
THE METRIC DIMENSION OF STRONGLY REGULAR GRAPHS

JOZEF KRATICA, DRAGOŠ CVETKOVIĆ
Mathematical Institute SANU, Kneza Mihaila 36, Belgrade,

jkratica@mi.sanu.ac.yu, ecvetkod@etf.bg.ac.yu

MIRJANA ČANGALOVIĆ, VERA KOVAČEVIĆ-VUJČIĆ
Faculty of Organizatonal Sciences, Jove Ilića 154, Belgrade, {canga |     verakov}@fon.bg.ac.yu  

JELENA KOJIĆ
Faculty of Mathematics, Studentski Trg 16, Belgrade, k_jelena@yubc.net

Abstract: This paper presents metric dimensions of strongly regular graphs up to 45 vertices. Total number of such 
graphs is over 43000. The results are obtained by CPLEX solver using the compact integer programming formulation  
of the metric dimension problem. The metric dimension of any two members of the class of strongly regular graphs,  
with given parameters, differs by at most one.
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1. INTRODUCTION
This  paper  studies  the  metric  dimension  of  strongly 
regular graphs.  We have computed metric dimension of 
all strongly regular graphs with at most 45 vertices. These 
data  represent  a  basis  for  further  theoretical 
investigations.

The  concept  of  the  metric  dimension  of  a  graph  was 
introduced in seventies by P.J. Slater [1] and F. Harary [2] 
and since then has been investigated by many authors. 

Given a simple connected graph ( , )G V E=  and ,u v V∈ , 
( , )d u v denotes the distance between u and v in G, i.e. the 

length of the shortest u-v path. A vertex x of the graph G 
is  said  to  resolve  two  vertices  u  and v of  G if 

( , ) ( , )d x u d x v≠ . An ordered vertex set B = {x1, x2, ...,xk} 
of G is a resolving set of G if every two distinct vertices 
of G are resolved by some vertex of B. Given a vertex t,  
the  k-tuple  1( , ) ( ( , ),..., ( , ))kd t B d t x d t x=  is  called  the 
vector  of  metric coordinates (or  the  metric vector) of  t 
with respect to B. The metric basis of G is a resolving set 
of the minimum cardinality. The metric dimension ( )Gβ
of G is the cardinality of its metric basis.

Example  1.  Consider  the graph  G of  Figure  1.  The set 
1 { , , }W A B C= is a resolving set for G since the vectors of 

metric coordinates for the vertices of  G  with respect  to 
1W  are:

r(A, W1)=(0,1,1);    r(B, W1)=(1,0,2);     r(C, W1)=(1,2,0); 
r(D, W1)=(2,1,1);    r(E, W1)=(1,2,1);     r(F, W1)=(2,1,2).

However,  1W  is  not  the  minimum  resolving  set  since 
W2={A,C} is also a resolving set with smaller cardinality, 
and with the following vectors of metric coordinates:
r(A, W2)=(0,1);    r(B, W2)=(1,2);     r(C, W2)=(1,0); 

r(D, W2)=(2,1);    r(E, W2)=(1,1);     r(F, W2)=(2,2).
On the other hand, the set  W2={A} is not a resolving set 
since r(B, W3)= r(C, W3)=1. Using a similar argument it is 
easy  to  check  that  none  of  singleton  nodes  forms  a 
resolving set, and hence  ( ) 2Gβ =  with the metric basis 
W2={A,C}.

The  metric  dimension  has  many  interesting  properties 
which are out of the scope of this paper. Interested reader 
is  referred  e.g.  to  [3].  In  [4]  it  was  proved  that  the 
problem  of  computing  the  metric  dimension  of  an 
arbitrary graph is NP-hard. Nevertheless, for some classes 
of graphs it is possible to obtain explicit formulas for the 
metric dimension: path on n vertices has β(Pn) = 1, cycle 
on n vertices has β(Cn) = 2, complete graph on n vertices 
has  β(Kn)  =  n -  1.   On  the  other  hand,  the  metric 
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Figure 1.  A graph from Example 1
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dimensions of some important classes of graphs such as 
hypercubes and Hamming graphs are still not known. In 
[5,6]  are  given  results  of  solving  the  metric  dimension 
problem  as  a  combinatorial  optimization  problem  for 
some important theoretical classes of graphs as well as for 
several classes of graphs from practice. 

Strongly regular graphs were introduced in sixties by R.C. 
Bose [7].

A graph is called strongly regular with parameters r, e, f
if it is regular of degree r, any two adjacent vertices have
exactly  e common neighbors  and any two non-adjacent 
vertices have exactly f common neighbors. One can show 
that the number n of vertices of a strongly regular graph is 
determined by its parameters. Numbers n, r, e, f are called 
parameters of a strongly regular graph and are denoted by 
the quadruple n-r-e-f.

For many sets of parameters strongly regular graphs do 
not exist. In the case of existence the number of strongly 
regular  graphs  with  given  parameters  varies  from 1  to 
enormous numbers. The existence and the construction of 
strongly  regular  graphs  is  an  important  subject  in 
investigations in graphs theory in last three decades.

It is known that the diameter of strongly regular graphs is 
always equal to 2. Also, strongly regular graphs always 
have  3  distinct  eigenvalues.  The  spectrum  can  be 
calculated  from  parameters  and  vice  versa  (see,  for 
example, [8], p. 195):
Let ( ) ( )rffes −⋅−−= 42 ; then the eigenvalues are

λ1 = r, λ2,3 = ( e – f ±  s ) / 2. If s∉N, the multiplicities are 
1,  (n-1)/2,  (n-1)/2,  respectively.  In  the  case  s∈N,  the 
multiplicities are 1, r ((r – 1 + f – e)(s + f – e) - 2f) / (2fs), 
n-1- r ((r – 1 + f – e)(s + f – e) - 2f) / (2fs)), respectively.

The  complement  of  a  strongly  regular  graph  is  also  a 
strongly  regular  graph.  A  disconnected  graph  whose 
components are complete graphs with the same number of 
vertices is strongly regular. Such strongly regular graphs 
and  their  complements  are  called  trivial.  We  shall 
consider only non-trivial strongly regular graphs.

Example 2.  Figure 2 contains one of the strongly regular 
graphs,   the   well-known    Petersen    graph   P.   The set

{x1,  x2,  x3}  is  a  metric  basis  and  we  have  β(P)=3. 
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                Figure 2.  Petersen graph P

The  Petersen  graph  is  a  strongly  regular  graph  with 
parameters n=10, r=3, e=0, f=1. It has the eigenvalues 
3,  1,  -2 with  multiplicities  1,  5,  4 respectively.  The 
Petersen  graph  has  many  remarkable  properties  and  is 
perhaps  mostly  considered  graph  in  theoretical 
considerations.  A  whole  book  [9]  is  devoted  to  the 
Petersen graph.

All  strongly regular  graphs up to 45 vertices  and many 
others  are  known.  There  exist  electronic  catalogues  of 
strongly regular graphs. Our source is the catalogue from 
the address 

http://www.maths.gla.ac.uk/~es/  srgraphs.html  .

We felt that it would be interesting to find a link between 
the  two  interesting  graph  theory  concepts,  metric 
dimension  and  strongly  regular  graphs.  Therefore  we 
have  undertaken  a  computational  study  of  metric 
dimensions  of  strongly  regular  graphs  using  standard 
software for integer programming.

2. MATHEMATICAL  PROGRAMMING 
FORMULATION

In  this  section  we  present  a  0-1  integer  linear 
programming  formulation  for  the  metric  dimension 
problem from [10].

Given a simple connected undirected graph  G = (V, E), 
where V = {1, 2, . . . ,n}, |E| = m, it is easy to determine 
the symmetric shortest path distance matrix  D = [duv]nxn, 
where duv = d(u,v), using any shortest path algorithm.

Let VB ⊆  and let
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Then,  the metric  dimension problem can  be formulated 
as:

                           ∑
=
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          1
1

),,( ≥⋅∑
=

n

j
jjvu yA , for all 1 ≤ u < v ≤ n ,             (2)

          { }1,0∈jy , for all 1 ≤ j  ≤ n.                               (3)

It  is  easy  to  see  that  each  feasible  solution  of  (1)–(3) 
defines a resolving set B of G, and vice versa. 

Proposition 1. Set B is a resolving set of G if and only if 
constraints (2) are satisfied.

Proof.  (⇒) Suppose that  B is  a resolving set. Then for 
each  u,v∈V,  u  ≠ v (without  loss  of  generality  we may 
assume u < v) there exist j∈B (i.e. yj=1) such that duj ≠ dvj,
which  implies  that  A(u,v),j=1.  Since  yj=1,  it  follows  that 

A(u,v),j⋅ yj =  1  and  consequently  1
1

),,( ≥⋅∑
=

n

j
jjvu yA is 

satisfied.

(⇐) If constraints (2) are satisfied then for each 1≤u<v≤n 
there  exist  j∈{1,...,n}  such  that  A(u,v),j⋅ yj ≥  1,  which 
implies yj=1 and duj ≠ dvj. It follows that the set B defined 
by { j |  yj = 1 } is a resolving set of G. □

Note that, formulation (1)-(3) is linear and has n variables 
and n(n-1)/2 constraints. 

3. EXPERIMENTAL RESULTS 
This  section  summarizes  computational  results  for  the 
metric  dimension  of  all  43759  strongly  regular  graphs 
with  up  45  vertices.  The  mathematical  programming 
formulations were automatically generated and solved by 
CPLEX. The tests were carried out on an Intel 2.5 GHz 
with 4GB RAM. All problems were solved to optimality. 

The results are presented in Table 1, which is organized 
by follows:

- the first column contains the instance parameters;
- the  second  column  contains  the  three  distinct 

eigenvalues  where  the  superscripts  denote 
multiplicities of eigenvalues;

- the third column contains the metric dimension;

- the fourth column contains  the number of graphs 
with the corresponding metric dimension \ the total  
number of graphs in the given class.

As  can  be  seen  from  Table  1,  strongly  regular  graphs 
from the same class (with given parameters) all have the 
same  metric  dimension,  except  in  the  case  of  classes 
29-14-6-7, 40-12-2-4 and 45-12-3-3. In these three cases 
the  metric  dimension  of  the  graphs  in  the  same  class 
differs for at most one.

Trivial strongly regular graphs are not included since the 
source  data  base  did  not,  of  course,  contain  them.  For 
example,  the  circuit  on  4  vertices  is  a  trivial  strongly 
regular  graph  since  it  is  the  complement  of  the 
disconnected  graph  consisting  of  two  complete  graphs 
with two vertices.

4. CONCLUSION
This paper presents the metric dimensions of all strongly 
regular  graphs with up to 45 vertices.  The results  were 
obtained  using  CPLEX  on  compact  mathematical 
programming  formulation  of  the  metric  dimension 
problem. All 43759 problems were solved to optimality in 
reasonable time. These results may give a new insight into 
the  areas  of  strongly  regular  graphs  and  the  metric 
dimension.
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Table 1. Metric dimension of strongly regular graphs

parameters
n-r-e-f

Spectrum β(G) number of  
graphs

5-2-0-1 2, 0.6182, -1.6182 2 1 \ 1
9-4-1-2 4, 14, -24 3 1 \ 1
10-3-0-1 3, 15, -24 3 1 \ 1
13-6-2-3 6,  1.3036, -2.3036 4 1 \ 1
15-6-1-3 6, 19, -35 4 1 \ 1
16-6-2-2 6, 26, -29 4 2 \ 2
16-5-0-2 5, 110, -35 4 1 \ 1
17-8-3-4 8, 1.5628, -2.5628 4 1 \ 1
21-10-3-6 10, 114, -46 5 1 \ 1
25-12-5-6 12, 212, -312 5 15 \ 15
25-8-3-2 8, 38, -216 6 1 \ 1
26-10-3-4 10, 213, -312 5 10 \ 10
27-10-1-5 10, 120, -56 5 1 \ 1
28-12-6-4 12, 47, -220 6 4 \ 4
29-14-6-7 14,  2.19314, -3.19314 5 40 \ 41

6 1 \ 41
35-16-6-8 16, 220, -414 6 3854\3854
35-18-9-9 18, 314, -320 6 227\227
36-10-4-2 10, 410, -225 7 1 \ 1
36-14-7-4 14, 58, -227 6 1 \ 1
36-14-4-6 14, 221, -414 6 180\180
36-15-6-6 15, 315, -320 6 32548\32548
37-18-8-9 18, 2.54118, -3.54118 5 6760\6760
40-12-2-4 12, 224, -415 7 27 \ 28

8 1 \ 28
45-12-3-3 12, 320, -324 7 57 \ 78

8 21 \ 78

Further  research  could  be  directed  to  computing  the 
metric  dimension  of  strongly  regular  graphs  with  more 
than 45 vertices and to theoretical analysis of the obtained 
results.  Metric  dimensions  of  trivial  strongly  regular 
graphs should be determined as well.
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