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1. INTRODUCTION

The problem of Roman domination on graphs has arisen and was motivated by article of Ian Stewart in (Stewart
(1999)), though concept was even earlier suggested by ReVelle (1997). The original problem was formulated in
military history.

At the beginning of the 4th century AD, Roman Empire was consolidated and reformed by Emperor
Constantine I (306−337). The previous century brought much destruction both through barbarian invasions
and civil wars and is known as The Crisis of the Third Century. The Empire was economically exhausted and
in one period (258−274) split in three part all of them boasting the Roman inheritance: central government
(in Italy, Africa, Balkans and Central Europe), Gallic Empire (Hispania, Gallia, Germania and Britannia) and
Palmyrene Empire (Middle East, Asia Minor and Egypt). After military victories of the central government under
Aurelian (270−275) and administrative reorganization under Diocletian (284−305), Empire was stabilized
both militarily and economically. Barbarians were driven out, Empire was united, inflation was put under control
by government intervention. Another round of civil war after the death of Constantius I (father of Constantine I)
has put on the throne as a sole ruler in 324, Emperor Constantine.

He did some remarkable things: reorganized the economy by introducing golden coin solidus (or denarius),
allowing religious tolerance (Milan Edict in 312), built new capital (Constantinople) and finally reorganizing
army. In the third century, borders were easily punctuated by barbarians because Roman strategy was based on
preemptive strikes on large groups of barbarians on their territory, outside the Emipre. Civil wars and quick
succession of short-lived emperors, prevented the strategy of such attacks and empire switched to defensive, at
first only on the borders and afterwards defensive-in-depth. Constantine I organized army in order to implement
this defensive-in-depth, which placed armed forces not only on the borders but throughout all of the Empire. To
achieve this, army was organized in stationary units, stationed mostly in border regions (limitanei) and garrisons
on key points and mobile troops (comitatensis) stationed on few key points in the Empire which will act quickly
in support to endangered regions. Mobile units were better equipped, trained and payed than stationary units. To
accomplish this strategy it was necessary to decide were to establish units for quick response and were to put
stationary units. Major problem was payment of the army (which was up to 3/4 of the tax revenues), so optimal
disposition was of utmost importance. Constantine I decided to differentiate communities of the Empire in 3
categories: those with mobile and stationary troops, those with only stationary troops and those without troops
at all. The condition was that communities without troops must be in neighborhood of communities with mobile
troops, so that in case of attack they can be defended. Detailed explanations of strategies applied by Roman
Empire through history can be found in (Luttwak (2016)).

This disposition represents very interesting optimization problem. The territory of the Empire is represented
by the graph G = (V,E) in which communities are vertices and edges exist between neighboring communities.
Formally, problem can be formulated as finding function f : V →{0,1,2} such that value ∑

v∈V
f (v) is minimal,

while any vertex v with f (v) = 0 must be adjacent to some vertex u with f (u) = 2. This function is called
Roman dominating function (RDF) and was introduced by Cockayne et al. (2004). If we define w( f ) =
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f (V ) = ∑
v∈V

f (v) as a weight of function f , than Roman domination number, denoted as γR(G), is defined as

γR(G) = min{w( f )| f is a RDF onG}.
Let us present the notion of Roman domination with the following example.

Example. On Figure 1 a simplified territory of the Roman Empire is presented. Find an optimal RDF and
γR.
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Figure 1 Graph of Roman Empire

The Roman domination number of graph on Figure 1 has value 9. Provinces with 2 units are Belgica, Africa,
Dacia and Syria. Province with 1 unit is Noricum. As it can be seen Belgica protects Britannia, Germania, Raetia
and Gallia. Africa protects Hispania, Mauretania, Italia and Cyrenaica. Dacia protects Pannonia, Dalmatia,
Hellada, Moesia and Thracia. Syria protects Asia, Pontus, Cappadocia, Mesopotamia, Phoenicia and Egypt.
The only province that was not protected is Noricum so it must have 1 unit to garrison it and protect it.

The Roman dominating function f partitions the set V in three disjunct sets V0,V1 and V2, where Vi = {v ∈
V | f (v) = i}. Numbers ni = |Vi|, i = 0,1,2 will represent cardinality of sets Vi. Now, the weight of a Roman
dominating function f is equal to f (V ) = ∑

v∈V
f (v) = 2 ·n2 +1 ·n1 +0 ·n0 = 2 ·n2 +n1.

From the basic problem of Roman domination, a multitude of similar problems were formulated. In this
paper we will consider two of them: Restrained Roman Domination Problem (RRDP) and Signed Total Roman
Domination Problem (STRDP).

The Restrained Roman domination problem was introduced by Pushpam and Padmapriea (2015) and the
problem of finding the minimal number of troops such that entire Empire would be defended but with changed
conditions was compared to RDP. A community is considered to be secured if at least one troop is stationed
within. The condition for a community without troops within is now that it is secure if it is adjacent to at
least one community with two troops and to at least one community without troops. The appropriate function
is denoted as Restrained Roman Domination Function (RRDF). Mathematically speaking, condition that a
community is secure is that for any vertex v ∈V value f (v) is either f (v)≥ 1 or f (v) = 0 and there exist two
vertices u and w adjacent to v such that f (u) = 0 and f (w) = 2. Appropriate domination number, denoted as
γrR(G) = min{w( f )| f is a RRDF onG}.

Similarly, the Signed Total Roman Domination Problem (STRDP), introduced by Volkmann (2016), can
be defined as finding function f : V → {−1,1,2} such that (i) for every vertex v ∈ V such that f (v) = −1
there is adjacent vertex u such that f (u) = 2 and (ii) if we denote N(v) = {u ∈ V |{u,v} ∈ E} i.e. open
neighborhood of v, for every v ∈V holds f (N(v)) = ∑

u∈N(v)
f (u)≥ 1. Interpretation for this variant of RDP is

that vertices with value f (v) =−1 represent weak spots in the defense. The appropriate function is denoted
as Signed Total Roman Domination Function (STRDF) and appropriate domination number, denoted as
γstR(G) = min{w( f )| f is a STRDF onG}. The STRDP was introduced by Ahangar et al. (2014).

Example 2. Find optimal RRDF and SRDF and respective domination numbers γrR and γstR for graph on
Figure 1.

RRD number is 9. Number of troops in the provinces is the same as for RD. Any province has one neighbor
without unit which can be checked directly, for example province of Hellada is a neighbor to Cyrenaica.

STRD number is 9. Provinces with 2 units are Germania, Hispania, Dalmatia, Dacia, Hellada, Egypt and
Syria. Provinces with 1 unit are Belgica, Gallia, Mauretania, Raetia, Asia and Phoenicia. All other provinces
are weak spots. Number of troops in the neighborhood of any province is greater or equal to 1 which can be
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ascertained by direct probe. For example, number of troops in the neighborhood of Thracia is 1, since Dacia
and Hellada have 2 troops, while Moesia, Asia and Pontus are weak spots (value is −1). The fact that every
province which is weak spot has a neighbor with 2 units can be also easily checked.

Except in the military history, domination in graph have found various applications in different kinds of
networks, like social networks, biological networks, distributed networks etc. as in (Behtoei et al. (2014)).
Specifically, some facility location problems can be interpreted as Roman domination (Chambers et al. (2009)).
Instead of interpreting f (v) as the number of units placed at v, it can be viewed as a cost function. Units with
cost 2 may be able to serve neighboring locations, while units with cost 1 can serve only their own location. For
example, in a communication network, wireless hubs are more expensive but can serve neighboring locations,
while wired hubs are low-range but are cheaper.

The Flower Snarks are specific class of regular graphs and are shown on Figure 2. The Flower snark graphs
were introduced by Isaacs (1975) as an example of a cubic bridgeless graph family that is not 3-edge-colorable.
The degree of vertices in Flower snarks are 3. The set of vertices is V = {ai,bi,ci,di, |i = 0, . . . ,r−1}. The
set of edges can be generated through neighborhood of characteristic vertices. So, noting that indices are by
modulo r, we have

N(ai) = {bi,ci,di}, N(bi) = {bi−1,ai,bi+1}, i = 0, . . . ,r−1

and
N(ci) = {ci−1,ai,ci+1}, N(di) = {di−1,ai,di+1}, i = 1, . . . ,r−2

while

N(c0) = {dr−1,a0,c1}, N(cr−1) = {cr−2,ar−1,d0}, N(d0) = {cr−1,a0,d1}, N(dr−1) = {dr−2,ar−1,c0},
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Figure 2 Flower snarks J9 and J15

Let G = (V,E) be a graph, where order of G is n = |V | and size of G is m = |E(G)|.
Let δ and ∆ be the minimum and the maximum degree of vertices in G, respectively.
A set S⊆V is the dominating set if every vertex in V \S is adjacent to at least one vertex in S. The domination

number γ(G) is the minimum cardinality of the dominating set in G.

2. PREVIOUS WORK

2.1. Roman domination problem

There is extensive literature on the domination set problems in previous decades, and RDP as one of these
problems was also intensively studied.

As mentioned above, the definition of RDF is given in (Cockayne et al. (2004)) and some basic properties
of these functions were studied. The authors also found γR(G) for some classes of graphs. In their article they
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established following relationship between domination and Roman domination numbers for arbitrary graph G:

γ(G)≤ γR(G)≤ 2 · γ(G).

They characterized the graphs for which γR(G) = γ(G)+ k for k ≤ 2. Xing et al. (2006) extended this result to
arbitrary k. Similar result for trees is given by Song and Wang (2006) with γR(T ) = γ(T )+3.

Of special interest for this paper are graphs with γR(G) = 2γ(G) which are called Roman graphs, because
we will prove that flower snark graphs are Roman graphs. Some well-known classes of graphs such as
P3k, P3k+2,C3k,C3k+2 for k ≥ 1 and Km,n for min(n,m) 6= 2 were proved to be Roman graphs by Xueliang et al.
(2009). They also proved that some regular graphs are Roman graphs: some subclasses of circulant and
generalized Petersen graphs, Cartesian product of graphs C5m2C5n, where m≥ 1, n≥ 1. Characterization of
Roman trees was presented by Henning (2002).

The proof that RDP is NP-hard in a general case was given by Dreyer (2000). In (Shang and Hu (2007)) it was
proven that Roman domination problem in unit disk graphs is also NP-hard. Nascimento and Sampaio (2015)
proved that the RDP is NP-hard even for the subgraphs of grid graphs and bipartite planar graphs with ∆ = 4.
Nevertheless, for some classes of graphs solution could be find in polynomial time. Roman domination number
for interval graphs could be calculated by linear-time algorithms (Liedloff et al. (2005)). The polynomial-time
algorithm for AT-free graphs was presented in the same article.

It is of interest to find lower and upper bounds, both in general case and for some specific classes of graphs.
The following lower bound, established by Cockayne et al. (2004), is very useful thanks to its simplicity:

I Proposition 1. For any graph G, γR(G)≥ 2|V (G)|
1+∆(G) .

In (Chambers et al. (2009)) it was proved that γR(G)≤ 4n/5 if δ(G)≥ 1 and γR(G)≤ 8n/11 if δ(G)≥ 2.
Similarly, if δ≥ 3 than γR(G)≤ 2n/3 (Liu and Chang (2012b)).

Some lower and upper bounds using the diameter and the girth were proposed by Mobaraky and Sheik-
holeslami (2008). These bounds were improved by Bermudo et al. (2014) for δ(G)≥ 2

γR(G)≤ n−
(⌊

Diam(G)

3

⌋
+1
)
(δ(G)−1)

In the same paper two useful upper bounds were proposed:

I Proposition 2. Let G be a graph of order n. Then γR(G)≤
⌊

2nδ(G)
3δ(G)−1

⌋
.

I Proposition 3. If G is a graph of order n and size m, then γR(G)≤min
{⌊

3∆(G)n−2m
3∆(G)−1

⌋
,
⌊
(3∆(G)+4)n−2m

3∆(G)+4

⌋}
.

Moreover, if G is a C5-free graph, then γR(G)≤
⌊
(3∆(G)+2)n−2m

3∆(G)+2

⌋
.

Another upper bound γR(G) ≤ 2
(

1− 21/δ(G)δ(G)
(1+δ(G))1+1/δ(G)

)
n, including the proof that it is asymptotically best

possible is given by Zverovich and Poghosyan (2011).
One of the most used estimates of the RD number is given by Cockayne et al. (2004) and concerns relationship

between RD number and domination number of the same graph, namely, γ(G)≤ γR(G)≤ 2γ(G). Combining
works by Favaron et al. (2009) and Bermudo and Fernau (2012), Bermudo et al. (2014) derived:

I Proposition 4. If G is a graph of order n≥ 3, then n− γ(G)(∆(G)−1)≤ γR(G)≤ n− γ(G)
2 .

Another lower bound using total domination number, γt(G)≤ γR(G) is presented by Hedetniemi et al. (2013).
There are some specific bounds for connected graphs given in (Liu and Chang (2012a); Favaron et al. (2009))

respectively, γR(G)≤max{d2n/3e ,d23n/34e} and γR(G)+ γ(G)/2≤ n where n≥ 3 is order of G. Finally, let
G be a nontrivial, connected graph with maximum degree ∆. Then γR(G)≥ ∆+1

∆
γ(G). The proof is given by

Chellali et al. (2016).
The differential of a vertex set S is defined as ∂(S) = |B(S)|− |S|, where B(S) is the set of vertices in V \S

that have a neighbor in the vertex set S, and the differential of a graph is defined as ∂(G) = max{∂(S)|S⊆V}.
A relation between the Roman domination number and the differential of a graph is studied by Bermudo et al.
(2014).

For the Roman domination problem several integer linear programming (ILP) formulations was proposed.
The first formulation was introduced by ReVelle and Rosing (2000). Another ILP formulations for Roman
domination were proposed by Burger et al. (2013). These formulations were improved using a fewer number of
constraints by Ivanović (2016).

Two approximation schemes, one 5-approximation algorithm of linear time and a one of polynomial-time
were discussed by Shang and Hu (2007).

12



Since RDP could not be easily solved in the general case, of interest was to study it for different classes of
graphs:

interval graphs, cographs, asteroidal triple-free graphs and graphs with a d-octopus by Liedloff et al.
(2005);
corona graphs by Yero et al. (2013);
grid graphs by Currò (2014);
Generalized Sierpiński graphs by Ramezani et al. (2016);
Generalized Petersen Graphs GP(n;2) by Wang et al. (2011) and GP(n;3) and GP(n;4) by Zhiqiang Zhang
and Xu (2014);
cardinal product of paths and cycles in Klobučar and Puljić (2014, 2015);
strongly chordal graphs by Liu and Chang (2013);
digraphs by Sheikholeslami and Volkmann (2011);
complementary prisms by Al Hashim (2017).

and others.

2.2. Restrained Roman domination

The problem of Restrained Roman domination is NP-hard which was proved in general case by Rad and
Krzywkowski (2015). The Restrained Roman domination on graph G = (V,E) is closely related to the
Restrained domination problem which is to find a set of restrained domination of minimal cardinality, where
the set of restrained domination S⊆V is a set of vertices with neighbors both in S and in V \S. The minimal
cardinality of restrained domination set is denoted as γstr.

Some of the properties of RRDF are given by Pushpam and Padmapriea (2015) and can be summarized as
I Proposition 5. For any graph G γstr(G)≤ γrR ≤ 2γstr(G);

if G is a graph of order n and has a vertex od degree n−1 and δ(G)> 1, then γrR = 2(γstr(G) = 1);
if a graph G has C3, then γrR < n;

Some bounds for the RRD number for connected graphs are given by Rad and Krzywkowski (2015).
I Proposition 6. For every connected graph G of order n, γrR(G)< n+1−b(diam(G)−2)/3c;

for every connected graph G of order n and circumference g(G) holds γrR(G)< n+1−b(g(G)−2)/3c;
for every connected graph G of order n and size m the inequality γrR(G)≤ 2m−n+2 holds, and inequality
is strict if and only if G is a tree with γrR = n.
for every graph G of order n and if δ > 0 and n < δ(δ−1)/(lnδ− ln2+1) than holds

γrR ≤ n
(

2ln(1+δ)− ln4+2
δ+1

)
In (Pushpam and Padmapriea (2015)) are given values of γrR for some classes of graphs:

I Proposition 7. For n≥ 4, γrR(Pn) =
2n+3+r

3 , n≡ r(mod 3);

γrR(Cn) =

{ 2n+3+r
3 , n≡ r(mod 3), r ∈ {1,2}

2n
3 , n≡ 0(mod 3)

;

γrR(Kn) = 2;
γrR(Km,n) = 4.

Several relationships between γrR and γrst were proved in (Pushpam and Padmapriea (2015)). Especially,
they characterized graphs where γrR = γrst + k, k ∈ {1,2} and some other bound on γrR for trees and bipartite
graphs.

2.3. Signed Total Roman domination

Some useful bounds on STRD number are given by Volkmann (2016).
I Proposition 8. Let f = (V−1,V1,V2) be a STRDF in a graph G of order n. Let δ = δ(G)≥ 1 and ∆ = ∆(G).
Then the following holds

(2∆−1)|V2|+(∆−1)|V1| ≥ (δ+1)|V−1|;
(2∆+δ)|V2|+(∆+δ)|V1| ≥ (δ+1)n;
(∆+δ)w( f )≥ (δ+2−∆)n+(δ−∆)|V2|;
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w( f )≥ (δ+2−2∆)n/(2∆+δ)+ |V2|.

In the same paper exact values of γstR for some classes of graphs are proved:

if n≥ 3 then γstR(K1,n−1) = γstR(Kn) = 3;
if n≥ 1,γstR(Kn,n) = 2, unless n = 3 in which case γstR(K3,3) = 4;
if Cn be a cycle of order n ≥ 3, then γstR(Cn) = n/2 if n ≡ 0( mod 4), γstR(Cn) = (n+3)/2 if n ≡ 1,3(
mod 4) and γstR(Cn) = (n+6)/2 if n≡ 2( mod 4);
if Pn be a path of order n≥ 3, then γstR(Pn) = n/2 if n≡ 0( mod 4), γstR(Pn) = d(n+3)/2e . otherwise.

Also, there are presented and proved some bounds

let G be a graph of order n, δ≥ 1. If δ < ∆, then γstR(G)≥
⌈
(2δ+3−2∆)n

2∆+δ

⌉
;

let G be a graph of order n, δ≥ 1. Then a) γstR(G)≤ n, b) if δ≥ 3 then γstR(G)≤ n−1;
let G be a graph of order n≥ 3 and δ≥ 1, then γstR(G)≥ 3

2(1+
√

2n+1)−n;
if G is connected graph of order n≥ 3 and size m, then γstR(G)≥ 11n−12m

4 ;
if G is bipartite graph of order n≥ 3 with δ(G)≥ 1, then γstR(G)≥ 3

√
n−n;

if G is graph of order n≥ 3 with δ(G)≥ 1, then γstR(G)≥max{∆(G)+1−n,δ(G)+4−n};
if T is a tree of order n and ∆(G)≥ 2, then γstR(T )≥ ∆(G)+4−n;
if G is a graph of order n with δ(G)≥ 1, then γstR(G)≥

(
1+
⌊

diam(G)
3

⌋)
(δ(G)+1)−n;

if G is an r-regular graph of order n such r ≥ 1 and n− r−1≥ 1 then γstR(G)+ γstR(Ḡ)≥ 4n
n−1 , and if n is

even then γstR(G)+ γstR(Ḡ)≥ 4(n−1)/(n−2) where Ḡ is complement of G.

3. THE NEW RESULTS

I Theorem 1. γR(Jr) = 2r

Proof. Step 1. γR(Jr)≤ 2r
Let us define the function f : VJr → {0,1,2} as partition (V0,V1,V2), such that V2 = {ai|i = 0, ...,r−1}, V0 =

VJr \V2 and V1 = /0. Since
r−1⋃
i=0

N[ai] =
r−1⋃
i=0
{ai,bi,ci,di}=VJr implying that each vertex from V0 has at least one

a-vertex as its neighbor. Since all a-vertices are in V2, then each vertex from V0 has at least one neighbor from
V2, so f is Roman domination function with value f (VJr) = 2r so γR(Jr)≤ 2r.

Step 2. γR(Jr)≥ 2r
It is easy to see that Jr is a regular graph of degree 3, with 4r vertices. Then, by Proposition 1 it holds
γR(Jr)≥

⌈ 2·4·r
1+3

⌉
= 2r. J

I Proposition 9. γrR(Jr) = 2r

Proof. The function f defined in the proof of Theorem 1 has additional property that each vertex from V0 has at
least neighbor from V0:
• bi,bi+1 ∈V0 and bi+1 ∈ N[bi];
• If i≤ r−2 then ci,ci+1 ∈V0 and ci+1 ∈ N[ci];
• If i = r−1 then cr−1,d0 ∈V0 and cr−1 ∈ N[d0];
• If i≤ r−2 then di,di+1 ∈V0 and di+1 ∈ N[di];
• If i = r−1 then dr−1,c0 ∈V0 and dr−1 ∈ N[c0].

Having in mind the proof of Theorem 1, the function f is restrained Roman dominating function of Jr,
so γrR(Jr) ≤ 2r. On the other hand, for any graph G holds γrR(G) ≥ γR(G), implying γrR(Jr) ≥ γR(Jr) = 2r.
Therefore, γrR(Jr) = 2r. J

I Theorem 2. γstR(Jr)≤ 3r

Proof. Let us define the function f : VG→{−1,1,2} as in (1):

f (v) =


−1, v = ai

1, v = ci∨ v = di

2, v = bi

i = 0, . . . ,r−1 (1)
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Firstly, each vertex with value −1 has (at least) one neighbor with value 2, since f (ai) = −1, f (bi) = 2 and
bi ∈ N(ai).

Secondly, the sum of function values in the open neighborhood of each vertex is at least 1, since:
f (N(ai)) = f (bi)+ f (ci)+ f (di) = 2+1+1 = 4≥ 1;
f (N(bi)) = f (ai)+ f (bi−1)+ f (bi+1) =−1+2+2 = 3≥ 1;
If 1≤ i≤ r−2, f (N(ci)) = f (ai)+ f (ci−1)+ f (ci+1) =−1+1+1 = 1≥ 1;
If i = 0, f (N(c0)) = f (a0)+ f (dr−1)+ f (c1) =−1+1+1 = 1≥ 1;
If i = r−1, f (N(cr−1)) = f (ar−1)+ f (cr−2)+ f (d0) =−1+1+1 = 1≥ 1;
If 1≤ i≤ r−2, f (N(di)) = f (ai)+ f (di−1)+ f (di+1) =−1+1+1 = 1≥ 1;
If i = 0, f (N(d0)) = f (a0)+ f (cr−1)+ f (d1) =−1+1+1 = 1≥ 1;
If i = r−1, f (N(dr−1)) = f (ar−1)+ f (dr−2)+ f (c0) =−1+1+1 = 1≥ 1.

Finally, f (VJr) = f
(

r−1⋃
i=0
{ai,bi,ci,di}

)
=

r−1
∑

i=0
( f (ai)+ f (bi)+ f (ci)+ f (di)) = r · (−1+2+1+1) = 3r.

Therefore f is the signed total Roman domination function of flower snarks graphs with value 3r, so γstR(Jr)≤
3r. J

4. CONCLUSION

In this paper we have found and proved the exact value for the Roman and restrained Roman domination number
of flower snark graphs. The upper bound of the signed total Roman domination number is given, along with the
appropriate signed total Roman domination sets.

In the future work the problem of finding these Roman domination numbers for other challenging classes of
graphs could be considered. Another direction of future research would be to determine other Roman domination
numbers for flower snark graphs.
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