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1. INTRODUCTION

Integrals of strongly oscillatory or singular functions appear in many branches of
mathematics, physics and other applied and computational sciences. The standard meth-
ods of numerical integration often require too much computation work and cannot be
successfully applied. Therefore, for problems with singularities, for integrals of strongly
oscillatory functions and others, there are a large number of special approaches. In this
paper we give an account on some special – fast and efficient – quadrature methods, as
well as some new approaches. Also, we give a few applications of quadrature formulas
in telecommunications and physics. Such methods require a knowledge of orthogonal
polynomials (cf. [1]).

Let Pn be the set of all algebraic polynomials P (6≡ 0) of degree at most n and let
dλ(t) be a nonnegative measure on R with finite support or otherwise, for which the
all moments µν =

∫
R tν dλ(t) exist for every ν and µ0 > 0. Then there exists a unique

system of orthogonal (monic) polynomials πk(·) = πk( · ; dλ), k = 0, 1, . . ., defined by

πk(t) = tk + lower degree terms, (πk, πm) = ‖πk‖2δkm,
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where the inner product is given by

(f, g) =
∫

R
f(t)g(t) dλ(t) (f, g ∈ L2(R) = L2(R; dλ))

and the norm by ‖f‖ =
√

(f, f).
Such orthogonal polynomials {πk} satisfy a three-term recurrence relation

πk+1(t) = (t− αk)πk(t)− βkπk−1(t), k ≥ 0, (1.1)

π0(t) = 1, π−1(t) = 0,

with the real coefficients αk and βk > 0. Because of orthogonality, we have that

αk =
(tπk, πk)
(πk, πk)

, βk =
(πk, πk)

(πk−1, πk−1)
.

The coefficient β0, which multiplies π−1(t) = 0 in three-term recurrence relation may be
arbitrary. Sometimes, it is convenient to define it by β0 =

∫
R dλ(t).

The n-point Gaussian quadrature formula
∫

R
f(t) dλ(t) =

n∑

ν=1

λνf(τν) + Rn(f), (1.2)

has maximum algebraic degree of exactness 2n − 1, in the sense that Rn(f) = 0 for all
f ∈ P2n−1. The nodes τν = τ

(n)
ν are the eigenvalues of the symmetric tridiagonal Jacobi

matrix Jn(w), given by

Jn(w) =




α0
√

β1 0√
β1 α1

√
β2

√
β2 α2

. . .
. . . . . .

√
βn−1

0
√

βn−1 αn−1




,

while the weights λν = λ
(n)
ν are given in terms of the first components vν,1 of the

corresponding normalized eigenvectors by λν = β0v
2
ν,1, ν = 1, . . . , n, where β0 =

∫
R dλ(t).

There are well-known and efficient algorithms, such as the QR algorithm with shifts, to
compute eigenvalues and eigenvectors of symmetric tridiagonal matrices (cf. [2]). A
simple modification of the previous method can be applied to the construction of Gauss-
Radau and Gauss-Lobatto quadrature formulas.

The paper is organized as follows. Section 2 discusses the methods for oscillatory
functions, including the standard methods, the product rules, as well as some complex
integration methods. Section 3 is dedicated to applications of quadratures in some
problems in telecommunications and physics.

2. INTEGRATION OF OSCILLATING FUNCTIONS

In this section we consider integrals of the form

I(f, K) = I(f(·),K(·; x)) =
∫ b

a
w(t)f(t)K(t; x) dt, (2.1)
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where (a, b) is an interval on the real line, which may be finite or infinite, w(t) is a given
weight function as before, and the kernel K(t; x) is a function depending on a parameter
x and such that it is highly oscillatory or has singularities on the interval (a, b) or in its
nearness. Usually, an application of standard quadrature formulas to I(f ;K) requires
a large number of nodes and too much computation work in order to achieve a modest
degree of accuracy. A few typical examples of such kernels are:

1◦ Oscillatory kernel K(t; x) = eixt, where x = ω is a large positive parameter. In
this class we have Fourier integrals over (0, +∞) (Fourier transforms)

F (f ; ω) =
∫ +∞

0
tµf(t)eiωt dt (µ > −1)

or Fourier coefficients

ck(f) = ak(f) + ibk(f) =
1
π

∫ π

−π
f(t)eikt dt, (2.2)

where ω = k ∈ N. There are also some other oscillatory integral transforms like the
Bessel transforms

Hm(x) =
∫ +∞

0
tµf(t)H(m)

ν (ωt) dt (m = 1, 2), (2.3)

where ω is a real parameter and H
(m)
ν (t), m = 1, 2, are the Hankel functions (see Wong

[3]). Also, we mention here a type of integrals involving Bessel functions

Iν(f ; ω) =
∫ +∞

0
e−t2Jν(ωt)f(t2)tν+1 dt, ν > −1, (2.4)

where ω is a large positive parameter. Such integrals appear in some problems of high
energy nuclear physics (cf. [4]).

2◦ Logarithmic singular kernel K(t; x) = log |t− x|, where a ≤ x ≤ b.
3◦ Algebraic singular kernel K(t; x) = |t− x|α, where α > −1 and a < x < b.
Also, we mention here an important case when K(t; x) = 1/(t− x), where a < x < b

and the integral (2.1) is taken to be a Cauchy principal value integral.
In this section we consider only integration of oscillatory functions.

2.1. A Summary of Standard Methods

The earliest formulas for numerical integration of rapidly oscillatory function are based
on the piecewise approximation by the low degree polynomials of f(x) on the integration
interval. The resulting integrals over subintervals are then integrated exactly. A such
method was obtained by Filon [5].

Consider the Fourier integral on the finite interval

I(f ; ω) =
∫ b

a
f(x)eiωx dx

and divide that interval [a, b] into 2N subintervals of equal length h = (b− a)/(2N), so
that xk = a+kh, k = 0, 1, . . . , 2N . The Filon’s construction of the formula is based upon
a quadratic fit for f(x) on every subinterval [x2k−2, x2k], k = 1, . . . , N (by interpolation
at the mesh points). Thus,

f(x) ≈ Pk(x) = Pk(x2k−1 + ht) = φk(t), (2.5)



4 G. V. Milovanović

where t ∈ [−1, 1] and Pk ∈ P2, k = 1, . . . , N . It is easy to get

φk(t) = f2k−1 +
1
2
(f2k − f2k−2)t +

1
2
(f2k − 2f2k−1 + f2k−2)t2,

where fr ≡ f(xr), r = 0, 1, . . . , 2N . Using (2.5) we have

I(f ;ω) ≈
N∑

k=1

∫ x2k

x2k−2

f(x)eiωx dx = h
N∑

k=1

eiωx2k−1

∫ 1

−1
φk(t)eiθt dt,

where θ = ωh. Since
∫ 1

−1
φk(t)eiθt dt = Af2k−2 + Bf2k−1 + Cf2k,

where

A = C =
1
2

∫ 1

−1
(t2 − t)eiθt dt, B =

∫ 1

−1
(1− t2)eiθt dt,

i.e.,

A =
(θ2 − 2) sin θ + 2θ cos θ

θ3
+ i

θ cos θ − sin θ

θ2
,

B =
4
θ3

(sin θ − θ cos θ),

we obtain
I(f ; ω) ≈ h

{
iα(eiωaf(a)− eiωbf(b)) + βE2N + γE2N−1

}
,

with α = (θ2 + θ sin θ cos θ − 2 sin2 θ)/θ3, β = 2(θ(1 + cos2 θ)− sin2 θ)/θ3, γ = 4(sin θ −
θ cos θ)/θ3, and

E2N =
N∑

k=0

′′f(x2k)eiωx2k , E2N−1 =
N∑

k=1

f(x2k−1)eiωx2k−1 ,

where the double prime indicates that both the first and last terms of the sum are taken
with factor 1/2. The limit θ → 0 leads to the Simpson’s rule. The error estimate was
given by H̊avie [6] and Ehrenmark [7].

Improvements of the previous technique have been done by Flinn [8], Luke [9], Buyst
and Schotsmans [10], Tuck [11], Einarsson [12], Van de Vooren and Van Linde [13], etc.
For example, Flinn [8] used fifth-degree polynomials in order to approximate f(x) taking
values of function and values of its derivative at the points x2k−2, x2k−1, and x2k, and
Stetter [14] used the idea of approximating the transformed function by polynomials
in 1/t. Miklosko [15] proposed to use an interpolatory quadrature formula with the
Chebyshev nodes.

The construction of Gaussian formulae for oscillatory weights has also been con-
sidered (cf. Gautschi [16], Piessens [17], [18], [19]). Defining nonnegative functions on
[−1, 1],

uk(t) =
1
2
(1 + cos kπt), vk(t) =

1
2
(1 + sin kπt),

the Fourier coefficients (2.2) can be expressed in the form

ak(f) = 2
∫ 1

−1
f(πt)uk(t) dt−

∫ 1

−1
f(πt) dt
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and

bk(f) = 2
∫ 1

−1
f(πt)vk(t) dt−

∫ 1

−1
f(πt) dt.

Now, the Gaussian formulae can be obtained for the first integrals on the right-hand side
in these equalities. For k = 1(1)12 Gautschi [16] obtained n-point Gaussian formulas
with 12 decimal digits when n = 1(1)8, n = 16, and n = 32. We mention, also, that
for the interval [0, +∞) and the weight functions w1(t) = (1 + cos t)(1 + t)−(2n−1+s) and
w2(t) = (1 + sin t)(1 + t)−(2n−1+s), n = 1(1)10, s = 1.05(0.05)4, the n-point formulas
were constructed by Krilov and Kruglikova [20].

Quadrature formulas for the Fourier and the Bessel transforms (2.3) were derived by
Wong [3].

Other formulas are based on the integration between the zeros of cosmx or sinmx
(cf. [21], [22], [23], [24], and [25]). In general, if the zeros of the oscillatory part of
the integrand are located in the points xk, k = 1, 2, . . . , m, on the integration interval
[a, b], where a ≤ x1 < x2 < · · · < xm ≤ b, then we can calculate the integral on each
subinterval [xk, xk+1] by an appropriate rule. A Lobatto rule is good for this purpose
(see Davis and Rabinowitz [21, p. 121]) because of use the end points of the integration
subintervals, where the integrand is zero, so that more accuracy can be obtained without
additional computation.

There are also methods based on the Euler and other transformations to sum the
integrals over the trigonometric period (cf. Longman [26], Hurwitz and Zweifel [27]).

2.2. Product Integration Rules

Consider the integral (2.1) with a “well-behaved” function f on (a, b). The main idea in
the method of product integration is to determine the adverse behaviour of the kernel
K in an analytic form.

Let πk( · ), k = 0, 1, . . ., be orthogonal polynomials with respect to the weight w(t) on
(a, b), and let λν and τν (ν = 1, . . . , n) be Christoffel numbers and nodes, respectively,
of the n-point Gaussian quadrature formula (1.2). Further, let Ln(f ; ·) be the Lagrange
interpolation polynomial for the function f , based on the zeros of πn(t), i.e.,

Ln(f ; t) =
n∑

ν=1

f(τν)`ν(t),

where `ν(t) = πn(t)/((t− τν)π′n(τν)), ν = 1, . . . , n. Expanding it in terms of orthogonal
polynomials {πν}, we have

Ln(f ; t) =
n−1∑

ν=0

aνπν(t),

where the coefficients aν , ν = 0, 1, . . . , n− 1, are given by

aν =
1

‖πν‖2
(Ln(f ; ·), πν) =

1
‖πν‖2

∫ b

a
w(t)Ln(f ; t)πν(t) dt.

Since the degree of Ln(f ; ·)πν(·) ≤ 2n − 2, we can apply Gaussian formula (1.2), and
then

aν =
1

‖πν‖2

n∑

k=1

λkf(τk)πν(τk), (2.6)
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because of Ln(f ; τk) = f(τk) for each k = 1, . . . , n.
Putting Ln(f ; t) in (2.1) instead of f(t) we obtain

I(f, K) = Qn(f ; x) + RPR
n (f ; x),

where

Qn(f ; x) =
∫ b

a
w(t)Ln(f ; t)K(t; x) dt,

i.e.,

Qn(f ;x) =
n−1∑

ν=0

aν

∫ b

a
w(t)πν(t)K(t; x) dt (2.7)

and RPR
n (f ;x) is the corresponding remainder. By bν(x) we denote the integrals in (2.7),

bν(x) =
∫ b

a
w(t)πν(t)K(t;x) dt, ν = 0, 1, . . . , n− 1. (2.8)

Finally, we obtain so-called the product integration rule

Qn(f ; x) =
n−1∑

ν=0

aνbν(x), (2.9)

where the coefficients aν and bν(x) are given by (2.6) and (2.8), respectively. Another
form of (2.9) is

Qn(f ; x) =
n∑

k=1

Λk(x)f(τk), (2.10)

where

Λk(x) = λk

n−1∑

ν=0

1
‖πν‖2

πν(τk)bν(x), k = 1, . . . , n.

As we mentioned on the beginning of this subsection, it is very important in this
method to have bν(x) in an analytic form. It is very convenient if we have a Fourier
expansion of the kernel K(·; x) in terms of orthogonal polynomials πν ,

K(t; x) =
+∞∑

ν=0

Bν(x)πν(t).

Because of (2.8), we see that Bν(x) = bν(x)/‖πν‖2.
Let Kn(·; x) be the best L2-approximation of K(·; x) in Pn−1, i.e.,

Kn(t; x) =
n−1∑

ν=0

bν(x)
‖πν‖2

πν(t). (2.11)

We can see that the product integration rule (2.9), i.e., (2.10), is equivalent to the
Gaussian rule applied to the function f(·)Kn(·;x). Indeed, since Λk(x) = λkKn(τk;x),
we have

QG
n (f(·)Kn(·;x)) =

n∑

k=1

λkf(τk)Kn(τk; x) = Qn(f ;x).

In some applications Kn(τk; x) can be computed conveniently by Clenshaw’s algorithm
based on the recurrence relation (1.1) for the orthogonal polynomials πν .
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In some cases we know analytically the coefficients in an expansion of (2.11). Now,
we give some of such examples.

In [28, p. 560] we used
∫ 1

−1
Cλ

k (t)eiωt(1− t2)λ−1/2 dt = ik
2πΓ(2λ + k)
k!Γ(λ)(2ω)λ

Jk+λ(ω),

where Cλ
k (t) (λ > −1/2) is the Gegenbauer polynomial of degree k. Taking this exact

value of the integral we find the following expansion of eiωt in terms of Gegenbauer
polynomials,

K(t; ω) = eiωt ∼
( 2
ω

)λ
Γ(λ)

+∞∑

k=0

ik(k + λ)Jk+λ(ω)Cλ
k (t),

where x ∈ [−1, 1]. In this case, (2.10) reduces to the product rule with respect to the
Gegenbauer weight.

In some special cases we get: (1) For λ = 1/2 – the method of Bakhvalov-Vasil’eva
[29]; (2) For λ = 0 and λ = 1 – the method of Patterson [30]. An approximation by
Chebyshev polynomials was considered by Piessens and Poleunis [31].

Taking the expansion

eiωt ∼ e−(ω/2)2
+∞∑

k=0

ik
(ω/2)k

k!
Hk(t), |t| < +∞,

where Hk is the Hermite polynomial of degree n, we can calculate integrals of the form
∫ +∞

−∞
e−t2eiωtf(t) dt.

In a similar way we can use the expansion

eiωt2 ∼
+∞∑

k=0

(iω)k

k!22k(1− iω)k+1/2
H2k(x), |t| < +∞.

Consider now the integral Iν(f ;ω) given by (2.4), which can be reduced to the fol-
lowing form

Iν(f ; ω) =
1
2

∫ +∞

0
e−tJν(ω

√
t)f(t)tν/2 dt

=
1
2

∫ +∞

0
tνe−t[t−ν/2Jν(ω

√
t)]f(t)tν/2 dt,

where we put the oscillatory kernel in the brackets. Using the monic generalized Laguerre
polynomials L̂ν

n(t), which are orthogonal on (0,+∞) with respect to the weight tνe−t,
we get the expansion

t−ν/2Jν(ω
√

t) ∼
(ω

2

)ν
e−(ω/2)2

+∞∑

k=0

(−1)k(ω/2)2k

k!Γ(k + ν + 1)
L̂ν

n(t).

Thus, in this case the the coefficients (2.8) become

bk(ω) = (−1)k
(ω

2

)ν+2k
e−(ω/2)2 .
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In 1979 Gabutti [4] investigated in details the case ν = 0. Using a special procedure in
D-arithmetic on an IBM 360/75 computer he illustrated the method taking an example
with f(t) = sin t and ω = 20.

At the end we mention that it is possible to find exactly Iν(f ; ω) when f(t) = eiαt.
Namely,

Iν(eiαt; ω) =
1
2

(ω

2

)ν 1
(1− iα)ν+1

exp
[
−(ω/2)2

1− iα

]
.

The imaginary part of this gives the previous example. An asymptotic behaviour of this
integral was investigated by Frenzen and Wong [32]. They showed that I0(f ; ω) decays
exponentially like e−γω2

, γ > 0, when f(z) is an entire function subject to a suitable
growth condition. Further considerations were given by Gabutti [33] and Gabutti and
Lepora [34].

A significant progress in product quadrature rules (and interpolation processes) was
made in the last twenty years (see Elliott and Paget [35]–[36], Sloan and Smith [37]–[39],
Smith and Sloan [40], Nevai [41]–[43], Mastroianni and Vértesi [44]–[45], Mastroianni
and Monegato [46], Mastroianni [47], and others).

2.3. Complex Integration Methods

Let
G = {z ∈ C | − 1 ≤ Re z ≤ 1, 0 ≤ Im z ≤ δ}

where Γδ = ∂G (see Fig. 2.1). Consider the Fourier integral on the finite interval

I(f ; ω) =
∫ 1

−1
f(x)eiωx dx, (2.12)

with an analytic real-valued function f .

Figure 2.1: The contour of integration

Theorem 2.1. Let f be an analytic real-valued function in the half-strip of the complex
plane, −1 ≤ Re z ≤ 1, Im z ≥ 0, with singularities zν (ν = 1, . . . , m) in the region
G = int Γ, and let

2πi
m∑

ν=1

Res
z=zν

{
f(z)eiωz

}
= P + iQ.
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Suppose that there exist the constants M > 0 and ξ < ω such that

∫ 1

−1
|f(x + iδ)| dx ≤ Meξδ. (2.13)

Then
∫ 1

−1
f(x) cos ωx dx = P +

2
ω

∫ +∞

0
Im

[
eiωfe

(
1 + i

t

ω

)]
e−t dt,

∫ 1

−1
f(x) sin ωx dx = Q− 2

ω

∫ +∞

0
Re

[
eiωfo

(
1 + i

t

ω

)]
e−t dt,

where fo(z) and fe(z) are the odd and even part in f(z), respectively.

Proof. By Cauchy’s residue theorem, we have
∮

Γδ

f(z)eiωz dz =
∫ δ

0
f(1 + iy)eiω(1+iy)i dy +

∫ −1

1
f(x + iδ)eiω(x+iδ) dx

+
∫ 0

δ
f(−1 + iy)eiω(−1+iy)i dy + I(f ; ω)

= 2πi
m∑

ν=1

Res
z=zν

{
f(z)eiωz

}
= P + iQ.

Since

|Iδ| =
∣∣∣
∫ 1

−1
f(x + iδ)eiω(x+iδ) dx

∣∣∣= e−ωδ
∣∣∣
∫ 1

−1
f(x + iδ)eiωx dx

∣∣∣

≤ e−ωδ
∫ 1

−1
|f(x + iδ)| dx ≤ Me(ξ−ω)δ → 0 (because of (2.13)),

when δ → +∞, we obtain

I(f ; ω) = P + iQ +
1
iω

∫ +∞

0

[
eiωf

(
1 + i

t

ω

)
− e−iωf

(
−1 + i

t

ω

)]
e−t dt.

Taking f(z) = fo(z) + fe(z) and separating the real and imaginary part in the previous
formula, we get the statement of theorem. ¥

The obtained integrals in Theorem 2.1 can be solved by using Gauss-Laguerre rule.
In order to illustrate the efficiency of this method we consider a simple example – Fourier
coefficients (2.2), with f(t) = 1/(t2 + ε2), ε > 0.

Since

ck(f) =
∫ 1

−1
f(πx)eikπx dx, ω = kπ,

and
eiωf

(
1 + i

t

ω

)
− e−iωf

(
−1 + i

t

ω

)
= (−1)k

[
f
(
π + i

t

k

)
− f

(
−π + i

t

k

)]
,

we get

ck(f) = P + iQ− i
(−1)k

πk

∫ +∞

0

[
f
(
π + i

t

k

)
− f

(
−π + i

t

k

)]
e−t dt.

In our case, we have

f(πz) =
1

π2z2 + ε2
, P + iQ = 2πi Res

z=iε/π

{
f(πz)eikπz

}
=

1
ε

e−kε,
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and

f
(
π + i

t

k

)
− f

(
−π + i

t

k

)
= − 4πi (t/k)

(ε2 + π2 − (t/k)2)2 + 4π2(t/k)2
,

we get

ak(f) = e−k − 4
(−1)k

k

∫ +∞

0

t/k

(ε2 + π2 − (t/k)2)2 + 4π2(t/k)2
e−t dt.

Of course, bk(f) = 0.
In Table 2.1 we give coefficients for k = 5, 10, 40 obtained for ε = 1 in D-arithmetic

(with machine precision 2.22 × 10−16). Numbers in parentheses indicate decimal expo-
nents.

Table 2.1: Fourier coefficients ak(f) for f(t) = 1/(t2 + ε2), ε = 1

k ak(f)
5 8.0466954304415(-3)

10 -2.9016347088212(-4)
40 -2.1147947576924(-5)

Table 2.2 shows relative errors in Gaussian approximation of Fourier coefficients ak(f)
for ε = 1 and k = 5, 10, 40, when we apply the N -point Gauss-Laguerre rule (GLa). In

Table 2.2: Relative errors in N -point GLa-approximations of ak(f)

ε = 1 ε = 0.01
N k = 5 k = 10 k = 40 k = 20
1 4.7(−3) 8.6(−3) 4.7(−4) 3.2(−9)
2 1.6(−4) 8.1(−5) 2.9(−7) 1.2(−11)
3 6.0(−6) 8.5(−7) 1.6(−10) 6.8(−14)
4 2.6(−7) 7.3(−9) 3.4(−14)
5 1.7(−8) 1.6(−11)

10 2.8(−13)

the last column of Table 2.2 we give the correponding relative errors in the case when
ε = 0.01 and k = 20, where a20(f) = −1.023459866383(−4).

On the other side, a direct application of N -point Gauss-Legendre rule (GLe) (N =
5(5)40) to the integral

ak(f) =
1
π

∫ π

−π

cos kt

t2 + ε2
dt, (2.14)

gives bed results with a slow convergence (see Table 2.3).
The rapidly oscillatory integrand in (2.14) is displyed in Figure 2.2 for ε = 1 and

k = 40.
Consider now the Fourier integral on (0, +∞),

F (f ; ω) =
∫ +∞

0
f(x)eiωx dx,
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Table 2.3: Relative errors in N -point GLe-approximations of ak(f)

ε = 1 ε = 0.01
N k = 5 k = 10 k = 40 k = 20
5 5.2(1) 1.5(3) 3.0(4) 5.6(7)

10 2.5(1) 2.3(1) 1.4(4) 2.8(4)
15 1.1(0) 2.2(3) 2.4(4) 2.0(7)
20 4.9(−2) 2.0(2) 2.6(4) 3.7(3)
25 2.1(−3) 8.8(0) 4.1(3) 1.2(7)
30 9.3(−5) 3.8(−1) 2.5(4) 9.0(4)
35 4.6(−6) 1.7(−2) 8.9(2) 8.7(6)
40 1.8(−7) 7.3(−4) 2.1(3) 6.9(4)

-3 -2 -1 0 1 2 3

-1

-0.5

0

0.5

1

Figure 2.2: The case ε = 1 and k = 40

which can be transformed to

F (f ; ω) =
1
ω

∫ +∞

0
f(x/ω)eix dx = F (f(·/ω); 1),

which means that is enough to consider only the case ω = 1.
In order to calculate F (f ; 1) we select a positive number a and put

K(f ; 1) =
∫ a

0
f(x)eix dx +

∫ +∞

a
f(x)eix dx = L1(f) + L2(f),

where

L1(f) = a

∫ 1

0
f(at)eiat dt and L2(f) =

∫ +∞

a
f(x)eix dx.

Theorem 2.2. Suppose that the function f(z) is defined and holomorphic in the region
D = {z ∈ C | Re z ≥ a > 0, Im z ≥ 0}, and such that

|f(z)| ≤ A

|z| , when |z| → +∞, (2.15)



12 G. V. Milovanović

for some positive constant A. Then

L2(f) = ieia
∫ +∞

0
f(a + iy)e−y dy (a > 0).

Figure 2.3: The contour of integration

Proof. Taking a > 0 and the closed contour CR in D (see Fig. 2.3) we get, by Cauchy’s
residue theorem,

∫ R

a
f(x)eix dx +

∫ π/2

0
[f(z)eiz]z=a+(R−a)eiθ(R− a)ieiθ dθ

+ i

∫ 0

R−a
f(a + iy)ei(a+iy) dy = 0.

Because of (2.15), we have that |f(z)| ≤ a/(R−2a), when R → +∞. Using the Jordan’s
lemma we obtain the following estimate for the integral over the arc

∣∣∣
∫ π/2

0
[f(z)eiz]z=a+(R−a)eiθ(R− a)ieiθ dθ

∣∣∣≤ π

2
· A

R− 2a
(1− e−(R−a)) → 0,

when R → +∞, and then desired result follows. ¥
In the numerical implementation we use the Gauss-Legendre rule on (0, 1) and Gauss-

Laguerre rule for calculating L1(f) and L2(f), respectively. In order to illustrate the
numerical results, we consider the integral

F (cos(·); 1) =
∫ +∞

0

cosx

1 + x3
dx = 0.70888800613933 . . .

The relative errors in approximations using N -point quadrature rules, with different
values of a, are shown in Table 2.4.

3. SOME APPLICATIONS OF QUADRATURES

In this section we give a few applications of Gaussain quadrature rules in some problems
in physics and telecommunications, where is very important to calculate integrals with
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Table 2.4: Relative errors in N -point Gaussian approximations of F (cos(·); 1)

N a = 1 a = 2 a = 3 a = 4 a = 5
10 4.7(−3) 2.3(−4) 1.1(−6) 8.4(−5) 1.3(−4)
20 1.2(−2) 8.8(−6) 4.9(−8) 1.1(−9) 1.5(−8)
30 2.7(−3) 4.8(−9) 1.1(−9) 8.8(−12) 1.2(−12)
40 9.9(−4) 4.5(−8) 3.8(−11) 6.3(−14) 4.1(−15)

a high precision. If we want to have a good quadrature process with a reasonable con-
vergence, then the integrand should be sufficiently regular. Furthermore, singularities in
its first or second derivative can be disturbing. Also, the quasi singularities, i.e., singu-
larities near to the integration interval, cause remarkable decelerate of the convergence.

3.1. Integration of the Error Function

We consider now an integral which appears in telecommunications (see [48]),

Pe =
1

πm

∫ π

0
· · ·

∫ π

0
erfc

[
c
(
1 +

m∑

k=1

ck cos θk

)]
dθ1 . . . dθm,

where c and ck are positive constants, and the error function erfc(t) is defined by

w(t) = erfc(t) =
1√
2π

∫ +∞

t
e−x2/2 dx. (3.1)

In our calculation, we used the following approximation (0 ≤ t < +∞)

erfc(t) = (a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5)e−t2/2 + ε, (3.2)

where x = 1/(1 + pt), p = 0.23164189, and |ε| ≤ 0.75 × 10−7. The coefficients ak are
given by:

a1 = 0.127414796, a2 = −0.142248368,
a3 = 0.7107068705, a4 = −0.7265760135,
a5 = 0.5307027145.

In order to calculate Pe (the error probability in telecommunications), we put xk =
cos θk (k = 1, . . . , m). Then, we get

Pe =
1

πm

∫ 1

−1

dx1√
1− x2

1

· · ·
∫ 1

−1

1√
1− xm

1

erfc
[
c
(
1 +

m∑

k=1

ckxk

)]
dxm.

Applying the Gauss-Chebyshev quadrature formula

∫ 1

−1

f(t)√
1− t2

dt =
π

n

n∑

ν=1

f(τν) + Rn(f), (3.3)

where τν (ν = 1, . . . , n) are zeros of the Chebyshev polynomial Tn(t), i.e.,

τν = cos
(2ν − 1)π

2n
, ν = 1, . . . , n,



14 G. V. Milovanović

successively m times, we obtain

Pe =
1

nm

n∑

ν1=1

· · ·
n∑

νm=1

erfc
[
c
(
1 +

m∑

k=1

ckτνk

)]
+ E(m)

n , (3.4)

where E
(m)
n is the corresponding error. Notice that for f ∈ C2n[−1, 1] the remainder

Rn(f) in (3.3) can be represented in the form

Rn(f) =
π

22n−1(2n)!
f (2n)(ξ) (−1 < ξ < 1).

In order to estimate E
(m)
n we take f(t) = erfc(a+ bt) (z = a+ bt, a, b > 0). Then we can

find

f (2n)(t) = − b2n

√
2π

· d2n−1

dz2n−1
(e−z2/2) =

b2n

2n
√

π
e−s2

H2n−1(s),

where s = z/
√

2 and H2n−1(s) is the Hermite polynomial of degree 2n − 1. Then, for
the remainder term in the Gauss-Chebyshev formula (3.3) we get

rn = Rn(f) =
√

π b2n

23n−1(2n)!
e−v2

H2n−1(v),

where v = (a + bξ)/
√

2 (−1 < ξ < 1). Since (see [49])

|H2n−1(v)| ≤ |v|ev2/2 (2n)!
n!

,

we conclude that

|rn| ≤
√

πb2n

23n−1n!
|v|e−v2 ≤ πKnb2n,

not depending on a. By induction, we can prove:

Theorem 3.1. For the remainder E
(m)
n in (3.4) the following estimate

|E(m)
n | ≤ c2n

23n−1n!
√

πe

m∑

k=1

c2n
k (3.5)

holds.

Thus, basing on (3.4) we have a formula for numerical calculation of the integral Pe

in the form

Pe ≈ P (n)
e =

1
nm

n∑

ν1=1

· · ·
n∑

νm=1

erfc
[
c
(
1 +

m∑

k=1

ckτνk

)]
. (3.6)

If the error in (3.2) is such that |ε| ≤ E, then for the total error in the approximation
(3.6) we have

|εT | ≤ E + |E(m)
n |.

The number of nodes in the Gauss-Chebyshev formula (3.3) should be taken so that the
upper bound of the error E

(m)
n , given in (3.5), be the same order as E.
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3.2. Singular Integrals in Analysis of Antennas

A numerical procedure for a class of singular integrals which appear in the analysis of
a monopole antenna, coaxially located along the axis of a infinite conical reflector was
given in [50]. Namely, the authors considered the integral

I(a, ν) =
∫ a

0

jν(x)
x

sin(a− x) dx, (3.7)

where jν(x) is the spherical Bessel function of the index ν, defined by

jν(x) =
√

π

2

(x

2

)ν
+∞∑

k=0

(−1)k(x/2)2k

k!Γ(ν + k + 3/2)
,

and the index ν is a solution of the equation

Pν(cos θ1) = 0, (3.8)

where Pν(cos θ) is the Legendre function of the the first kind defined by

Pν(cos θ) =
√

2
π

∫ θ

0

cos(ν + 1/2)ϕ√
cosϕ− cos θ

dϑ, (3.9)

and θ1 is the flare angle of the cone. Equation (3.8) has an infinite number of solutions
νk (k ∈ N).

Since

lim
x→0+

jν(x)
x

=





0, ν > 1,
1/3, ν = 1,
+∞, ν < 1,

we see that the integrand in (3.7) is singular when ν < 1. This case occurs when θ1 > π/2.
Namely, then the first solution of (3.8) is less than 1 (ν1 < 1). An analysis of this equation
was done in [51] (see also [52]).

The integration problem (3.7) was solved in [50] by extraction of singularity in the
form

I(a, ν) = Cν(a)
aν

ν
+

∫ a

0

jν(x) sin(a− x)− Cν(a)xν

x
dx,

where Cν(a) = 2−ν−1√π sin a/Γ(ν+3/2). For calculation of the spherical Bessel function
the authors used a procedure given in [52].

We give here an alternative procedure for (3.7) using only Gaussian quadratures. In
our approach we take an integral representation of the Bessel functions.

Since

jν(z) =
√

π

2z
Jν+1/2(z),

using the following representation for the cylindric Bessel functions (see [53, p. 360, Eq.
9.1.20])

Jν(z) =
2(z/2)ν

√
πΓ(ν + 1/2)

∫ 1

0
(1− t2)ν−1/2 cos(zt) dt (Re ν > −1/2),

we find

jν(x) =
(x/2)ν

2Γ(ν + 1)

∫ 1

−1
(1− t2)ν cos(xt) dt



16 G. V. Milovanović

and then

I(a, ν) =
1

4Γ(ν + 1)

∫ a

0

(x

2

)ν−1
sin(a− x)dx

∫ 1

−1
(1− t2)ν cos(xt) dt,

i.e.,

I(a, ν) =
1

4Γ(ν + 1)

∫ 1

−1
(1− t2)νGν(t) dt,

where
Gν(t) =

∫ a

0

(x

2

)ν−1
sin(a− x) cos(xt) dx (ν > 0).

After integration by parts, this formula reduces to

Gν(t)=
2
ν

∫ a

0

(x

2

)ν
[cos(a− x) cos xt + t sin(a− x) cos xt]dx.

Changing variables x = a(1− ξ2) (ξ ≥ 0), we get

Gν(t) =
8
ν

(a

2

)ν+1
∫ 1

0
ξ(1− ξ2)νg(ξ, t) dξ,

where
g(ξ, t) = cos[aξ2] cos[at(1− ξ2)] + t sin[aξ2] sin[at(1− ξ2)].

Notice that g(±ξ,±t) = g(ξ, t). Because of that, we have

I(a, ν) =
(a/2)ν+1

νΓ(ν + 1)

∫ 1

−1

∫ 1

−1
w(ν,1)(ξ)w(ν,0)(t)g(ξ, t) dξdt,

where w(ν,µ)(t) = |t|µ(1− t2)ν is the generalized Gegenbauer weight.
The (monic) generalized Gegenbauer polynomials W

(α,β)
k (t), orthogonal on (−1, 1)

with respect to the weight w(α,µ)(t) = |t|µ(1 − t2)α, β = (µ − 1)/2, (α, µ > −1), were
introduced by Lascenov [54] (see, also, Chihara [55, pp. 155–156]). These polynomials
can be expressed in terms of the Jacobi polynomials,

W
(α,β)
2k (t) =

k!
(k + α + β + 1)k

P
α,β)
k (2t2 − 1),

W
(α,β)
2k+1 (t) =

k!
(k + α + β + 2)k

xP
α,β+1)
k (2t2 − 1).

Notice that W
(α,β)
2k+1 (t) = tW

(α,β+1)
2k (t). The coefficients in their three-term recurrence

relation

W
(α,β)
k+1 (t) = tW

(α,β)
k (t)− βkW

(α,β)
k−1 (t), k = 0, 1, . . . ,

W
(α,β)
−1 (t) = 0, W

(α,β)
0 (t) = 1,

are known in the explicit form. Namely,

β2k =
k(k + α)

(2k + α + β)(2k + α + β + 1)
,

β2k−1 =
(k + β)(k + α + β)

(2k + α + β − 1)(2k + α + β)
,
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for k = 1, 2, . . ., except when α+β = −1; then β1 = (β+1)/(α+β+2). Some applications
of these polynomials in numerical quadratures and least square approximation with
constraint were given in [56] and [57], respectively.

The construction of the corresponding Gaussian quadratures is very simple in this
case with regard to the knowledge of recursion coefficients. Here also, there is a conve-
nience in a number of the integrand evaluations. Since the integrand is even, we can get
the Gaussian quadrature of degree of exactness 4N − 1, taking only N (positive) points
τ

(µ,ν)
1 , . . . , τ

(µ,ν)
N , as zeros of the polynomial W

(α,β)
2N (t), where α = ν, β = (µ − 1)/2.

Thus, ∫ 1

1
w(µ,ν)(t)φ(t) dt ≈ Q

(µ,ν)
N (φ) = 2

N∑

i=1

A
(µ,ν)
k φ(τ (µ,ν)

k ),

and we finally get

I(a, ν) ≈ IN (a, ν) =
4(a/2)ν+1

νΓ(ν + 1)

N∑

i=1

N∑

j=1

AiBjg(xi, yj),

where, because of simplicity, we put

Ak = A
(1,ν)
k , xk = τ

(1,ν)
k , Bk = A

(0,ν)
k , yk = τ

(0,ν)
k ,

for k = 1, . . . , n. This quadrature formula is based on N2 nodes and gives good approx-
imation of the integral I(π/2, ν). The obtained results rounded to 12 decimal places,
for a = π/2 and ν = 0.1(0.1)1.0, are displayed in Table 3.1. We used our quadrature
formula for N = 7. All digits in approximation I7(π/2, ν) are correct.

Table 3.1: Approximation of I(π/2, ν) for ν = 0.1(0.1)1.0

ν Approximation I7(π/2, ν)
0.1 9.092660539259
0.2 4.113983342491
0.3 2.470467111313
0.4 1.661658513482
0.5 1.187153595723
0.6 0.879930124888
0.7 0.668250458550
0.8 0.516135176348
0.9 0.403518784385
1.0 0.318309886184

Table 3.2 shows the relative errors in approximations IN (π/2, ν) for N = 2(1)6 and
again ν = 0.1(0.1)1.0. As we can see, the convergence of approximations is fast and we
can take relatively small N in order to get a satisfactory result.

3.3. Calculation of Legendre Functions

Numerical calculation of the Legendre function of the first order is also possible using
Gaussian quadratures. We start with Dirichlet-Mehler integral representation (3.9). The
functions Pν(x) satisfy the three-term recurrence relation

(ν + 2)Pν+2(t) = (2ν + 3)tPν+1(t)− (ν + 1)Pν(t). (3.10)
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Table 3.2: Relative errors in approximations IN (π/2, ν) for ν = 0.1(0.1)1.0 and N = 2(1)6

ν N = 2 N = 3 N = 4 N = 5 N = 6
0.1 9.2(−3) 1.5(−4) 1.3(−6) 7.6(−9) 3.0(−11)
0.2 8.2(−3) 1.3(−4) 1.1(−6) 6.3(−9) 2.5(−11)
0.3 7.2(−3) 1.1(−4) 9.4(−7) 5.3(−9) 2.1(−11)
0.4 6.5(−3) 9.5(−5) 8.0(−7) 4.4(−9) 1.7(−11)
0.5 5.8(−3) 8.3(−5) 6.9(−7) 3.7(−9) 1.4(−11)
0.6 5.2(−3) 7.3(−5) 5.9(−7) 3.1(−9) 1.2(−11)
0.7 4.6(−3) 6.4(−5) 5.1(−7) 2.6(−9) 9.8(−12)
0.8 4.2(−3) 5.6(−5) 4.4(−7) 2.2(−9) 8.2(−12)
0.9 3.8(−3) 4.9(−5) 3.8(−7) 1.9(−9) 6.9(−12)
1.0 3.4(−3) 4.4(−5) 3.3(−7) 1.6(−9) 5.8(−12)

When ν is an nonnegative integer, the functions Pν(t) reduce to the Legendre poly-
nomials orthogonal on (−1, 1).

The integrand in (3.9) is quasi-singular at θ = 0, i.e., when t = 1. Therefore, we use
an extraction in the form

Pν(cos θ) = cos[(ν + 1/2)θ]P−1/2(cos θ)

+
√

2
π

∫ θ

0

cos(ν + 1/2)ϕ− cos(ν + 1/2)θ√
cosϕ− cos θ

dθ,

and then we change variables ϕ = θ(1− x2) in order to get an integral on (0, 1). Thus,
we find

Pν(cos θ) =
2
π

cos[(ν + 1/2)θ]K
(
sin

θ

2

)
+

4
π

∫ 1

0
S(θ, x) dx,

where

S(θ, x) =
(θx) sin[(ν + 1/2)(θ − ξ)] sin ξ

sin1/2(θ − ξ) sin1/2 ξ
, ξ =

θx2

2
,

and K is the complete elliptic integral of the first kind.

Table 3.3: Maximal absolute errors in calculation of Pν(cos θ), 0 ≤ θ ≤ ϑ, 0 ≤ ν < 2

N ϑ = π/3 ϑ = π/2 ϑ = 2π/3 ϑ = 5π/6
5 8.9(−7) 3.1(−6) 1.7(−4) 1.5(−3)

10 4.7(−13) 5.9(−13) 7.1(−11) 1.5(−9)

For numerical calculation of the integral
∫ 1
0 S(θ, x) dx we use the standard N -point

Gauss-Legendre quadrature formula transformed before to (0, 1), while for the complete
elliptic integral

K(sinα) =
∫ π/2

0
(1− sin2 α sin2 θ)−1/2 dθ

we use the well-known process of the arithmetic-geometric mean (cf. [53, pp. 598–599]).
An analysis of this quadrature process shows that we must take N = 20 in the Gauss-
Legendre rule in order to get the values of Pν(cos θ) for 0 ≤ ν < 2 and 0 ≤ θ < π
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with an absolute error less than 10−10. Some computational problems can occur when
θ → π. By certain restrictions on θ, for example 0 ≤ θ ≤ ϑ < π, our approximation for
Pν(cos θ) gives better results. The corresponding maximal absolute errors in calculation
of Pν(cos θ) are given in Table 3.3.

When the index ν ≥ 2 it is convenient to use three-term recurrence relation (3.10),
starting by two values Pµ(cos θ) and Pµ+1(cos θ), where 0 ≤ µ < 1. One similar proce-
dure was given in [51].

3.4. Integrals Occurring in Quantum Mechanics

Let α and β be real parameters such that α2 < 4β, and let w(α,β)(t) be a modified
exponential weight on (−∞, +∞), given by

w(α,β)(t) =
e−t2

√
1 + αt + βt2

.

Recently Bandrauk [58] stated a problem1 of finding a computationally effective
approximations for the integral

Iα,β
m,n =

∫ +∞

−∞
Ĥm(t)Ĥn(t)w(α,β)(t) dt, (3.11)

where Ĥn(t) is the monic Hermite polynomial of degree n. The function t 7→ Hm(t)e−t2/2

is the quantum-mechanical wave function of m photons, the quanta of the electromag-
netic field. The integral express the modification of atomic Coulomb potentials by elec-
tromagnetic fields. The integral Iα,β

0,0 is of interest in its own right. It represents the
vacuum or zero-field correction.

Evidently, for α = β = 0, the integral Iα,β
m,n expresses the orthogonality of the Hermite

polynomials, and I0,0
m,n = 0 for m 6= n.

-4 -2 0 2 4

-80000
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Figure 3.1: The case α = β = 1 and m = 10, n = 15

1The original problem was stated with the Hermite polynomials Hk(t) = 2kĤk(t) (k ≥ 0).
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In order to compute the recursion coefficients in three-term recurrence relation (1.1)
for the weight w(α,β)(t) on R, we use the discretized Stieltjes procedure, with the dis-
cretization based on the Gauss-Hermite quadratures,

∫ +∞

−∞
P (t)w(α,β)(t) dt =

∫ +∞

−∞
P (t)√

1 + αt + βt2
e−t2 dt

∼=
N∑

k=1

λH
k P (τH

k )√
1 + ατH

k + β(τH
k )2

,

where P is an arbitrary algebraic polynomial, and τH
k and λH

k are the parameters of
the N -point Gauss-Hermite quadrature formula. We need such a procedure for each of
selected pairs (α, β). The recursion coefficients for α = β = 1 are shown in Table 3.4.

Table 3.4: Recursion coefficients for the polynomials {πk( · ; w(1,1))}
k alpha(k) beta(k)

0 -1.13718980227451884899E-01 1.60766630028944893121E+00
1 -2.98816813129032592761E-02 3.97745941390277354575E-01
2 -1.85679035713552418458E-02 8.59017858999744830059E-01
3 -1.11233908951155754459E-02 1.34150020202713424624E+00
4 -7.92784095565612963769E-03 1.82832224474490311965E+00
5 -5.94481593708158274332E-03 2.32049028595201023201E+00
6 -4.61320306236083269485E-03 2.81392714298467724481E+00
7 -3.77400607804653998726E-03 3.30922646548235467381E+00
8 -3.10374039370687352784E-03 3.80522704177833428173E+00
9 -2.65108641700060815508E-03 4.30202508196469245713E+00

10 -2.26842278846161700443E-03 4.79927392312629547184E+00
11 -1.98912530996355941798E-03 5.29692873475598728737E+00
12 -1.74932773647048079346E-03 5.79488527243872611520E+00
13 -1.56237000002809778848E-03 6.29308070865561292494E+00
14 -1.40104941875887432738E-03 6.79148342996299101450E+00
15 -1.26885269546785898765E-03 7.29004317825168070747E+00
16 -1.15424028426112948617E-03 7.78874923730844163954E+00
17 -1.05691742533931946106E-03 8.28756682324525295902E+00
18 -9.71970640332240357136E-04 8.78649067850541708346E+00
19 -8.98019722632390496377E-04 9.28549797716577173470E+00

The integrand t 7→ Ĥm(t)Ĥn(t)w(α,β)(t) in (3.11) has m + n zeros in the integration
interval and very big oscillations. The case α = β = 1 and m = 10, n = 15 is displayed
in Figure 3.1.

Applying the corresponding Gaussian formulas, with respect to the weight w(α,β)(t),
to Iα,β

m,n we get approximative formulas

Iα,β
m,n ≈ Qα,β

m,n =
N∑

ν=1

λ(α,β)
ν Ĥm(τ (α,β)

ν )Ĥn(τ (α,β)
ν ). (3.12)

In Table 3.5 we present the obtained results for α = β = 1 in double precision
arithmetic in two cases: m = 3, n = 6, and m = 10, n = 15. The number of nodes in
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Table 3.5: Gaussian approximation of the integral Iα,β
m,n

N Q1,1
3,6 Q1,1

10,15

5 2.63168167926273(-1) -4.01134148759825(4)
10 2.63168167926273(-1) 3.20721013272847(4)
15 2.63168167926273(-1) -2.06784419769247(4)
20 2.63168167926273(-1) -2.06784419769247(4)

quadrature formula (3.12) was N = 5, 10, 15, 20. Since the N -point Gaussian quadrature
formula (3.12) has maximum algebraic degree of exactness 2N − 1, we see that obtained
results are exact for every N such that 2N − 1 ≥ m + n.
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[15] J. Miklosko, Numerical integration with weight functions cos kx, sin kx on [0, 2π/t], t =
1, 2, . . ., Apl. Mat. 14, pp. 179–194, (1969).

[16] W. Gautschi, Tables of Gaussian quadrature rules for the calculation of Fourier coefficients,
Math. Comp. 24, pp. microfiche (1970).

[17] R. Piessens, Gaussian quadrature formulas for the integration of oscillating functions, Z.
Angew. Math. Mech. 50, pp. 698–700, (1970).

[18] R. Piessens, Gaussian quadrature formulas for the integration of oscillating functions, Math.
Comp. 24, pp. microfiche (1970).

[19] R. Piessens, Gaussian quadrature formulas for the evaluation of Fourier-cosine coefficients,
Z. Angew. Math. Mech. 52, pp. 56–58, (1972).

[20] V.I. Krylov and L.G. Kruglikova, A Handbook on Numerical Harmonic Analysis, (in Rus-
sian), Izdat. “Nauka i Tehnika. Minsk, (1968).

[21] P.J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, New
York, (1975).

[22] I.M. Longmann, A method for the numerical evaluation of finite integrals of oscillatory
functions, Math. Comp. 14, pp. 53–59, (1960).

[23] R. Piessens and M. Branders, Tables of Gaussian Quadrature Formulas, Appl. Math. Progr.
Div., University of Leuven, Leuven, (1975).

[24] R. Piessens and A. Haegemans, Numerical calculation of Fourier transform integrals, Elec-
tron. Lett. 9), pp. 108–109, (1973).

[25] J.F. Price, Discussion of quadrature formulas for use on digital computers, Boeing Scientific
Research Labs. Report D1-82-0052, (1960).

[26] I.M. Longmann, Note on a method for computing infinite integrals of oscillatory functions,
Proc. Camb. Phil. Soc. 52, pp. 764–768, (1956).

[27] H. Hurwitz, Jr. and P.F. Zweifel, Numerical quadrature of Fourier transform integrals,
MTAC 10, pp. 140–149, (1956).

[28] G.V. Milovanović and S. Wrigge, Least squares approximation with constraints, Math.
Comp. 46, pp. 551–565, (1986).

[29] N.S. Bakhvalov and L.G. Vasil’eva, Evaluation of the integrals of oscillating functions by
interpolation at nodes of Gaussian quadratures, U.S.S.R. Comput. Math. and Math. Phys.
8, pp. 241–249, (1968).

[30] T.N.L. Patterson, On high precision methods for the evaluation of Fourier integrals with
finite and infinite limits, Numer. Math. 27, pp. 41–52, (1976).

[31] R. Piessens and F. Poleunis, A numerical method for the integration of oscillatory functions,
BIT 11, pp. 317–327, (1971).

[32] C.L. Frenzen and R. Wong, A note on asymptotic evaluation of some Hankel transforms,
Math. Comp., 45, pp. 537–548, (1985).

[33] B. Gabutti, An asymptotic approximation for a class of oscillatory infinite integrals, SIAM
J. Numer. Anal. 22, pp. 1191–1199, (1985).

[34] B. Gabutti and P. Lepora, A novel approach for the determination of asymptotic expansions
of certain oscillatory integrals, J. Comput. Appl. Math. 19, pp. 189–206, (1987).



Numerical Calculation of Integrals 23

[35] D. Elliott and D.F. Paget, Product-integration rules and their convergence, BIT 16, pp.
32–40, (1976).

[36] D. Elliott and D.F. Paget, The convergence of product integration rules, BIT 18, pp.
137–141, (1978).

[37] I.H. Sloan and W.E. Smith, Product integration with the Clenshaw-Curtis and related
points. Convergence properties, Numer. Math. 30, pp. 415–428, (1978).

[38] I.H. Sloan and W.E. Smith, Product integration with the Clenshaw-Curtis: Implementation
and error estimates, Numer. Math. 34, pp. 387–401, (1980).

[39] I.H. Sloan and W.E. Smith, Properties of interpolatory product integration rules, SIAM J.
Numer. Anal. 19, pp. 427–442, (1982).

[40] W.E. Smith and I.H. Sloan, Product integration rules based on the zeros of Jacobi polyno-
mials, SIAM J. Numer. Anal. 17, pp. 1–13, (1980).

[41] P. Nevai, Mean convergence of Lagrange interpolation. I, J. Approx. Theory 18, pp. 363–
377, (1976).

[42] P. Nevai, Mean convergence of Lagrange interpolation. II, J. Approx. Theory 30, pp.
263–276, (1980).

[43] P. Nevai, Mean convergence of Lagrange interpolation. III, Trans. Amer. Math. Soc. 282,
pp. 669–698, (1984).
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[50] B. Milovanović, J. Surutka, V. Janković, On numerical evaluation of some integrals appear-
ing in the problem: conical reflector-coaxial monopole antenna, (in Serbian), In Proceedings
of 27th Conference ETAN, pp. 567–573, Yugoslav Committee for ETAN, Mostar, (1981).
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[53] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, National Bureau
of Standards, Washington, (1970).

[54] R.V. Lascenov, On a class of orthogonal polynomials, (in Russian), Učen. Zap. Leningrad.
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