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In this paper we consider interpolatory quadrature formulae with multiple nodes that have the maximal trigonometric degree
of exactness.

1 Introduction

Let a function w be integrable and nonnegative on the interval (−π, π), vanishing there only on a set of a measure zero. We
want to construct a quadrature formula of the type

∫ π

−π

f(x)w(x) dx =

2n∑
ν=0

2s∑
j=0

Aj,νf (j)(xν) + R(f), (1)

where s is nonnegative integer, which is exact when f is a trigonometric polynomial of degree less than or equal to d =
(2n + 1)(s + 1) − 1. Thus, d is the maximal trigonometric degree of exactness for quadrature formula (1). Obviously,
for s = 0 we obtain a quadrature formula with simple nodes and maximal trigonometric degree of exactness equals to 2n.
Firstly, such quadratures were considered by Turetzkii [7]. Nodes of the such quadrature formula are zeros from [−π, π) of
the trigonometric polynomial of semi–integer degree n + 1/2

n∑
ν=0

(
cν cos

(
ν +

1

2

)
x + dν sin

(
ν +

1

2

)
x

)
, |cn| + |dn| �= 0, cν , dν ∈ R, ν = 0, 1, . . . , n,

which is orthogonal on (−π, π) with respect to the weight function w to every trigonometric polynomial of semi–integer
degree less than or equal to n − 1/2. Such orthogonal trigonometric polynomials of semi–integer degree were considered
in [7] and [3]. Numerical methods for construction of orthogonal trigonometric polynomials of semi–integer degree and the
corresponding quadrature formulae with maximal trigonometric degree of exactness (Gaussian quadratures for trigonometric
polynomials) were given in [3] (see also [4] and [6] for some special weights). In [5] s-orthogonal trigonometric polynomials
of semi-integer degree n + 1/2 with respect to the weight function w on (−π, π) were defined and considered. It was proved
that they have exactly 2n + 1 distinct simple zeros on [−π, π).

Quadrature formulae of the form (1) for the constant weight function w(x) = 1, x ∈ (−π, π), were considered in [2]. In
this paper we generalize that result considering the quadrature formula (1) for an arbitrary weight function w. Also, we give a
numerical example.

2 Existence, uniqueness and constructions of quadrature formulae

Our approach is based on a procedure given by Ghizzeti and Ossicini in [2]. We consider the following boundary differential
problem

E(f) = 0, f (j)(xν) = 0, j = 0, 1, . . . , 2s, ν = 0, . . . , 2n, f ∈ ACN−1[−π, π], (2)

where N = (2n+1)(2s+2)−1 and E is the following differential operator of order N : E =
d

dx

(2n+1)(s+1)−1∏
k=1

(
d2

dx2
+ k2

)
.

In the case n > 0, s ≥ 0, the boundary problem (2) has the following 2n linearly independent non trivial solutions (see [2, p.

139]): U�(x) =
(∏2n

ν=0 sin x−xν

2

)2s+1

cos
(
� + 1

2

)
x, V�(x) =

(∏2n

ν=0 sin x−xν

2

)2s+1

sin
(
� + 1

2

)
x, for � = 0, 1, . . . , n− 1.

Therefore, according to [2, Theorem 2.5.I], we can prove the following theorem.
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Theorem 2.1 The quadrature formula (1) may hold if and only if the nodes x0, . . . , x2n are zeros of s−orthogonal trigono-
metric polynomial of semi-integer degree n + 1/2 with respect to the weight function w on (−π, π).

Using notations given in [2, Theorem 2.5.I] we have m(N−p)−N+q = (2n+1)(2s+1)−((2n+1)(2s+2)−1)+2n = 0.
Therefore, if one of nodes is fixed, the quadrature formula (1) is unique. So, we can fixed one of the nodes in advance, e.g.,
x0 = −π. Then, using a trigonometric interpolation polynomial, s−orthogonality conditions lead to the following system of
nonlinear equations

∫ π

−π

(
cos

x

2

)2s+1
∏2n

ν=1

(
sin x−xν

2

)2s+2

sin x−xk

2

w(x)dx = 0, k = 1, . . . , 2n,

with unknown nodes x1, . . . , x2n. The previous system can be solved applying the Newton–Kantorovič method. For the
starting iteration we use the zeros of orthogonal trigonometric polynomial of semi-integer degree n + 1/2, with respect to w
on (−π, π), such that x0 = −π. All of the elements in the corresponding Jacobi matrix can be calculated exactly, except the
rounding errors, using Gaussian quadratures for trigonometric polynomials ([7], [3]). Knowing nodes xν , ν = 0, 1, . . . , 2n,
it is possible to calculate weights Aj,ν , ν = 0, 1, . . . , 2n, j = 0, 1, . . . , 2s. For calculation of the weights we make use of
the fact that the quadrature rule (1) is of an interpolatory type and that it must be exact for f(x) = 1, cos �x, sin �x, with
1 ≤ � ≤ n + 2sn + s. Thus, the problem of calculation of weights reduces to solving a system of linear equations with
unknown weights.

Example 2.2 As an example we compute the parameters of the quadrature formula for weight function w(x) = 1+sin 10x
in the case n = 3, s = 2. Nodes xν , ν = 0, 1, . . . , 6, are: −3.141592653589793,−2.189915995648243,−1.333802859228839,
−0.4033401484136716,0.4754862551348574,1.358705012321870,2.284363686786429, and weights Aj,ν , j = 0, 1, . . . , 4,
ν = 0, 1, . . . , 6, are given in Table 1 (numbers in parentheses denote decimal exponents). Numerical results are obtained using
described procedure. For all computations we use MATHEMATICA and a software package described in [1] in double precision
arithmetic.

Table 1 Weights Aj,ν , j = 0, 1, . . . , 4, ν = 0, 1, . . . , 6, of quadrature formula for weight function w(x) = 1 + sin 10x; n = 3, s = 2

j Aj,0 Aj,1 Aj,2 Aj,3

0 8.776367422159444(−1) 8.858726978166469(−1) 9.480324022785087(−1) 8.189268866862769(−1)
1 2.158841531674652(−2) −2.159583157957023(−2) 1.605776098735195(−2) −1.296616147623097(−2)
2 2.149026489456589(−2) 2.226900049704332(−2) 2.794916886125064(−2) 1.568181701343437(−2)
3 −1.045164240397695(−4) 1.028835066929633(−4) −6.760549913522855(−5) 7.260579143363442(−5)
4 8.464468301212081(−5) 8.732267554876372(−5) 1.083522991634796(−4) 6.694877964305861(−5)

j Aj,4 Aj,5 Aj,6

0 9.840574997625922(−1) 8.142289291849445(−1) 9.544301492346729(−1)
1 9.739402015066227(−4) 1.074074566458135(−2) −1.479914056660530(−2)
2 3.111608766772306(−2) 1.519279672877689(−2) 2.851742321403937(−2)
3 −3.710771945881639(−6) −6.106049088241541(−5) 6.135966894055344(−5)
4 1.208140742282386(−4) 6.567694275712946(−5) 1.105633157898151(−4)
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