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Abstract: In this paper we study the k-metric antidimension problem on two special classes of graphs: wheels
Wn and grid graphs Gm,n. We prove that Wn is n-metric antidimensional and find the k-metric antidimension
for each k where it exists. For Gm,n we find the k-metric antidimension for k = 1,2. Additionally, we determine
4-metric antidimension in the case when m and n are both odd.
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1. INTRODUCTION

The concept of metric dimension of a graph G was introduced independently by Slater (1975) and Harary and
Melter (1976). It is based on the notion of resolving set R of vertices which has the property that each vertex is
uniquelly identified by its metric coordinates with respect to R. The minimal cardinality of resolving sets is
called the metric dimension of graph G.

Some interesting applications of the metric dimension include navigation of robots in networks (Khuller
et al., 1996), applications to chemistry (Johnson, 1993, 1998) and application in computer graphics (Melter and
Tomescu, 1984).

There are several variations of the metric dimension concept:
Weighted metric dimension (Epstein et al., 2015);
Resolving dominating sets (Brigham et al., 2003);
Local metric dimension (Okamoto et al., 2010);
Independent resolving sets (Chartrand et al., 2003);
Strong metric dimension (Sebő and Tannier, 2004);
Minimal doubly resolving sets (Cáceres et al., 2007);
k-metric dimension (Estrada-Moreno et al., 2015);
Simultaneous metric dimension (Ramírez-Cruz et al., 2014).

Recently, Trujillo-Rasua and Yero (2016a) introduced the concepts of k-antiresolving set S and k-metric
antidimension. Different vertices of V \S now can have the same metric coordinates with respect to S, but no
vertex can be identified with probability higher than 1/k. For a given k, the minimal cardinality of k-antiresolving
sets represents the k-metric antidimension of graph G. Zhang and Gao (2017) have proved that the problem of
finding the k-metric antidimension is NP-hard in general case.

The concept of k-metric antidimension has been used to define privacy measures aimed at evaluating the
resistance of social graphs to active attacks. Trujillo-Rasua and Yero (2016a) define a novel privacy measure,
so called (k, l)-anonymity. Mauw et al. (2016) propose the first privacy-preserving transformation method for
social graphs that counteracts active attacks.

The k-metric antidimension of special classes of graphs has been studied by several authors. Trujillo-Rasua
and Yero (2016a,b) consider the k-metric antidimension of paths, cycles, trees and complete bipartite graphs.
They also provided efficient algorithms which can be used to decide whether a tree or a unicyclic graph is
1-metric antidimensional.

Zhang and Gao (2017) analyze the size of k-antiresolving sets in random graphs and in the case of Erdos-
Renyi random graphs establish three bounds on the size.

Kratica et al. (2018) study mathematical properties of the k-antiresolving sets and the k-metric antidimension
of some generalized Petersen graphs. In this paper the analysis is extended to wheels and grid graphs.
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2. PROBLEM DEFINITION

Let G = (V,E) be a simple connected undirected graph. The degree of a vertex of a graph is the number of
edges incident to that vertex. The maximum degree of a graph G, denoted by ∆G, is the maximum degree of its
vertices.

Let us denote by d(u,v) the length of the shortest path between vertices u and v. The metric represen-
tation r(v|S) of vertex v with respect to an ordered set of vertices S = {u1, ...,ut} is defined as r(v|S) =
(d(v,u1), ...,d(v,ut)). Value d(v,ui) represents the metric coordinate of v with respect to vertex ui, i = 1, ..., t.
The following definitions introduce the concepts of k-antiresolving set, k-metric antidimension of graph G and
the notion of k-metric antidimensional graph.
I Definition 1. (Trujillo-Rasua and Yero (2016a)) Set S is called a k-antiresolving set for G if k is the largest
positive integer such that for every vertex v ∈V \S there exist at least k−1 different vertices v1, ...,vk−1 ∈V \S
with r(v|S) = r(v1|S) = ...= r(vk−1|S), i.e. v and v1, ...,vk−1 have the same metric representation with respect
to S.
I Definition 2. (Trujillo-Rasua and Yero (2016a)) For fixed k, the k-metric antidimension of graph G, denoted
by adimk(G), is the minimum cardinality amongst all k-antiresolving sets in G. A k-antiresolving set of
cardinality adimk(G) is called a k-antiresolving basis of G.
I Definition 3. (Trujillo-Rasua and Yero (2016a)) Graph G is k-metric antidimensional if k is the largest integer
such that G contains a k-antiresolving set.

Now the k-metric antidimension problem can be formulated as follows: for a given k find the k-metric
antidimension of graph G if it exists. The following two properties will be used in the proofs of theorems in
Section 3 and Section 4.
I Property 1. (Trujillo-Rasua and Yero (2016a)) If G is a connected k-metric antidimensional graph of maxi-
mum degree ∆G, then 1≤ k ≤ ∆G.

Property 2 presents a simple necessary and sufficient condition for a set of vertices to be k-antiresolving. Let
S⊂V be a subset of vertices of G and let ρS be equivalence relation on G defined by

(∀a,b ∈V ) (aρSb ⇔ r(a|S) = r(b|S))

and let S1, ...,Sm be the equivalence classes of ρS. It is easy to see that the following property is satisfied.
I Property 2. (Kratica et al. (2018)) Let k be a fixed integer, k ≥ 1. Then S is a k-antiresolving set for G if and
only if min

1≤i≤m
|Si| = k.

3. WHEELS

Wheel Wn = (V,E) of dimension n is a graph with n+ 1 vertices and 2n edges, where central vertex v0 is
connected to all vertices, while other vertices vi, i = 1, ...n, are connected as in a cycle. Hence central vertex v0
has n neighbours, while all other vertices vi, i = 1, ...,n, have three neighbours.
I Theorem 1. For n≥ 6 graph Wn is n-metric antidimensional and

adimk(Wn) =

{
2, k = 1∨ k = 2
1, k = 3∨ k = n

Proof. Step 1. adim1(Wn)≤ 2
Let us consider set S = {v1,v2}. The equivalence classes of ρS are given in Table 1. More precisely, the first
column of Table 1 contains set S, while in the second and the third column the equivalence classes of relation ρS
and their cardinalities are given. In the fourth column the corresponding metric representations with respect to S
are shown. Since the minimal cardinality of equivalence classes is one, according to Property 2, it follows that
S = {v1,v2} is 1-antiresolving set.

Step 2. adim1(Wn) = 2
Suppose the contrary, that adim1(Wn) = 1. Then there exists an 1-antiresolving set S of cardinality one. We
have two cases:

Case 1. Suppose that S = {v0}. From Table 1 it is evident that there exists only one equivalence class
{vi|i = 1, ...,n} of cardinality n.
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Figure 1 Graph W8

Case 2. Suppose that S = {vi}, 1≤ i≤ n. Without loss of generality we can assume i = 1. From Table 1
it can be seen that for n≥ 6 the equivalence class with minimal cardinality is {v0,v2,vn}.

In both cases we have a contradiction with the assumption that there exists an 1-antiresolving set S of cardinality
one, so adim1(Wn)≥ 2. According to Step 1, adim1(Wn) = 2.

Step 3. adim2(Wn) = 2
Let S = {v0,vi} , 1≤ i≤ n. Without loss of generality we can assume i = 1. Since {v2,vn} is the equivalence
class of minimal cardinality (see Table 1), according to Property 2 it follows that S = {v0,v1} is a 2-antiresolving
set. As it can be seen from Step 2, singleton sets S have equivalence classes with cardinality of at least three,
so such sets can not be 2-antiresolving sets. Therefore, S = {v0,v1} is a 2-antiresolving basis of Wn and
adim2(Wn) = 2.

Step 4. adim3(Wn) = 1
Let us consider set S = {v1}. Since the equivalence class with the minimal cardinality is {v0,v2,vn}, according
to Property 2 it follows that S = {v1} is a 3-antiresolving set. As |S|= 1, S = {v1} is a 3-antiresolving basis of
Wn, so adim3(Wn) = 1.

Step 5. adimn(Wn) = 1
Let S = {v0}. There is only one equivalence class {vi|i = 1, ...,n} of cardinality n, so it is obvious that S = {v0}
is an n-antiresolving set of Wn. Since |S|= 1, it is also an n-antiresolving basis of Wn. J

Table 1: Equivalence classes of ρS on Wn

S Equivalence class Card. M. rep.
{v1,v2} {v0} 1 (1,1)

{vn} 1 (1,2)
{v3} 1 (2,1)

{vi|i = 4, ...,n−1} n−4 (2,2)
{v0,v1} {v2,vn} 2 (1,1)

{vi|i = 3, ...,n−1} n−3 (1,2)
{v1} {v0,v2,vn} 3 (1)

{vi|i = 3, ...,n−1} n−3 (2)
{v0} {vi|i = 1, ...,n} n (1)

Values adimk(Wn) for n ∈ {3,4,5} and the corresponding k-antiresolving bases are obtained by total enu-
meration and presented in Table 2.
I Theorem 2. For l ∈ {4, ...,n−1} there does not exist S⊂V such that S is an l-antiresolving set.

Proof. From the proof of Theorem 1 it follows that for n ≥ 6, S = {v0} is an n-antiresolving set of Wn and
S = {vi}, 1≤ i≤ n, is a 3-antiresolving set of Wn. Also, S = {v0,vi}, 1≤ i≤ n, is a 2-antiresolving set. Let us
consider all other possibilities for S.
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Table 2: adimk(Wn) for n ∈ {3,4,5}

n k Basis adimk(Wn)

3 1 {v1,v2,v3} 3
2 {v1,v2} 2
3 {v1} 1

4 1 {v1} 1
2 {v0,v2,v4} 3
3 {v1,v3} 2
4 {v0} 1

5 1 {v1,v2} 2
2 {v1} 1

3, 4 does not exist undefined
5 {v0} 1

Case 1. |S| ≥ 2, v0 /∈ S.

If S = {v1, ...,vn} then there is only one equivalence class {v0} with respect to S and hence S is an
1-antiresolving set.
If S⊂ {v1, ...,vn} then there exists vi ∈ S such that vi′ /∈ S or vi′′ /∈ S, where vi′ and vi′′ represent the previous

and the next vertex in the cycle, respectively. Formally, i′ =

{
i−1, 2≤ i≤ n
n, i = 1

and

i′′ =

{
i+1, 1≤ i≤ n−1
1, i = n

. Then v0 and either vi′ or vi′′ , or both, are the only vertices from V \ S

which have 1 as a coordinate with respect to vi. It follows that the equivalence class of ρS with minimal
cardinality, has cardinality less or equal to three, i.e. S is an l-antiresolving set, where l ≤ 3.

Case 2. |S| ≥ 3, v0 ∈ S.
As v0 ∈ S and S⊂V , it follows that there exists vi ∈ S such that vi′ /∈ S or vi′′ /∈ S, where vi′ and vi′′ again represent
the previous and the next vertex in the cycle, respectively. Now vi′ or vi′′ , or both, are the only vertices from
V \S which have 1 as a coordinate with respect to vi. Similarly as in Case 1 it follows that S is an l-antiresolving
set where l ≤ 2. J

u(4,0) u(4,1) u(4,2) u(4,3) u(4,4) u(4,5) u(4,6) u(4,7) u(4,8) u(4,9)
u(3,0) u(3,1) u(3,2) u(3,3) u(3,4) u(3,5) u(3,6) u(3,7) u(3,8) u(3,9)
u(2,0) u(2,1) u(2,2) u(2,3) u(2,4) u(2,5) u(2,6) u(2,7) u(2,8) u(2,9)
u(1,0) u(1,1) u(1,2) u(1,3) u(1,4) u(1,5) u(1,6) u(1,7) u(1,8) u(1,9)
u(0,0) u(0,1) u(0,2) u(0,3) u(0,4) u(0,5) u(0,6) u(0,7) u(0,8) u(0,9)

Figure 2 Graph G5,10
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4. GRID GRAPHS

Grid graph Gm,n = (V,E) of dimension m · n, m,n > 1, can be considered as a graph with set of vertices
V = {(i, j)|0≤ i≤ m−1,0≤ j ≤ n−1}, where vertices are organized in m rows with n vertices in each row.
Two vertices are adjacent if they belong to the same row and to adjacent columns, or to the same column and to
adjacent rows. Formally, vertices (i, j) and (i′, j′) are adjacent if i = i′ and | j− j′|= 1 or |i− i′|= 1 and j = j′,
for 0≤ i, i′ ≤ m−1 and 0≤ j, j′ ≤ n−1. The interior vertices of the grid graph have 4 neighbors, the vertices
along the sides have 3 neighbors and only four of them (in the corners of the rectangle) have 2 neighbors.

It is obvious that a grid graph Gm,n can be viewed as a Cartesian product of paths Pm and Pn, i.e. Gm,n
∼=Pm2Pn.

Moreover, grid graphs of the dimensions m ·n and n ·m are isomorphic (Gm,n
∼=Gn,m), so without loss of generality

we can suppose that m≤ n.
Since G1,n

∼= Pn and the k-metric antidimension of paths is considered in (Trujillo-Rasua and Yero, 2016a),
we consider work only cases when m,n≥ 2.
I Theorem 3. For m,n≥ 2 it follows:

adim1(Gm,n) = 1;

adim2(Gm,n) =

{
2, m,n both even
1, otherwise

;

adim4(Gm,n) = 1 for m, n both odd.

Proof. Step 1. adim1(Gm,n) = 1
Let us consider set S = {(0,0)}. The equivalence classes of ρS are given in Table 3 (item 1). Since the equiva-
lence class with minimal cardinality is {(m−1,n−1)}, according to Property 2, it follows that S = {(0,0)} is
an 1-antiresolving set. As |S|= 1, S = {(0,0)} is an 1-antiresolving basis of Gm,n, so adim1(Gm,n) = 1.

Step 2. If both m and n are even, adim2(Gm,n) = 2
Let us define set S = {(0,0),(m− 1,n− 1)}. The equivalence classes of ρS are given in Table 3 (item 2).
Since the equivalence classes with minimal cardinality are {(0,1),(1,0)} and {(m−2,n−1),(m−1,n−2)},
according to Property 2, it follows that S = {(0,0),(m− 1,n− 1)} is a 2-antiresolving set. Next we will
prove that there does not exists a 2-antiresolving set S of Gm,n of cardinality one. Suppose the contrary, that

there exists a 2-antiresolving set of cardinality one, S = {(i′, j′)}. Let us define i′′ =

{
0, i′ ≥ m/2
m−1, i′ < m/2

and

j′′ =

{
0, j′ ≥ n/2
n−1, j′ < n/2

. Vertex (i′′, j′′) is the unique most distant vertex from vertex (i′, j′), so {(i′′, j′′)} is an

equivalence class of ρS of cardinality one, which is in contradiction with the assumption that S = {(i′, j′)} is a
2-antiresolving set of Gm,n. Hence adim2(Gm,n) = 2.

Step 3. If either m or n is odd, adim2(Gm,n) = 1
Case 1. Both m and n are odd.
Let p = bm/2c and q = bn/2c, i.e. m = 2p+1 and n = 2q+1. Let us define set S = {(p−1,q)}. Since both
m and n are odd and m,n ≥ 2 it follows that m,n ≥ 3. As m = 2p+ 1 ≥ 3 and n = 2q+ 1 ≥ 3 then p,q ≥ 1.
Equivalence classes of ρS are given in Table 3 (item 3). For each r, 2 ≤ r ≤ p+ q there exists vertex (i′, j′)
such that j′ < q and d((p− 1,q),(i′, j′)) = r. Due to symmetry of Gm,n, d((p− 1,q),(i′,2q− j′)) = r, and
hence each equivalence class ρS has cardinality at least two. Since equivalence class {(m−1,0),(m−1,n−1)}
has cardinality two it follows that S = {(p− 1,q)} is a 2-antiresolving set. As |S| = 1, S = {(p− 1,q)} is a
2-antiresolving basis of Gm,n, so adim2(Gm,n) = 1.
Case 2. m is even and n is odd.
Let p = bm/2c and q = bn/2c, i.e. m = 2p and n = 2q+ 1. Let us define set S = {(p,q)}. Since n is odd
and n ≥ 2 it follows that n ≥ 3. As n = 2q+ 1 ≥ 3 then q ≥ 1. The equivalence classes of ρS are given in
Table 3 (item 4). Similarly as in Case 1, for each r, 2 ≤ r ≤ p+ q− 1 there exists vertex (i′, j′) such that
j′ < q and d((p,q),(i′, j′)) = r. Due to symmetry of Gm,n, d((p,q),(i′,2q− j′)) = r, and hence each equiv-
alence class ρS has cardinality at least two. Since equivalence class {(0,0),(0,n−1)} has cardinality two it
follows that S = {(p,q)} is a 2-antiresolving set. As |S|= 1, S = {(p,q)} is a 2-antiresolving basis of Gm,n, so
adim2(Gm,n) = 1.
Case 3. m is odd and n is even.
Having in mind the fact that Gm,n

∼= Gn,m, this case is reduced to Case 2.
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Step 4. If both m and n are odd, adim4(Gm,n) = 1
Let p = bm/2c and q = bn/2c, i.e. m = 2p+1 and n = 2q+1. Let us define set S = {(p,q)}. Since both m
and n are odd and m,n≥ 2 it follows that m,n≥ 3. As m = 2p+1≥ 3 and n = 2q+1≥ 3 then p,q≥ 1. The
equivalence classes of ρS are given in Table 3 (item 5). For each r, 2≤ r ≤ p+q−1 there exists vertex (i′, j′)
such that i′ < p, j′ < q and d((p,q),(i′, j′)) = r. Due to symmetries of Gm,n we have d((p,q),(i′,2q− j′)) = r,
d((p,q),(2p− i′, j′)) = r and d((p,q),(2p− i′,2q− j′)) = r and hence each equivalence class of ρS has
cardinality at least four. Since equivalence class {(0,0),(0,n− 1),(m− 1,0),(m− 1,n− 1)} has cardinality
four, it follows that S = {(p,q)} is a 4-antiresolving set. As |S|= 1, S = {(p,q)} is a 4-antiresolving basis of
Gm,n, so adim4(Gm,n) = 1.

J

5. CONCLUSION

In this article the k-metric antidimension problem is considered on wheels and grid graphs. Exact values of
the k-metric antidimension of wheels Wn are obtained for k ∈ {1,2,3,n} and it is proved that the k-metric
antidimension does not exists for 4≤ k ≤ n−1. In the case of grid graphs Gm,n the exact values of the k-metric
antidimension are obtained for k ∈ {1,2} for arbitrary m, n and for k = 4 when m and n are both odd.

In future reseach it would be interesting to identify the cases when k-metric antidimension of Gm,n does
not exist. Also the k-metric antidimension problem could be considered on some other challenging classes of
graphs.
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