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Discrete inequalities of Wirtinger’s type are considered. Constants in the 
obtained inequalities are the best ones. In the special case the inequalities (1) and 
(2) are obtained. They are proved by K. Fan, 0. Taussky, and J. Todd: Discrete 
analogs of inequalities of Wirtinger, Montash. Math. 59 (1955). 73-79. 

Fan et al. proved [ 1] (see also [2-4]) the following results: 

THEOREM A. If x,, x2 9 .,., x, are II real numbers and x, = 0. then 

n-1 
r (Xk-Xk+,)’ >4sin2 
kc, qzf- 1) $ x:9 

k ? 

unless xk = Aik , where 

ak=sin(:n-y)177 (k=l,2 ,..., ti). 

THEOREM B. If x,, x2 ,..., x,, are n real numbers, then 

+ (.uk -xk+,)* > 4 sin’ 
k:O 

(where x0 = x, + , = 0) unless xk = Ai,, where 

kn 
Zk = sin - 

n+l 
(k = 1, 2 ,..., n). 

(1) 

(2) 

A generalization of inequalities (1) and (2) will be given in this paper. In 
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fact, we shall consider the determination of the best constants A, and B, in 
the inequalities 

A, f’ pLx;: = 
n-1 

kr2 
< kT, rk(xk -xk+ ,)’ 2 B, 5 P&, 

k--2 

where p = (pk) and r = (rk) are given weight sequences. 
Let a = (a, , a, ,..., a,) and b = (II,, 6, ,..., b,- ,) be sequences of positive 

numbers. 
A symmetric three-diagonal matrix of nth order will be denoted by 

H,,(a, b). The main diagonal of the matrix consists of elements of the 
sequence a, and lateral diagonals consist of elements of the sequence b, i.e., 

b, O... 0 0 

0 0 0 Q,-, b,-, 

0 0 0 b,-, a, 

First, we shall prove two auxiliary results: 

LEMMA 1. Let (rk)kEN and (pk)keN be positive sequences. Then the 
matrix H,- ,(a, b), with 

a= r, + r2 r,-, + r,-, r,-, 
___ ,...) 

P2 

b = (- &,..., - dz) , 

is positive definite. 

ProoJ Denote the main minors in each matrix Hk(a, b) (k = l,..., n - 1) 
with D,, , Dk2 ,..., D,, (= det Hk(a, b)). We should prove that Dij > 0 
(i = l,..., n - 1; j = l,..., n-l; izj) (see [5,6]). As Dkm=Dk-,,,,=..*= 
D m+,,m for m = 2 ,..., k - 1, we shall prove that 

where X CLtt,. .  .ri is a sum of products of all combinations without repetition 
of elements r,, r2,..., ri of kth class. Since D,, = r,r,/p,p, > 0 and 
D,, = (r, + r2)/p2 > 0, it can be checked that (3) is correct for m = 2. 
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Assume that (3) is correct for a fixed m (<k) and let us then show that it is 
correct for m + 1 (<k) too. 

Since 

D ri+, D 
r 

m+2.m+1= - 
Pm+2 m+‘.m--’ 

+ 
m+l+ ‘rn+Z~ 

p 
m+ I.mr 

m+l Pm+2 

we have, based on (3), that 

D k.m+ 1 = .” =D m+2.mil 

=-(rtn+~/P~+,P~+z) ( (XC:Y~~Lm/,!j Pi) D22 

+ (,i ri/fi Pi) D21) + ((rm+l + rm+2)lPm+2) 

i.e.. 

which have to be proved. Since D,, > 0 and D,, > 0, we conclude from (3) 
that D,, > 0 for k = 1, . . . . n - 1 and m = 2, 3 ,..., k - 1. 

It should be proved that 

k 

I 

ktl 

D,, = x ri x pi, 
i=l i=2 

(4) 

wherefrom we have D,, > 0. 

As D/c, = @k/Pk+d Dk,k-l - (r:/PkPk+l) Dk-l.k-2y on the basis of (319 
Eq. (4) is obtained by arranging the right-hand side of the preceeding 
equality. Now, the proof of Lemma 1 is completed. 

Using the same procedure, the following statement can be proved: 

LEMMA 2. Let (rk)keNO and (pk)keK be positive sequences. Then the 
matrix H,(a, b), with 

a= r,+r, r,-,+r, 
p. ), 

is positive definite. 
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THEOREM 1. Let (rk)kcN, md (Pk)kS# be two positive sequences and let 

(QkWLc~, be the sequence of polynomials defined with 

d& Qk+,W= ( rk+;,‘,;+’ -X) Q&) 

‘ktl 

- \/I= Qk- 1@)e 
(5) 

Q&y) = 1, Q-,(x) = 0. 

Then for any sequence of real numbers x, (=O), x2,..., x,, the following 
inequalities are valid: 

where A, and B, are minimal and maximal zeros of polynomial 
x N R n _, (x), defined with 

Equality in the left (right) inequality (6) exists if and only if 

x, =o. ?Ik = (c/&j Q,-#) (k = 2...., n), 

where 1 = A,, (A = B,,) and C is an arbitrary constant. 

Proof. Let X be Euklid’s space of an (n - 1)-dimensional vector with 
scalar product (z, w)= xi:: z~M’~, where z = [z, ..a z,~,]’ and 
w = [w, **a w-,JT. 

Let 

n-l 

F= \’ rk(xk-xk+,)’ 
kZ, 

and 

If we put &XXI, = Jlk (k = l,..., n), F and G are transformed in 

and 

G= 2 j+ (y,y), 

409/88/2 5 
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where y = [ y2 . . . ynlT and H,_ ,(a, b) is a three-diagonal matrix defined as 
in Lemma 1. On the other hand, let us consider a sequence of polynomials 

(QkWkPN, which is defined by (5). For k = 0. l,..., n - 1. on the basis of 
(5) we obtained the equality 

H,-,(a, b)z=xz + ( (2-x) Qn-.kv) - d& Q,-,(-v)) e. (9) 

where e = [0 ... OllT and z = (QO(x) ... Q,-*(x)]~. 
If we put x = A. Eq. (9) reduces to 

H,~,(a,b)z=~z+R.~,(~)e, (10) 

where x t-1 R,- ,(x) is a polynomial defined by (7). According to ( 10) we 
conclude: 

If 1 is such that R,-,(J) = 0, then 1 is an eigenvalue of matrix H,- ,(a, b) 
and z is an eigenvector. Contrarily, if J is an eigenvalue and z is an eigen- 
vector of matrix H,- ,(a, b), then R,_~ ,(A) = 0, i.e., 1 is a zero of polynomial 
x+-+ R,-,(x). 

Thus, eigenvalues of matrix H,_ ,(a, b) are zeros of polynomial 
xw R,-,(x) at the same time. Since on the basis of Lemma 1, H,- ,(a, b) is 
a positive definite matrix, its eigenvalues are real and nonnegative (see, e.g., 
[5,6]) so the zeros of the polynomials x ++ R,-,(x) are also real and 
nonnegative. On the basis of the inequality 

which is valid for any Hermitian matrix A, where we have the equality 
for eigenvectors corresponding to eigenvalues Amin and A,,,,,, the conclu- 
sions of Theorem 1 follows, i.e., B, = maxlSiSn-, ki and A, = 

mintjisn-, W,-~W=O)T as do the conditions of equality (8). 

COROLLARY 1. For any sequence of real numbers x,(=0), x2 ,..., x,, the 
inequality 

n-1 
.x (k - l)(Xk - xk+ ,)’ 5 B,, f X: 
k=l k=2 

(11) 

is valid. B, is a maximal zero of the generalized Laguerre polynomial 
xl-+ L;::‘(x) = x;=* (;I:)((-X)k/k!). 

We have the equality in (11) if and on& if x, = 0, xk = CL,-,(B,) 
(k = 2,..., n), where C is arbitrary constant, and x I-+ L,(x) a Laguerre 
polynomial. 
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Proof: For pk = 1 and rk = k - 1 (k = l,..., n), recursive relation (5) 
becomes 

(k + 1) Qk+ I(x) = (2k + 1 - x) Q&l - kQk- ,6x), 

wherefrom we conclude that Q,(x) = Lz(x)(Lz(x) = Lk(x)/ll Lkll), where 
.YW Lk(x) is a Laguerre polynomial. 

According to the relation valid for generalized Laguerre polynomials (see 
[ 7, S]), we obtain that R,_,(x) = (n - 1) L!,:‘,‘(x). Now the statement of 
Corollary 1 follows from Theorem 1. 

It is not difficult to show that B, = 2, B, = 3 + fi 

COROLLARY 2. For any sequence of real numbers x,(=0), .Y*,..., x,, the 
foliowing inequalities are valid: 

(12) 

The equality in the left inequality (12) holds if and onfy if 

.yk = C sin (k - I)’ 
2n - 1 

(k = l,..., n). 

where C = const. 
The equality in the right inequality ( 12) holds if and only if 

xk = (-1)&C sin 
2(k - 1)n 

2n- 1 
(k = l,..., n), 

where C = const. 

Proof. For pk = rk = 1 (k = l,..., n), (5) becomes 

Qk+ ,(X) = (2 - X) Q,(X) - Qk- I(X) (Q,,(x) = 1, Q,(x) = 2 -x) (13) 

so 

R,-,(x) = Q”-,(x) - Q+*(X), (14) 

If we put y = arctan(dm/l) and t = +(2 -x), one can easily obtain 
the solution of difference equation (13), 

Q,(x) = sin(n + l)O/sin 8, 

where eie = f + i\/l_T5: 
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Then 

2n- 1 
R,+,(x) = cos ___ 

2 
elcos $, 

wherefrom we have 

A, = 4 sin’ 
(2k - 1)~ 

2(2n - 1) 
(k = I,.... n - 1). 

Thus 

A,,= min )Lk=A, =4sin2 
7c 

ISkcn-I 2(2n - 1) 

and 

7c 
B,= max ~k=&-,=4~~s2-. 

ljksn-I 2n- 1 

The left equality in (12) occurs if and only if 

i.e., 

x, =o, xk = c, Qk-z(An) (k = 2...., n), 

xk= Csin(k- 
2n- 1 

(k = I...., n). 

where C is arbitrary constant. 

Similarity is obtained when equality occurs in the right inequality (12). 

Remark. Theorem A is contained in Corollary 2. 

Using Lemma 2, similarly to Theorem 1, the following statement can be 
proved: 

THEOREM 2. Let @k)ksN, and bk)kENo be two positive sequences and let 

(QdXhctvo be the sequence of polynomials defined with 

dp~Q,+,(X)= (“p’,::+’ -X) Q,(X)- d;Qx-d-d+ 
(15) 

Q,(x) = 1, Q-I(x) = 0. 
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Then for any sequence of real numbers x,, (=O), x, ,..., x,, x,, ,(=O), ine- 
qualities 

hold, where A,, and B, are minimal and maximal zeros of polynomial 
x t+ Q,(x). 

Equality in the left (right) inequality (16) holds if and only if 

x0 = 0, (k = l,.... n), 

where A= A,, (,I= B,) and C is arbitrary constant. 

COROLLARY 3. For each sequence of real numbers x,(=0), x, ,..., x,, 
x, + ,(=O), the inequality 

G k(x,-x,+,)‘IB, i x; 
k:O k=O 

(17) 

holds, where B, is a maximal zero of the Laguerre polynomial x H L,(x). 
We have the equality in (17) if and only if x0 = 0, xk = CL,- ,(B,) 

(k = l,..., n), where C is arbitrary constant and x +-+ L,-,(x) a Laguerre 
polynomial. 

Proof For pk = 1 and rk = k (k = 0, l,..., n), recursive relation (15) 
becomes 

(k + 1) Qk+ ,(x) = (2k + 1 -x) &(x) - k% I(X). 

wherefrom we conclude that x t-r Q,(x) are Laguerre polynomials. Now the 
conclusion of Corollary 3 follows from Theorem 2. 

COROLLARY 4. For a sequence of real numbers x0 (=O), x, ,.... x,, x,, , 
(=O), the following inequalities hold: 

K 

4 sin2 2(n + 1) kzO 
CT k’x:S + k(k+ l)(xk-xk+l)* 

k:O 

II 
+ k*y* 54cosz qn+ 1) kyo -k’ 

(18) 
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Equality in the left inequality (18) holds if and only if 

C. kx 

xk=i?‘n k+ 1 
(k = l,..., n), 

where C = const. 
Equality in the right inequality (18) holds if and only if 

xk = (-Uk-’ c sin kn 

k n+l 
(k = l,..., n), 

where C = const. 

Proof: Forp,=k’andr,=k(k+ 1) (k=O, l,...,n), (15) becomes (13). 
Now the conclusions of Corollary 4 follow from Theorem 2. 

COROLLARY 5. For each sequence of real numbers x,(=0), x, ,..., x,. 
x,+ , (=O), the folio wing inequalities hold: 

n 

x;z K’ (Xk-Xk+,)~~4COS~ 
kT0 

Equality in the left inequality (19) holds if and only tf 

kn 
xk = C sin - 

nfl 
(k = O,..., n), 

where C = const. 
Equality in the right inequality (19) holds if and only if 

xk=(-l)kp’Csin- 
n+l 

(k = 0. l,..., n). 

where C = const. 

Remark. Theorem B is contained in Corollary 5. 
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