ ∞

0

x3/2

ex − 1

√

2

πr x
sin(r x) dx =

√

π

2r

∫ ∞

0

x3/2

ex − 1
Y− 1

2
(r x) dx . (1.7)

The same can be done for the alternating Mathieu series, so

˜S(r) =
√

π

2r

∫ ∞

0

x3/2

ex + 1
Y− 1

2
(r x) dx .

2 Polylogarithmic approach toMathieu and alternatingMathieu series

In the exposition we use the series definition of the Riemann Zeta function [28, p. 164, Eq.
(1)]

ζ(s) =
∑

n≥1

n−s, �(s) > 1 ,

and its integral representation

ζ(s) = 1

Γ (s)

∫ ∞

0

xs−1

ex − 1
dx, �(s) > 1. (2.1)

The close relative of the Riemann Zeta function known as the Dirichlet Eta function (or
the alternating Riemann Zeta function) η(s) and its integral representation are given by [28,
p. 384, Eq. (35)]

η(s) = (

1 − 21−s) ζ(s) =
∑

n≥1

(−1)n−1n−s, �(s) > 0 ,

that is,

η(s) = 1

Γ (s)

∫ ∞

0

xs−1

ex + 1
dx, �(s) > 0, (2.2)

respectively.
The polylogarithm (de Jonquière’s function) is the Dirichlet type power series in complex

argument z, viz.

Lis(z) =
∑

n≥1

zn

ns
;

here the defining series converges for the complex order s ∈ C for all |z| < 1, while by
analytic continuation it can be extended to |z| ≥ 1. There is extensive literature available
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194 R. K. Parmar et al.

for the polylogarithm and related topic; consult the standard references [1, 14, 19, 23, 31].
Obviously, Lis(1) = ζ(s), �(s) > 1.

Our interest in polylogarithm is drawn by the integral representation

Lis(z) = z

Γ (s)

∫ ∞

0

t s−1

et − z
dt, �(s) > 0, z ∈ C \ [1,∞) . (2.3)

This integral is closely connected with the Bose–Einstein distribution’s integral [10]

Gk(x) = 1

Γ (k + 1)

∫ ∞

0

tk

et−x − 1
dt, k > −1 .

Here x ≤ 0; in turn for x > 0 the Cauchy principal value integral should be used, see [10].
Obviously,

Gk(x) = ex

Γ (k + 1)

∫ ∞

0

tk

et − ex
dt = Lik+1

(

ex
)

. (2.4)

The Fermi–Dirac distribution integral (see also Clunie’s note [10]) is

Fk(x) = 1

Γ (k + 1)

∫ ∞

0

tk

et−x + 1
dt, k > 0 .

We point out, see [31], that
Fk(x) = −Lik+1

( − ex
)

. (2.5)

The similarity to Emersleben’s integral expressions for theMathieu series and the alternating
Mathieu series ˜S(r) is obvious, compare (1.1) and (1.2). Motivated by these ‘similarities’,
our next goal is to establish inter-connection formulae between the polylogarithm, the series
built from the Riemann Zeta function, the Fermi–Dirac and Bose–Einstein integrals from
one, and Mathieu series and alternating Mathieu series from the other side.

Theorem 2.1 For all |r | < 1,

S(r) = 2
∑

n≥0

(−1)n (2)n r2n

n! ζ(2n + 3), (2.6)

˜S(r) = 2
∑

n≥0

(−1)n (2)n r2n

n! η(2n + 3) . (2.7)

Proof Consider the integral representation (1.1). By the Taylor expansion of the sine function
in the integrand we conclude

S(r) = 1

r

∫ ∞

0

x

ex − 1

∑

n≥0

(−1)n(r x)2n+1

(2n + 1)! dx =
∑

n≥0

(−1)nr2n

(2n + 1)!
∫ ∞

0

x2n+2

ex − 1
dx .

In turn, by (2.3) and (2.4) we confirm that
∫ ∞

0

x2n+2

ex − 1
dx = Γ (2n + 3)G2n+2(0) = Γ (2n + 3)Li2n+3(1) = (2n + 2)! ζ(2n + 3) ,

(2.8)
which results in

S(r) = 2
∑

n≥0

(−1)nr2n(n + 1) ζ(2n + 3) ,
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Extension of Mathieu series and alternating Mathieu series… 195

getting (2.6). Next, starting now from (1.2) we infer similarly the second formula which
holds for the alternating Mathieu series ˜S(r). Indeed, applying (2.5), we conclude

˜S(r) = 1

r

∫ ∞

0

x

ex + 1

∑

n≥0

(−1)n(r x)2n+1

(2n + 1)! dx = 2
∑

n≥0

(−1)nr2n(n + 1)
∫ ∞

0

x2n+2

ex + 1
dx

= 2
∑

n≥0

(−1)nr2n(n + 1)F2n+2(0) = −2
∑

n≥0

(−1)nr2n(n + 1)Li2n+3(−1)

= 2
∑

n≥0

(−1)nr2n(n + 1) η(2n + 3) ,

which completes the proof. ��

Remark 2.2 We point out that (2.6) and (2.7) are not new; in fact these relations coincide with
the series representations [24, Eqs. (1.7-8)], also see [27, p. 72, Proposition 1] for (2.7). We
also point out that there are no reasons to consider the series S(r) and ˜S(r) exclusively for
r > 0; the exception can be Mathieu’s original mathematical model in which he described
the vibration of clamped rectangular plates and membranes, see the discussion in the memoir
[24, §8.3]. Hence the importance of the previously presented results.

3 Series expansions of integrals (1.3) and (1.4)

The derivation of the integral expressions (1.3) and (1.4) associated to S(r) and ˜S(r) is real-
ized by complex analytical and integral transformation methods, see [22]. Then, since their
integrands include reciprocals of hyperbolic functions, we explore other series expansions
of these integrals.

First, we introduce the exponential integral of the first order [1, p. 228, Eq. 5.1.1]

E1(z) = −
∫ ∞

z
x−1e−x dx , | arg(z)| < π,

whosemirror symmetry property reads E1(z) = E1(z), see [1, p. 229, Eq. 5.1.13]. Obviously,
we consider here the principal value of the integral when z 	= 0, consult [23, p. 150, Eq. 6.2.1].
Moreover, in the Mathematica package the exponential integral is defined also as the
principal value of the integral [23, p. 150, Eq. 6.2.5]

Ei(x) = −−
∫ ∞

−x
t−1 e−t dt , x > 0.

However, the inter-connection E1(x) = −Ei(−x) holds true, see [23, p. 150, Eq. 6.2.6].

Theorem 3.1 For all r > 0, the following series expansions hold:

S(r) = 1

r

∑

n≥0

s
{

e−rs�[

E1
(

(−r + i
2 )s

)] − ers�[

E1
(

(r + i
2 )s

)]

}∣

∣

∣

s=2π(n+1)
, (3.1)

˜S(r) = 1

r

∑

n≥0

s
{

ers�[

E1
(

(r + i
2 )s

)] − e−rs�[

E1
(

(−r + i
2 )s

)]

}∣

∣

∣

s=π(2n+1)
, (3.2)

where �[z] denotes the real part of z ∈ C.
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196 R. K. Parmar et al.

Proof Expanding the secant hyperbolic kernel in the integrand of (1.3), for all x > 0 we
have

1

cosh2(πx)
= 4 e−2πx

(

1 + e−2πx
)2

= 4
∑

n≥0

(−1)n(n + 1) e−2π(n+1)x = 4 e−2πx
1F0

[

2;−;−e−2πx ] . (3.3)

LetLx [ f ](s) denote the Laplace transform of a suitable function f with respect to the input
variable x of the output variable s. By the expansion (3.3), the integral (1.3) becomes a series
of Laplace transforms which reads

S(r) = 4π
∑

n≥0

(−1)n(2)n
n! Lx

[ r2 − x2 + 1
4

(

x2 − r2 + 1
4

)2 + r2

]

(

2π(n + 1)
)

. (3.4)

Next, we need the related Laplace integral property [1, p. 230, Eq. 5.1.28]
∫ ∞

0

e−sx

x + a
dx = Lx [(x + a)−1](s) = eas E1(as) , s > 0, a > 0 .

The partial fraction decomposition of the integrand is

r2 − x2 + 1
4

(

x2 − r2 + 1
4

)2 + r2
= 1

4r

{

1

x + r + i
2

+ 1

x + r − i
2

− 1

x − r + i
2

− 1

x − r − i
2

}

.

Hence, applying the previously listed results, we have

Lx

[

r2 − x2 + 1
4

(

x2 − r2 + 1
4

)2 + r2

]

(s)

= 1

4r

[

e(r+ i
2 )s E1

(

(r + i
2 )s

) + e(r− i
2 )s E1

(

(r − i
2 )s

)

− e−(r− i
2 )s E1

( − (r − i
2 )s

) − e−(r+ i
2 )s E1

(

(−(r + i
2 )s

)

]

.

By the mirror symmetry of the exponential integral we readily conclude

Lx

[

r2 − x2 + 1
4

(

x2 − r2 + 1
4

)2 + r2

]

(s)

= 1

2r

{

ers �[

e
i
2 s E1

(

(r + i
2 )s

)] − e−rs �[

e
i
2 s E1

(

(−r + i
2 )s

)]

}

,

whose right-hand side for s = 2π(n + 1) reduces to

(−1)n+1

2r

{

e2rπ(n+1)�[

E1
(

2π(r + i
2 )(n + 1)

)] − e−2rπ(n+1)�[

E1
(

2π(−r + i
2 )(n + 1)

)]

}

.

Inserting the last expression into (3.4) we arrive at the series expansion (3.1).
Next, as to (3.2), since

sinh(πx)

cosh2(πx)
= − 1

π

d

dx

( 1

cosh(πx)

)

= 2
∑

n≥0

(−1)n(2n + 1)e−(2n+1)πx

= 2e−πx
∑

n≥0

(1)n( 32 )n

( 12 )n n!
( − e−2πx)n = 2e−πx

2F1
[ 1, 3

2
1
2

∣

∣

∣ − e−2πx
]

,
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Extension of Mathieu series and alternating Mathieu series… 197

the integral expression (1.4) becomes the following series of Laplace transforms:

˜S(r) = 2π
∑

n≥0

(−1)n
(1)n( 32 )n

( 12 )n n! Lx

[

x

(x2 − r2 + 1
4 )

2 + r2

]

(

(2n + 1)π
)

.

The partial fraction decomposition of the Laplace transform input function reads

x

(x2 − r2 + 1
4 )

2 + r2
= − i

4r

{

1

x + r + i
2

− 1

x + r − i
2

− 1

x − r + i
2

+ 1

x − r − i
2

}

,

therefore

Lx

[

x

(x2 − r2 + 1
4 )

2 + r2

]

(s)

= − i

4r

[

e(r+ i
2 )s E1

(

(r + i
2 )s

) − e(r− i
2 )s E1

(

(r − i
2 )s

)

− e−(r− i
2 )s E1

( − (r − i
2 )s

) + e−(r+ i
2 )s E1

(

(−(r + i
2 )s

)

]

.

Again, by the mirror symmetry of the exponential integral E1(z), inserting s = π(2n + 1),
we conclude that

Lx

[

x

(x2 − r2 + 1
4 )

2 + r2

]

(

π(2n + 1)
) = (−1)n

2r

{

erπ(2n+1)�[

E1
(

π(r + i
2 )(2n + 1)

)]

− e−rπ(2n+1)�[

E1
(

π(−r + i
2 )(2n + 1)

)]

}

.

The rest is obvious. ��
Unfortunately, the series (3.1) for the sum S(r) is slowly convergent. Denote its general

term by un(r), i.e.,

un(r) = s

r

{

e−rs�[

E1
(

(−r + i
2 )s

)] − ers�[

E1
(

(r + i
2 )s

)]

}∣

∣

∣

s=2π(n+1)
,

and consider another auxiliary series:

T (r) = 1

2
u0(r) + 1

2

∑

n≥0

(

un(r) + un+1(r)
)

, (3.5)

where n ≥ 0 and r > 0. Let Sn(r) and Tn(r) be nth partial sums of the series S(r) and
T (r), respectively. Since the series (3.1) is convergent, limn→+∞ un(r) = 0, and according
to Tn(r) − Sn(r) = 1

2un+1(r) we conclude that T (r) is also a convergent series with the
same sum S(r).

Remark 3.2 Numerical calculations show that for fixed values of r , un(r) > 0 for even n,
and negative for odd n, so the transformation of the series (3.1) given by (3.5) is, in fact, the
well-known Euler–Abel transformation. The series (3.1) is extremely slowly convergent and
is practically not usable for numerical calculations. On the other hand, the transformed series
(3.5) shows a relatively fast convergence, so a reasonable number of initial terms is enough
to approximate the sum S(r) with the required accuracy. The following examples illustrate
these properties.

Example 3.3 In Fig. 1 (left) we present the errors

ES,n(r) := Tn(r) − S(r) = 1

2
u0(r) + 1

2

n
∑

k=0

(

uk(r) + uk+1(r)
)

, (3.6)
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198 R. K. Parmar et al.

with only n = 0, 1, 2, and 5. As the exact value S(r) we take a very precise approximation
obtained by using the Gaussian quadrature formula with respect to the hyperbolic weight
function (see [21, 22]), applied directly to the integral (1.3). As we can see, only for small
values of r , the errors ES,n(r) are significant if n ≤ 5. In the same figure (right) we present
the corresponding relative errors RS,n(r) = |ES,n(r)/S(r)|, taking the partial sums in (3.6)
for n = 5, 10, 50 and 100 terms. For example, with n = 100, the relative error for r ∈ [0, 1]
is less than 10−6, and for larger r > 1 this error is less than 10−8, which means that we
obtain the values of S(r) with at least 6 and 8 exact decimal digits, respectively.

A series with faster convergence can be obtained by repeating the previous transformation
to the series (3.5). Then we get

1

4

(

3u0(r) + u1(r) +
∑

n≥0

(un(r) + 2un+1(r) + un+2(r))
)

. (3.7)

The corresponding errors in the partial sums are denoted by ES,n(r) and presented in Fig. 2
(left), as well as the relative errors RS,n(r) in the same figure (right).

Example 3.4 In the case of the alternating Mathieu series ˜S(r) we study the auxiliary series

˜T (r) = 1

2
v0(r) + 1

2

∑

n≥0

(

vn(r) + vn+1(r)
)

, (3.8)

Fig. 1 Errors ES,n(r) for n = 0, 1, 2 and 5,when r runs over [0, 1] (left); relative errors RS,n(r) for 0 ≤ r ≤ 3,
for n = 5, 10, 50, and 100 (right)

Fig. 2 ErrorsES,n(r) for n = 0, 1, 2 and 5,when r runs over [0, 1] (left); relative errorsRS,n(r) for 0 ≤ r ≤ 3,
for n = 5, 10, 50, and 100 (right)
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Extension of Mathieu series and alternating Mathieu series… 199

with the general term

vn(r) = s

r

{

ers�[

E1
(

(r + i
2 )s

)] − e−rs�[

E1
(

(−r + i
2 )s

)]

}∣

∣

∣

s=π(2n+1)
.

The repeated Euler–Abel transformation, in this case, gives the accelerated series in the
following form:

1

4

(

3v0(r) + v1(r) +
∑

n≥0

(vn(r) + 2vn+1(r) + vn+2(r))
)

. (3.9)

The corresponding diagrams are presented in Figs. 3 and 4 with the same notations as the
ones in the previous case for the sum S(r) (Example 3.3).

Remark 3.5 As we can see, there exist certain oscillations in the graphics for the relative
errorsRS,n(r) (Fig. 2 (right)) andRS̃,n(r) (Fig. 4 (right)) for larger r and sufficiently large n

(n = 100), because of unstable calculations in such cases. Namely, the values S(r) and S̃(r),
as well as their approximations, i.e., the partial sums of series (3.7) and (3.9), respectively,
are close to zero in such cases.

Fig. 3 Errors ES̃,n(r) for n = 0, 1, 2 and 5,when r runs over [0, 1] (left); relative errors RS̃,n(r) for 0 ≤ r ≤ 3,
for n = 5, 10, 50, and 100 (right)

Fig. 4 ErrorsES̃,n(r) for n = 0, 1, 2 and 5,when r runs over [0, 1] (left); relative errorsRS̃,n(r) for 0 ≤ r ≤ 3,
for n = 5, 10, 50, and 100 (right)
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200 R. K. Parmar et al.

4 The extendedMathieu series S�,�(r) and ˜S�,�(r)

Motivated by (1.7), replacing there the kernel functionY− 1
2
with the generalBessel function of

the second kind of order ν, we introduce the extended Mathieu series S(r) and its alternating
variant ˜S(r) in the following forms:

Sμ,ν(r) =
√

π

2r

∫ ∞

0

xμ−1

ex − 1
Yν(r x) dx, μ + ν ≥ 1, (4.1)

˜Sμ,ν(r) =
√

π

2r

∫ ∞

0

xμ−1

ex + 1
Yν(r x) dx, μ + ν ≥ 0, (4.2)

where in both cases r > 0, μ > 0. Clearly S 5
2 ,− 1

2
(r) = S(r) and˜S 5

2 ,− 1
2
(r) = ˜S(r).

Using the recurrence formula [30, p. 66, Eq. (1)]

Yν−1(z) − Yν+1(z) = 2 ν

z
Yν(z),

we obtain the following recurrence formulae:

2 ν

r
Sμ,ν(r) = Sμ+1,ν−1(r) + Sμ+1,ν+1(r),

2 ν

r
˜Sμ,ν(r) = ˜Sμ+1,ν−1(r) +˜Sμ+1,ν+1(r) .

Theorem 4.1 If μ, ν + 1 > 0, n ∈ N and μ > |ν| > 0, then

Sμ,ν(r) = κ1(μ, ν)
∑

n≥1

1

(n2 + r2)
μ+ν
2

2F1
[ 1
2 (μ + ν), 1

2 (1 − μ + ν)

ν + 1

∣

∣

∣

r2

n2 + r2

]

− κ2(μ, ν)
∑

n≥1

1

(n2 + r2)
μ−ν
2

2F1
[ 1
2 (μ − ν), 1

2 (1 − μ − ν)

1 − ν

∣

∣

∣

r2

n2 + r2

]

.

Moreover, if |ν| < 1 and μ + ν + 1 > 0, then

˜Sμ,ν(r) = κ1(μ, ν)
∑

n≥1

(−1)n−1

(n2 + r2)
μ+ν
2

2F1
[ 1
2 (μ + ν), 1

2 (1 − μ + ν)

ν + 1

∣

∣

∣

r2

n2 + r2

]

− κ2(μ, ν)
∑

n≥1

(−1)n−1

(n2 + r2)
μ−ν
2

2F1
[ 1
2 (μ − ν), 1

2 (1 − μ − ν)

1 − ν

∣

∣

∣

r2

n2 + r2

]

,

where

κ1(μ, ν) = cot(νπ)

√
π rν− 1

2 Γ (μ + ν)

2ν+ 1
2 Γ (ν + 1)

; κ2(μ, ν) = csc(νπ)

√
π r−ν− 1

2 Γ (μ − ν)

2
1
2−ν Γ (1 − ν)

.

Proof Insert the binomial series expansion (ex − 1)−1 = ∑

n≥1 e
−nx , x > 0 into (4.1). The

legitimate integral-sum interchangewhich can be proved, e.g., by the dominated convergence
theorem results in

Sμ,ν(r) =
√

π

2r

∑

n≥1

∫ ∞

0
xμ−1 e−nx Yν(r x) dx .
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Making use of the integral representation [30, p. 385, Eq. (4)] or, in other words, the Laplace–
Mellin transform of the Bessel function Yν , i.e., La[xμ−1 Yν(bx)] and Mμ[e−ax Yν(bx)],
respectively, we infer that

∫ ∞

0
xμ−1e−axYν(bx) dx

= cot(νπ) · ( b
2

)ν
Γ (μ + ν)

(a2 + b2)
1
2 (μ+ν) Γ (ν + 1)

2F1
[ 1
2 (μ + ν), 1

2 (1 − μ + ν)

ν + 1

∣

∣

∣

b2

a2 + b2

]

− csc(νπ) · ( b
2

)−ν
Γ (μ − ν)

(a2 + b2)
1
2 (μ−ν) Γ (1 − ν)

2F1
[ 1
2 (μ − ν), 1

2 (1 − μ − ν)

1 − ν

∣

∣

∣

b2

a2 + b2

]

,

whose parameter space consists of �(μ) > |�(ν)| and �(a ± ib) > 0, taken above a = n
and b = r , we conclude the first asserted formula. ��

In the sequel we need the associated Legendre function of the second kind of a real
argument [23, Eq. 14.3.7]

Qp
q (x) = eπ ip

√
π Γ (p + q + 1) (x2 − 1)

q
2

2p+1 Γ (p + 3
2 ) x

p+q+1

× 2F1
[ 1
2 (p + q) + 1, 1

2 (p + q + 1)
p + 3

2

∣

∣

∣

1

x2

]

, x > 1 ,

provided the parameter range consists of p, q ∈ C and −(p + q) /∈ N.

Theorem 4.2 If μ, ν + 1 > 0, n ∈ N, and μ > |ν| > 0, then

Sμ,ν(r) = −
√

2

πr
Γ (μ + ν)

∑

n≥1

1

(n2 + r2)
1
2μ

Q−ν
μ−1

[ n√
n2 + r2

]

,

˜Sμ,ν(r) =
√

2

πr
Γ (μ + ν)

∑

n≥1

(−1)n

(n2 + r2)
1
2μ

Q−ν
μ−1

[ n√
n2 + r2

]

.

Proof The same binomial expansion as in the previous proof and a change of the order of
integration and summation gives

Sμ,ν(r) =
√

π

2r

∑

n≥1

∫ ∞

0
xμ−1 e−nx Yν(r x) dx .

By virtue of the integral [17, p. 700, Eq. 6.621. 2]
∫ ∞

0
xμ−1e−ax Yν(bx) dx = − 2

π

Γ (μ + ν)

(a2 + b2)
1
2μ

Q−ν
μ−1

[ a√
a2 + b2

]

,

whose parameter space consists of a > 0, b > 0, �(μ) > |�(ν)|, for a = n and b = r we
obtain the first asserted formula.

The derivation of the series expansion for˜Sμ,ν(r) gives

(1 + ex )−1 =
∑

n≥1

(−1)n−1e−nx , x > 0.

Now, the path to the final formula is obvious. ��
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5 Functional bounding inequalities

Recall the Gubler–Weber formula [30, p. 165, Eq. (5)]

Yν(z) = 2
( z
2

)ν

√
π Γ (ν + 1

2 )

{∫ 1

0
(1 − t2)ν− 1

2 sin(zt) dt −
∫ ∞

0
(1 + t2)ν− 1

2 e−zt dt

}

,

which holds for�(z) > 0 and ν > −1/2. Splitting the ν-domain into three disjoint intervals

(−1/2, ∞) = (−1/2, 1/2] ∪ (1/2, 3/2) ∪ (3/2, ∞) = U1 ∪U2 ∪U3 ,

Baricz et al. [3, pp. 957–958] obtained the functional bounding inequality for the real argu-
ment Neumann function Yν(x) (see also [18, pp. 7–8], [11, p. 76]):

∣

∣Yν(x)
∣

∣ + xν

2ν Γ (ν + 1)
≤

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

( x
2

)ν−1

√
π Γ (ν + 1

2 )
, − 1

2 < ν ≤ 1
2 ,

( x
2

)ν−1

√
π Γ (ν + 1

2 )
+ 2ν Γ (ν)

πxν
, 1

2 < ν < 3
2 ,

xν−1

√
2π Γ (ν + 1

2 )
+ 22ν− 3

2 Γ (ν)

πxν
, ν > 3

2 .

(5.1)

Theorem 5.1 If μ, ν + 1
2 > 0, n ∈ N, and μ > |ν| > 0, then

∣

∣Sμ,ν(r)
∣

∣ ≤

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

c1(μ, ν) ζ(μ + ν) + c2(μ, ν) ζ(μ + ν − 1), − 1
2 < ν ≤ 1

2 ,

c1(μ, ν) ζ(μ + ν) + c2(μ, ν) ζ(μ + ν − 1) + c3(μ, ν) ζ(μ − ν), 1
2 < ν < 3

2 ,

c1(μ, ν) ζ(μ + ν) + c4(μ, ν) ζ(μ + ν − 1) + c5(μ, ν) ζ(μ − ν), ν > 3
2 .

Moreover, if μ + ν + 1 > 0, then

∣

∣̃Sμ,ν(r)
∣

∣ ≤

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

c1(μ, ν) η(μ + ν) + c2(μ, ν) η(μ + ν − 1), − 1
2 < ν ≤ 1

2 ,

c1(μ, ν) η(μ + ν) + c2(μ, ν) η(μ + ν − 1) + c3(μ, ν) η(μ − ν), 1
2 < ν < 3

2 ,

c1(μ, ν) η(μ + ν) + c4(μ, ν) η(μ + ν − 1) + c5(μ, ν) η(μ − ν), ν > 3
2 ,

where

c1(μ, ν) =
√

π rν− 1
2 Γ (μ + ν)

2ν+ 1
2 Γ (ν + 1)

, c2(μ, ν) =
√

π rν− 3
2 Γ (μ + ν − 1)

2ν+ 1
2 Γ (ν + 1

2 )
,

c3(μ, ν) = 2ν− 1
2 Γ (ν)Γ (μ − ν)

√
π rν+ 1

2 Γ (ν + 1)
,

c4(μ, ν) =
√

π rν− 3
2 Γ (μ + ν − 1)

2Γ (ν + 1
2 )

, c5(μ, ν) = 22ν−2 Γ (ν)Γ (μ − ν)
√

π rν+ 1
2

.

Proof Starting with (4.1) and splitting the range of ν into three disjoint intervals

(−1/2, ∞) = (−1/2, 1/2] ∪ (1/2, 3/2) ∪ (3/2, ∞) = U1 ∪U2 ∪U3,
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and using the estimates (5.1), we conclude

|Sμ,ν(r)| ≤
√

π

2r

∫ ∞

0

xμ−1

ex − 1
|Yν(r x)| dx ≤

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Sμ,U1(r), − 1
2 < ν ≤ 1

2 ,

Sμ,U2(r),
1
2 < ν < 3

2 ,

Sμ,U3(r), ν > 3
2 ,

where

Sμ,U1(r) ≤
√

π

2r

{
( r
2

)ν

Γ (ν + 1)

∫ ∞

0

xμ+ν−1

ex − 1
dx +

( r
2

)ν−1

√
π Γ (ν + 1

2 )

∫ ∞

0

xμ+ν−2

ex − 1
dx

}

,

Sμ,U2(r) ≤
√

π

2r

{
( r
2

)ν

Γ (ν + 1)

∫ ∞

0

xμ+ν−1

ex − 1
dx +

( r
2

)ν−1

√
π Γ (ν + 1

2 )

∫ ∞

0

xμ+ν−2

ex − 1
dx

+ 2ν Γ (ν)

π rν Γ (ν + 1)

∫ ∞

0

xμ+ν−1

ex − 1
dx

}

and

Sμ,U3(r) ≤
√

π

2r

{
( r
2

)ν

Γ (ν + 1)

∫ ∞

0

xμ+ν−1

ex − 1
dx + rν−1

√
2π Γ (ν + 1

2 )

∫ ∞

0

xμ+ν−2

ex − 1
dx

+ 22ν− 3
2 Γ (ν)

π rν Γ (ν + 1)

∫ ∞

0

xμ+ν−1

ex − 1
dx

}

,

which is equivalent to the first statement of this theorem. In the derivation procedure we
apply the integral representation (2.1) of the Riemann Zeta function.

Similarly, if we start with the expression (4.2), we obtain the second formula with the aid
of the Dirichlet Eta function’s integral form (2.2). In both cases the parameter constraints are
controlled by the convergence conditions (2.1) and (2.2), respectively. ��

6 ExtendedMathieu series in terms of the Riemann Zeta and Dirichlet
Eta functions

TheBessel function of the second kindYν has twokinds of power series expansions depending
on the nature of the order parameter. Firstly, when ν = n ∈ Z, we have [1, p. 360, Eq. 9.1.11]

Yn(z) = 2

π
Jn(z) log

z

2
− 1

π

(2

z

)n n−1
∑

k=0

(n − k − 1)!
k!

( z2

4

)k

− 1

π

( z

2

)n ∑

k≥0

ψ(k + 1) + ψ(n + k + 1)

(n + k)!k!
(

− z2

4

)k
, (6.1)

which immediately follows from (1.5) and (1.6). Here ψ is the digamma function defined
by

ψ(x) = (logΓ (x))′ = Γ ′(x)
Γ (x)

.
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For a noninteger order ν /∈ Z there exist several equivalent series representations; we work
with the reformulated (1.6), viz.

Yν(z) = cot(νπ)
∑

n≥0

(−1)n( z2 )
2n+ν

Γ (n + ν + 1) n! − csc(νπ)
∑

n≥0

(−1)n( z2 )
2n−ν

Γ (n − ν + 1) n! . (6.2)

Theorem 6.1 If μ, r > 0 and n ∈ N, then

Sμ,n(r) =
√

2

πr
Γ (μ + n)

∑

k≥0

(−1)k(μ + n)2k

(k + n)! k!

×
[

log
r

2
+ ψ(μ + 2k + n)

]( r

2

)2k+n
ζ(μ + 2k + n)

+
√

2

πr
Γ (μ + n)

∑

k≥0

(−1)k(μ + n)2k

(k + n)! k!
( r

2

)2k+n
ζ ′(μ + 2k + n)

− Γ (μ − n)√
2πr

n−1
∑

k=0

(n − k − 1)!(μ − n)2k

k!
( r

2

)2k−n
ζ(μ + 2k − n)

− Γ (μ + n)√
2πr

∑

k≥0

(−1)k
ψ(k + 1) + ψ(n + k + 1)

(n + k)!k! (μ + n)2k

×
( r

2

)2k+n
ζ(μ + 2k + n) .

Proof Consider (4.1) for ν = n ∈ N. By the series (6.1) and by legitimate transformations
we get

Sμ,n(r) =
√

2

πr
log

r

2

∑

k≥0

(−1)k

Γ (k + n + 1) k!
( r

2

)2k+n
∫ ∞

0

xμ+2k+n−1

ex − 1
dx

+
√

2

πr

∑

k≥0

(−1)k

Γ (k + n + 1) k!
( r

2

)2k+n
∫ ∞

0

xμ+2k+n−1 log x

ex − 1
dx

− 1√
2πr

n−1
∑

k=0

(n − k − 1)!
k!

( r

2

)2k−n
∫ ∞

0

xμ+2k−n−1

ex − 1
dx

− 1√
2πr

∑

k≥0

(−1)k
ψ(k + 1) + ψ(n + k + 1)

(n + k)!k!
( r

2

)2k+n
∫ ∞

0

xμ+2k+n−1

ex − 1
dx .

(6.3)

The first, third and fourth integrals are already known by virtue of (2.8), however, the second
one is more challenging. Since

Ip =
∫ ∞

0

x p−1 log x

ex − 1
dx =

∑

m≥0

∫ ∞

0
x p−1e−(m+1)x log x dx =:

∑

m≥0

Im,

by the Mellin transform [16, p. 315, Eq. (9)]
∫ ∞

0
x p−1e−qx log x dx = Γ (p)

q p

[

ψ(p) − log q
]

, �(q) > 0, �(p) > 0,
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and having in mind
∑

n≥1

log n

n p
= −ζ ′(p), �(p) > 1,

setting p = μ + 2k + n and q = m + 1, we infer

Iμ+2k+n = Γ (μ + 2k + n) ψ(μ + 2k + n) ζ(μ + 2k + n) − Γ (μ + 2k + n)

×
∑

m≥0

log(m + 1)

(m + 1)μ+2k+n

= Γ (μ + 2k + n)
[

ψ(μ + 2k + n) ζ(μ + 2k + n) + ζ ′(μ + 2k + n)
]

. (6.4)

Finally, applying (2.8) and (6.4) to the expression (6.3), after certain transformations and
reduction, we arrive at the statement. ��
Theorem 6.2 If μ, r > 0 and n ∈ N0, then

˜Sμ,n(r) =
√

2

πr
Γ (μ + n)

∑

k≥0

(−1)k(μ + n)2k

(k + n)! k!

×
[

log
r

2
+ ψ(μ + 2k + n)

]( r

2

)2k+n
η(μ + 2k + n)

+
√

2

πr
Γ (μ + n)

∑

k≥0

(−1)k(μ + n)2k

(k + n)! k!
( r

2

)2k+n
η′(μ + 2k + n)

− Γ (μ − n)√
2πr

n−1
∑

k=0

(n − k − 1)!(μ − n)2k

k!
( r

2

)2k−n
η(μ + 2k − n)

− Γ (μ + n)√
2πr

∑

k≥0

(−1)k
ψ(k + 1) + ψ(n + k + 1)

(n + k)!k! (μ + n)2k

×
( r

2

)2k+n
η(μ + 2k + n).

Proof Applying the Mellin transform
∫ ∞

0

x p−1

ex + 1
dx = Γ (p) η(p), �(p) > 0,

for all integrals which we derive by the lines of the previous proof, we clearly deduce the
claimed result. � ��

Now, we present the Riemann Zeta building blocks series presentation of the extended
Mathieu Sμ,ν(r) and Dirichlet Eta function terms for extended alternating Mathieu series
˜Sμ,ν(r) by using the noninteger ν parameter case.

Theorem 6.3 For all μ, r > 0 and for |ν| < 1, if μ ± ν > 1, then

Sμ,n(r) = cot(νπ) Γ (μ + ν)

√

π

2r

∑

k≥0

(−1)k(μ + ν)2k

Γ (k + ν + 1) k!
( r

2

)2k+ν

ζ(μ + 2k + ν)

− csc(νπ) Γ (μ − ν)

√

π

2r

∑

k≥0

(−1)k(μ − ν)2k

Γ (k − ν + 1) k!
( r

2

)2k−ν

ζ(μ + 2k − ν) .
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Moreover, for μ, r > 0 and for |ν| < 1, if μ ± ν > 0, then

˜Sμ,n(r) = cot(νπ) Γ (μ + ν)

√

π

2r

∑

k≥0

(−1)k(μ + ν)2k

Γ (k + ν + 1) k!
( r

2

)2k+ν

η(μ + 2k + ν)

− csc(νπ) Γ (μ − ν)

√

π

2r

∑

k≥0

(−1)k(μ − ν)2k

Γ (k − ν + 1) k!
( r

2

)2k−ν

η(μ + 2k − ν) . (6.5)

Proof We start again with the integral (4.1) when ν ∈ (−1, 1). The series representation
(6.2) implies

Sμ,n(r) =
√

π

2r

∫ ∞

0

xμ−1

ex − 1

{

cot(νπ)
∑

k≥0

(−1)k( r x2 )2k+ν

Γ (k + ν + 1) k!

− csc(νπ)
∑

k≥0

(−1)k( r x2 )2k−ν

Γ (k − ν + 1) k!
}

dx

= cot(νπ)

√

π

2r

∑

k≥0

(−1)k

Γ (k + ν + 1) k!
( r

2

)2k+ν
∫ ∞

0

xμ+2k+ν−1

ex − 1
dx

− csc(νπ)

√

π

2r

∑

k≥0

(−1)k

Γ (k − ν + 1) k!
( r

2

)2k−ν
∫ ∞

0

xμ+2k−ν−1

ex − 1
dx

= cot(νπ)

√

π

2r

∑

k≥0

(−1)k

Γ (k + ν + 1) k!
( r

2

)2k+ν

Γ (μ + 2k + ν) ζ(μ + 2k + ν)

− csc(νπ)

√

π

2r

∑

k≥0

(−1)k

Γ (k − ν + 1) k!
( r

2

)2k−ν

Γ (μ + 2k − ν) ζ(μ + 2k − ν) ,

which is equivalent to the stated formula. The proof of (6.5) is now straightforward. ��

7 Extending the Butzer–Flocke–Hauss (complete) Omega function Ä(z)
via Neumann functions

The notation Ω(z), z ∈ C, stands for the so-called complete Butzer–Flocke–Hauss (BHF)
Omega function introduced in [4, Definition 7.1], [5] in the form

Ω(z) := 2
∫ 1

2

0+
sinh(zu) cot(πu) du, z ∈ C.

It is the Hilbert transformH1[e−zx ](0) at zero of the 1-periodic function (

e−zx
)

1 defined by

the periodic extension of the exponential function e−zx , |x | < 1
2 , z ∈ C, thus

Ω(z) = H1
[

e−zx ](0) = −
∫ 1

2

− 1
2

ezu cot(πu) du.

Another expressions for the complete BHF Omega function Ω(x) are given by Butzer et al.
[6]:

Ω(x) = 2

π
sinh

( x

2

)

∫ ∞

0

1

et + 1
cos

(

xt

2π

)

dt, x ∈ R, (7.1)
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while the real argument complete BHF Ω function’s integral form by Tomovski and Pogány
reads [29, p. 10, Theorem 3.3]

Ω(x) = 2

√

2

π
sinh

( x

2

)

−
∫ ∞

0
sinh

( xt

π

)

tan t dt .

By extensions in the integrand of the Butzer–Flocke–Hauss Omega function which is inti-
mately connected to the generalized Mathieu series (consult the extensive study by Butzer
and Pogány [5]) we are faced with a new territory of ideas and series/integral conclusion
upon the structure of these kinds of generalizations.

Inspired by (7.1), we can write

Ω(x) = −
√
x

π
sinh

( x

2

)

∫ ∞

0

√
t

et + 1
Y 1

2

( xt

2π

)

dt

having in mind that cos(z) = −√
π z/2 Y 1

2
(z) implementing the Neumann function of the

general order ν instead of Y− 1
2
in the kernel in the following way:

Ωμ,ν(x) = −
√
x

π
sinh

( x

2

)

∫ ∞

0

tμ−1

et + 1
Yν

( xt

2π

)

dt . (7.2)

The parameter range derivation will be our first goal. In turn, recognizing that the same
integral consist both Ωμ,ν(x) and Sμ,ν(r) in (7.2) and (4.2), respectively, we deduce the
relation

Ωμ,ν(x) = − x

π2 sinh
( x

2

)

˜Sμ,ν

( x

2π

)

. (7.3)

Therefore the parameter spaces coincide for any x > 0.
Next, the power series form of the complete BHF Ω function whose coefficients are built

by finite sums containing Dirichlet Eta function terms is reported in [5, p. 901, Theorem 5.4.
(ii)]

Ω(z) = z

π

∑

n≥0

n
∑

k=0

(−1)k η(2k + 1)

π2k(2(n − k) + 1)!
( z

2

)2n
, |z| < 2π,

which shows thatΩ is intimately connectedwith the Eta function. In [5] the authors discussed
the relations of the Mathieu-, and the alternating Mathieu series and its generalized variants
from one, and the Ω(z) function from other side by the Taylor expansion of the Hilbert–
Eisenstein series h1(z) of the first order and the polygamma function ψ(r) of order r (see
also [2]).

However, our recent considerations are developed in another direction, according to the
series representation of the expanded complete BHF Ωμ,ν(x) in terms of the Dirichlet Eta
function. In turn, bearing in mind (7.3), the counterpart results valid for Ωμ,ν(x) exposed
in Eq. (2.7) of Theorem 2.1, Theorem 6.2 and finally in Eq. (6.5) of Theorem 6.3 turn out
to be their immediate consequences. So, we leave the formulation of these functional bound
results to the interested reader.
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