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Discrete inequalities of Wirtinger's type are considered. Constants in the
obtained inequalities are the best ones. In the special case the inequalities (1) and
(2) are obtained. They are proved by K. Fan, O. Taussky, and J. Todd: Discrete
analogs of inequalities of Wirtinger, Montash. Math. §9 (1955), 73-79.

Fan et al. proved [1] (see also [2—4]) the following results:

THEOREM A. If X, X34, X, are n real numbers and x, =0, then

n~—1 n
N (= xes ) > A sint el N X2, 1)
=, (k= Xui 1) on— 1) =, (

unless x, = AX,, where

. (k—Dm

X, = =1 2,..., .
£y =sin ——— k=1, n)

THEOREM B. If x,,x,....., x, are n real numbers, then

n n
N (e — X 2y 4sin? — 1 N 52 2
;;o ( k k I) 2(n+ 1) l:_=_0 k ( )

(where x, = x, ., =0) unless x, = AX,, where

km

k=1,2...n).
+1 ( 2 )

X, = sin
n

A generalization of inequalities (1) and (2) will be given in this paper. In
378
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fact, we shall consider the determination of the best constants 4, and B, in
the inequalities

n n—1 n
Al 2 2 o 2
A, 1 DX S > rdxe— x4 1) =B, 1 PrXks

k=2 =1 k=2

x>

where p = (p,) and r = (r,) are given weight sequences.

Let a=(a,,a;,..a,) and b= (b, b,,...b,_,) be sequences of positive
numbers.

A symmetric three-diagonal matrix of nth order will be denoted by
H,(a,b). The main diagonal of the matrix consists of elements of the
sequence a, and lateral diagonals consist of elements of the sequence b, i.e.,

a, b, 0 .. 0 0

b, a, b, 0 0
L(a,b)= )

6 0 0 a, ; b,_,

0 0 0 b,_, a,

First, we shall prove two auxiliary results:

LEMMA 1. Let (ri)ieny and (py)ien be positive sequences. Then the
matrix H,_,(a,b), with

a

i

seersy L]

(rl+r2 rn-2+rn—l rn—l)
P Pn-y Dy

b=

(_ r2 _ rn—l )
VD P; V Pn-1Pn
is positive definite.

Proof. Denote the main minors in each matrix H,(a,b) (k=1,.,n—1)
with Dy, Dyy,.... Dy, (=det H(a,b)). We should prove that DU >0
(i=le,n—1;j=1,.,n—1;i2]) (see {56]). As D, =D;_; ==

D, nfor m=2,.k— 1, we shall prove that
m+ 1 m+1 m+1
ka:< Cﬁ:nr,,Z)r,,,H/H pl)D2’+(n ri/n pi)DZI’ (3)
i=3 i=3
where 3" C[\} ..., is a sum of products of all combinations without repetition

of elements r,,r,,.,r; of kth class. Since D,,=rr,/p,p; >0 and
a =0 +r)/p,>0, it can be checked that (3) is correct for m=2.
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Assume that (3) is correct for a fixed m (<k) and let us then show that it is
correct for m + 1 (<k) too.
Since

-

— rm+l rm+l+rm+2D
m+2,m+1 — m+l.m——1+ m+1,m»
pm+lpm+2 pm+2

D

we have, based on (3), that

Dk.m+l="'=D

m+2,m+1

n
= —(rrzn+|/pm+lpm+2) ((E Cﬁ’:_}:m/n Pi) D,,
i=4

+ (ﬁ / 21) Das) 4 s + P Ps)

i=3
; m+ 1 m+1 m+1
X ((Z CE‘;"'—:'Z')‘m—H/[L p,-) Dy, + (11 ri/ _11 Pi) Dzn)s

ie.,

i=4 i=3

m+2 m+2 m+2
Dymir= (Z CLT:-IZ,,,H/H Pi) D,, + ( H ri/l_[ Pi) D,,,
i=3

which have to be proved. Since D,, > 0 and D,, > 0, we conclude from (3)
that D,, >0 for k=1,.,n—1and m=2,3,., k- 1.
It should be proved that

k+1
Dkk=§_"i/}_ b, 4)

wherefrom we have D,, > 0.

As Dy = (ry/Pist) Disk—1 = (ri/PiPist) Di_ 1 k-2> O the basis of (3),
Eq.(4) is obtained by arranging the right-hand side of the preceeding
equality. Now, the proof of Lemma 1 is completed.

Using the same procedure, the following statement can be proved:

LeMMA 2. Let (ri)yen, and (py)een be positive sequences. Then the
matrix H,(a,b), with

a=(ro+r, r,,_,+r,,)’ b=

geeny

__nh _— r,_ )
P Pn ( VPP, VPu-1 Py

is positive definite.
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THEOREM 1. Let (ri)ien, and (Pi)ien be two positive sequences and let
(Qu(*))xen, be the sequence of polynomials defined with

¥, ., r +r 3
__‘H;_Q‘Hl(x): (_"_’f_‘__ﬁ_z_x) Q,(x)
VPri2Piis Pics2

r
— = 0, (x)

VPii1Piy2 (5)
Qi(x) =1, g_(x)=

Then for any sequence of real numbers x, (=0), x,,.... x,, the following
inequalities are valid.

h n-1 n
o 2 O 2 N 2

4, i PrXi = ,\_ rixy—x,, )" =8B, ,\_ PiXys (6)
k=2 k=1 k=2

where A, and B, are minimal and maximal zeros of polynomial
X+ R, _,(x), defined with

R, \(x)= (’;‘

n

! —x) 0 2(x) — —=e 0, (). (7)

n—lpn

Equality in the left (right) inequality (6) exists if and only if
x=0.  x=(C/\V/P)Qu o))  (k=2..n), (8)

where A=A, (A =B,) and C is an arbitrary constant.

Proof. Let X be Euklid’s space of an (n — 1)-dimensional vector with
scalar  product (z,w)=Y%_lz,w, ~where z=|[z .-z, ,]" and

, T
= [wy )
Let
n—1
F=YN rx—x.) and G=Y pxi.
k=1 =1

If we put \/p,x, =y, (k= 1,..,n), F and G are transformed in

(VP Vi — VDiiar) = (H,_\(a,b)y.y)

>

M l

F=

k=1 Pkpk+1

and

n
G=YN yi=@.y)

=2

x>

409/88/2-5
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where y = [y, --- y,|]" and H,_,(a,b) is a three-diagonal matrix defined as
in Lemma 1. On the other hand, let us consider a sequence of polynomials
(Qi(x)ien, Which is defined by (5). For k=0, l...,n— 1. on the basis of
(5), we obtained the equality

H, \(a,b)z=xz+ ((p - x) 0, ox)——==0, ,(¥)) & (9)

n Prn—1Pn

where e = [0 --- 01]" and z = (Qy(x) --- @, _,(x)]".
If we put x =4, Eq. (9) reduces to

H, (a,b)z=2z+ R, ,(A)e, (10)

where x+— R,_,(x) is a polynomial defined by (7). According to (10) we
conclude:

If A is such that R, _,(4) =0, then 4 is an eigenvalue of matrix H,_,(a, b)
and z is an eigenvector. Contrarily, if 1 is an eigenvalue and z is an eigen-
vector of matrix H,_,(a,b), then R, _,(1)=0, i.e, 4 is a zero of polynomial
xR, _(x).

Thus, eigenvalues of matrix H, ,(a,b) are zeros of polynomial
x+— R, _,(x) at the same time. Since on the basis of Lemma 1, H,_,(a,b) is
a positive definite matrix, its eigenvalues are real and nonnegative (see, e.g.,
[5,6]) so the zeros of the polynomials x+— R, ,(x) are also real and
nonnegative. On the basis of the inequality

A in(A)(x, X) = (AX, X) = A, (4)(x, x),

which is valid for any Hermitian matrix 4, where we have the equality
for eigenvectors corresponding to eigenvalues 4., and A,,,, the conclu-
sions of Theorem 1 follows, ie, B,=max, g, 4 and A4, =
min, ¢, _, 4,(R,_,(4;)=0), as do the conditions of equality (8).

CoROLLARY 1. For any sequence of real numbers x,(=0), x,,..., x,, the
inequality

n—1 n
S (k—l)(xk_xk+l)2§Bn Z x12< (11)
k=1 =2

x

is valid. B, is a maximal zero of the generalized Laguerre polynomial
x> LEZP(x) = ko1 (2i((=x)*/kt).

We have the equality in (11) if and only if x,=0, x,=CL,_,(B,)
(k = 2,..., n), where C is arbitrary constant, and x+— L, (x) a Laguerre
polynomial.
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Proof. For p,=1 and r,=k—1 (k=1...,n), recursive relation (5)

becomes

(k+ 1) @y i (%) = (2k + 1 = x) Qplx) — kQy_((x)

wherefrom we conclude that Q,(x)=LF(x)}LX(x)=L,(x)/||L.ll), where

x+ L,(x) is a Laguerre polynomial.

According to the relation valid for generalized Laguerre polynomials (see
[7.8]), we obtain that R, ,(x)=(n—1)L{”(x). Now the statement of

Corollary 1 follows from Theorem 1.

It is not difficult to show that B, =2, B, =3 + /3,

CoRroOLLARY 2, For any sequence of real numbers x,(=0), x,,
Sfollowing inequalities are valid:

n-1

T " A n
dsin? ————— N 2N (x, —x,. ) £ 4cos?
22n—1) (= *\,:,(* ) = 2n—1

k=12

The equality in the left inequality (12) holds if and only if

(k—)n

x,=Csin P

(k = 1,..., n),

where C = const.
The equality in the right inequality (12) holds if and only if

2k — 1)n

x, = (~1)*C sin -

(k =1,y 1),

where C = const.

Progf. For p,=r,=1 (k=1,..,n), (5) becomes

G () =2—x)Qx) = QGi_i(x)  (Qo¥)=1, Qi(x)=2~

SO

R,_ l(x) = Qn— () — Qn—z(x)'

Id
2
N oxge

v X, the

(12)

x) (13)

(14)

If we put y=arctan(\/ 1 + */f) and =3(2 —x), one can easily obtain

the solution of difference equation (13),
Q,(x) =sin(n + 1)d/sin 6,

where e =t + iv/1 —¢%.
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Then
2n—1 6
R, . (x)=cos n2 8/cos 5
wherefrom we have
2k~ 1)n
:42-————( =1..., —1.
Ay sin 20— 1) (k=1,.,n—1)
Thus
A = min 1,=21 —4sint—0Dr
" askse—r KT 2(2n—-1)
and
_ _ _ 2
B,= lngp)z(—lAk_A"*l—“'cos n—1"

The left equality in (12) occurs if and only if

x, =0, x,=C,0,_,4,) (k=2.,..,n),

(k—1)
2n—1 d

x, = Csin (k=1...n)

where C is arbitrary constant.
Similarity is obtained when equality occurs in the right inequality (12).
Remark. Theorem A is contained in Corollary 2.
Using Lemma 2, similarly to Theorem I, the following statement can be

proved:

THEOREM 2. Let (ri)xen, and (Picen, be two positive sequences and let
(Qu(xNken, be the sequence of polynomials defined with

Tr+1 Fe+Tep Fi
———— 01 (X)= | —x ) Qlx) - ———=0_:(x),
VDPii1Pi+2 * ( k+1 ) * VD Piin * (15)

Qo(x) =1, 0_(x)=0.
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Then for any sequence of real numbers x, (=0), x,,..., x,, X, , 1(=0), ine-
qualities

H
" )
4, \_ DX =
k=0 K

n
rk(xk_xk+|)2§Bn ,\_: DXk (16)
0 k=0

[ 4=

hold, where A, and B, are minimal and maximal zeros of polynomial

X Q,(x).
Equality in the left (right) inequality (16) holds if and only if

C
X, =0, Xe=—=0,_,(4) (k=1,..n),
k

Ve

where A=A, (A= B,) and C is arbitrary constant.

CoROLLARY 3. For each sequence of real numbers xyo(=0), x,..,x,,
Xy 1(=0), the inequality

n n
S k(xq—x,, ) <B, N xi (17)
=0 k=0

=

holds, where B, is a maximal zero of the Laguerre polynomial x — L (x).

We have the equality in (17) if and only if x,=0, x,=CL,_\(B,)
(k = 1,...,n), where C is arbitrary constant and x+— L,_,(x) a Laguerre
polynomial.

Proof. For p,=1 and r,=k (k=0,1..,n), recursive relation (15)
becomes

(k+ 1) Qpy () = 2k + 1 — x) Q(x) — kQ;_ (x),

wherefrom we conclude that x+— Q,(x) are Laguerre polynomials. Now the
conclusion of Corollary 3 follows from Theorem 2.

COROLLARY 4. For a sequence of real numbers x, (=0), X, ... X, X, .,
(=0), the following inequalities hold:

T " “
4 .2 ‘1 g'zs v _ 2
sin —__Z(n+l) /:?ok X < = k(k+ D)(xp— x4 1)
(18)
7[ "
<4cos’ ——— N kixl,
<4 cos 20 1) Fokx,(
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Equality in the left inequality (18) holds if and only if
C

X, =—sin

k k+1

(k=1,.,n),

where C = const.
Equality in the right inequality (18) holds if and only if

—1)k-! k
= ( ]3 Csin . :1 (k=1,..,n),

Xy

where C = const.

Proof. For py=k* and r, =k(k + 1) (k=0, 1,...,n), (15) becomes (13).

Now the conclusions of Corollary 4 follow from Theorem 2.

COROLLARY 5. For each sequence of real numbers x,(=0), x,,.., x,.

X, 11 (=0), the following inequalities hold:

4 " ; Vs
dsin? ——— N ¥2< N (x, —x,, )P <4dcos? ——— D
M 1)y *F o, O TR EO 0T S

IIA

n n

Equality in the left inequality (19) holds if and only if

kn
n+1

x, = Csin (k =0...., n),

where C = const.
Equality in the right inequality (19) holds if and only if

kn
=(=1)¥""'Csi :=0. 1,..., n).
X, =(=1) smn+1 (k n)

where C = const.

Remark. Theorem B is contained in Corollary 5.
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