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PROCEEDINGS OF THE CONFERENCE
+ALGEBRA AND LOGIC", CETINJE 1986.
MODAL DUALITY THEORY

Kosta DoSen

Abstract. This talk is about some results concerning the dual-
ity between modal algebras and frames. The presentation of these
results is preceded by an introductory part, in which an assess-
ment is made of modal logic in the light of contemporary research.
There the generality of this research is stressed, and it is to
illustrate this generality that attention is focused on modal
duality theory, one of the most abstract areas of modal logic.

Introduction

Modal logic is the general theory of unary propositional
overators. This is not a definition one is likely to find in
textbooks. Neither is it a definition applicable to modal
logic from the beginning of its history in the twentieth cen-
tury. A change of subject occurred in modal logic in the
sixties, with the advent of formidable model-theoretic tools.
Before, modal logicians studied particular systems, which

were meant to formalize the notions of necessity and possibil-

ity, and they produced a real jungle of such systems. After
the sixties, modal logicisns were increasingly less concerned
with particular systems, and concentrated their attention on
methods with which they could deal with whole classes of sys-
tems. These classes cover the more traditional systems of
modal logic, but they include also many things whose connex-

ion with necessity »nd possibility, in spite of some family

resemblances, is at best remote, Nowadays, particular systems

in works of modal logic often occur only as examples, to make
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this or that technical point, and for no other purpose.

Another change of direction of research occurred in the
seventies. Now the point was not so much the development of
tools to deal with this or that particular system, or even
with whole classes of systems: the model-theoretic tools
themselves became an object of study. Of course, the abstract
study of models can have repercussions on their development
for eventual application. However, as it happens often in
mathematics, this application is not the main inspiration:
the abstract study of models is motivated by independent mathe-

matical interest.

It is because of this concern with whole classes of sys-
tems, and with the abstract study of models, that we claim
that modal logic is the general theory of unary prcpositional

cperators.

What are the unary propositional operators modal logic
deals with? We said these are not anymore only the tradition-
al operators "it is necessary that", and its dual, "it is
possible that". The search for a single system formalizing
these operators has probably come to an snd., There is no such
single system. The two operators above can have a variety of
meanings, depending on the context they are used in. What
modal logic can give us are tools to deal with practically

any of these particular meanings.

Because of this vagueness in the meaning of "it is neces-
sary.that", the study of this operator was replaced by the
study of unary operators whose meaning is similar, but more
precise ~ and also more interesting for mathematice. It seems
safe to say that "it is necsssary that" is nct anymore the
central unary operator of modal logie. If there is such a

central operator, then that would be "it is provable that”.
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Again, this is not a claim one is likely to find in textbooks,

but a number of facts could substantiate this claim.

First, the best known modal logics are S4, S5, and some
logics in their vicinity. Already on an intuitive level, the
connexion between these logics and provability is quite strong
(see [Lemmon 1959] ). On a more technical level, there is a
famous translation of Heyting’s logic into S4, or into logics
in the vicinity of S4 (cf. [DoSen 1986]), and this translation
justifies reading S4-like necessity operators as "it is prov-
able that". This translation connects modal logic with topo-
logy, and, in particular, with Tarski’s Cn operator, which is
of a topological inspiration (see references in [Czelakowski &
Malinowski 1985]). Why this translation works could be real-
ized from the Gentzen-style syntactical analysis of S4 and S5
in [DoSen 1985] and [Do3en 1986a] (cf. [Scott 1971] ). Note
that this analysis finds a connection with provability for S5,

and SS5-like logics, as well,

The central role of provability in modal logic could also
be substantiated by the very great.success of the modal analysis
of Gddel’s arithmetical provability predicate (see [Boolos

1979}), which also involves logics in the vicinity of S4.

But, there are many more unary operators besides "it is
provable that"™ modal logic is able to deal with. Some of the
most famous are: "it will always be the case that", "it is
known that" and "it is obligatory that". These unary operators
are studied in branches of modal logic which are called re-

spectively: tense logic, epistemic logic and deontic logic.

Recently, a new branch of modal logic, called dynamic logic,

has developed around the study of operators drawn from comput-
er science, like the operator "after every computation accord-

ing to the programme P it is true that".
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The binary propositional connectives studied by modal
logic, like the connective of strict implication, are defin-
able in terms of nonmodal connectives and unary modal opera-
tors. Nowadays, these binary connectives are very seldom
taken as primitive, as modal logic has increasingly become

conscious of its vocation to study unary operators.

Modal logic deals mainly with propositional systems.

This is to be expected of a theory concerned with unary prop-
ositional operators. To consider these operators together
with quantifiers often complicates matters, and prevents re-
sults to be stated sharply. In a certain sense, quantifiers
toc are unary propositional operators, but, cf course, the
apparatus of binding of variables makes them fall out of_the
field of propositional logie (see, however, [Kuhn 1980] for

an attempt to treat quantifiers as modal operators).

Is modal logic able to deal with arbitrary unary prop-
ositional operators? Without trying to answer this question
with precision, it seems safs to say that the success of modal
logic in dealing with particular operators, and the consider-
able sophistication of its tools, makes it wvery probable that
practically any unary operator for which scme axioms are of-
fered could be dealt with. That means, modal logic could try
to give models, and answer technical questions concerning
completeness, decidability, and the like, with a reasonable

chance of success.

This contrasts with the situation we find in the study
of nonclassical propositional logics. There is as yet no
logical theory able to claim the title of "general thecory of
binary propositional connectives". Such a theory should cover
not only two-valued, or many-valued, or intuitionistic, or rele-

vant connectives, but any connectives we might wish to consider.
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The generality of modal logic, though great, is not
such that it could not be greater. One limitation comes from

a nearly exclusive concern with the interpretation of modal

operators found in Kripke semantics:

xEOA < Vy(xRy = yEA),
xEOA & Jy(xRy & yEA).

Although there were sporadic attempts to modify this inter-
pretation, like, for example, the following, using an n+l-ary
relation R [Jennings, Johnston & Schotch 1980]:

xEOA & Vyl...Vyn(nyl...yn = (ylFA Or...or ynb A),

and though there is a well-known more general interpretation

called neighbourhood semantics (sometimes also called Scott-

-Montague semantics), the enormpus majority of papers in the

central areas of modal logic deals with Kripke semantics. The
reascns for that are probably the connexions with relativized
quantifiers, the possibility to deal effectively with the main
logics around S4 and S5, and the already considerable general-
ity of Kripke semantics itself. 'Another reason is probably
that the great body of papers in the general study of model-
~theoretic tools deals with Kripke semantics: to change now
the object of study would be like changing the rules of chess,

and having to revise the bulk of existing chess theory.

Another limitation of contemporary modal logic is the
fact that it studies unary operators added to a Boolean basis;
i.e., the nonmodal context in which these operators are intro-
duced is classical. This is gquite understandable: this logie-
al context is not only the simplest, but presumably the most
important. However, a really general theory of unary operators
should pay attention to unary operators in nonclassical logics

too. A start in the investigation of intuitionistic modal
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logic (see [BoZié & Do3en 1984] and [DoSen 1985a)]), and rele-
vant modal logic (see [Bo¥ié 1983]), seems to have been made.
An output of these investigations is the analysis of negation
as a modal operator, an analysis suggested by the greater
fluidity of negation in nonclassical logics (see [Bo¥ié 1983],
[DoSen 1986b] and [DoSen 1986c]). What has not even been
started is the analysis of modal logic in some kind of minimal
logic. However, the discovery of this minimal logic is proba-
bly tied to the creation of a general theory of binary prop-

ositional connectives.

Modal model theory may be divided into: compléteness
theory, which studies completeness problems involving modal

systems and various types of models; correspondence theory,

which studies the definability of conditions on models by

modal formulae, and the other way round; and duality theory,

which studies the interconnexions between types of models in
a general algebraic setting. In the second part of this talk
we shall present some rudiments of modal duality theory, in
order to illustrate the abstract level of studies in modern
modal logic. The results which we shall discuss are from
[DoSen 1986d], which develops ideas of [Goldblatt 1976] and
[(Thomason 1975].

An extensive survey of modal logic, including duality
theory, and its interconnexions with other areas of research,

can be found in the second volume of the Handbook of Philo-

sophical Logic [Gabbay & Guenthner 1984], and in particular
in the first chapter [Bull & Segerberg 1984], and in the
fourth chapter [van Benthem 1984]. A useful guide to the
modern literature is also [Bull 1982], [Bull 1983] and [Bull

1985]. Basic notions of category theory, which we need in
the second part, can be found in the introductory parts of
[Pareigis 1970].
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Modal algebras and frames

A frame F is a nonempty set C, the carrier of F, together
with some associated relations or functions defined over C.
We can imagine that a modal model is made out of a frame in
two steps: first we gpread over the frame a modal algebra, and

then we define a valuation on this algebra.

A modal algebra A is a Boolean algebra with an additional

unary operation L. If we consider modal logic in a nonclas-
sical setting, the underlying algebra need not be Boolean: it
can be a Heyting algebra, or something else. A valuation is
a homomorphism v from a propositional language with a modal

operator [] into A so that for formulae (P:

v(Be¢) = Lv(Y).
In modal duality theory valuations don’t play an essen-
tial role: once we have spread a modal algebra over a frame,
valuations are obtained automatically. It is this business

of spreading which becomes the main subject.

To spread a modal algebra over a frame means to define
it in terms of the frame. The power set (°C of C is of course
a Boolean algebra, but we can also consider subalgebras of
this power set algebra. The problem is to define in th@ set
Boolean algebras (RF a unary operation L in terms of the
relations or functions of the frame F. There are two ways of

doing this, which give rise to two distinct types of frames.

First, we have relational frames, where we are given a

binary relation RSECZ. In terms of R we can define a succes-
sor function S:0—>(C by S(x) = {y: ny} (the members of S(x)
are the successors of x). Conversely, in terms of S we can

define R by xRy <> y€S(x). So, relational frames and
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successor frames amount to the same thing. With such frames F,

in the power set algebra, or its subalgebra, \ﬁF, for BEC in
AF, we define L by:

IB = {x: S(x)gB}.

Second, we have neighbourhood frames, where we are given

a neighbourhood function N:C— (’(AAF), the set AF being a

subset of (PC-(the set N(x) is the set of neighbourhoods of
x). In terms of N we define I by:

LB = {x: BEN(x)}.

Now, it is clear that,conversely, N can be defined in
terms of L by:
N(x) = {B: xe1B}.

So, a neighbourhood frame is essentially a set modal algebra
spread over a carrier. The function N may be taken as defined

in terms of L.

Is the same thing true for relational frames, viz. is R
always definable in terms of L? The answer is: no. If AF
is the whole power set (°C, then, indeed, we have:

(1) s(x) = n§{B: xe1B},
or equivalently:

xRy <> YB(xeLB = y€B).
However, if (AF is not the whole power set 0’0, but a proper
subalgebra of CPC, then we may have:

s(x)g N{B: x eLB}.

The problem is S(x) need not be an element of AF: if it were,
we would have (1). So, we distinguish a subtype of relational

frames where (1) holds: we call these frames reducible frames.

The question from which modal duality theory starts is:
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for an arbitrary modal algebra A, can we find an isomorphic
algebra AF spread over some frame F? The answer is: yes,

there is always such a neighbourhood frame. If the algebra
A is normal, i.e., if I1 = 1 and L(blr\bz) = Lb.N1Ib

1 2!
is always an isomorphic A F where F is a relational frame.

there

These answers are usually couched as results in category
theory: one establishes duality (categorial equivalence with
contravariant functors) between categories of modal algebras
and categories of frames. These results of category theory
yield much more than an answer to our original question. They
induce us to try to translate algebraic theorems (of which we
know much more) intoc theorems about frames. For example, we
might try to answer the following: for what constructions on
frames are closed classes of frames which correspond to modal
algebras which make a variety? What on frames corresponds to

homomorphic images, subalgebras, direct products?

Let us sketch how our duality results look like. On the
algebraic side let us take the category MA of modal algebras
defined by:

objects: modal algebras,
morphisms: homomorphisms,

and the category NMA of normal modal algebras which differs

from MA by requiring that its objects be normal modal algebras.

On the frame side we have first the category DF of

descriptive neighbourhood frames defined by:

objecfs: descriptive neighbourhood frames,
morphisms: frame morphisms.

We shall define descriptive neighbourhood frames together with
a functor £F which will associate with every modal algebra A

a frame FA spread over A, and with every homomorphism h
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between modal algebras a frame morphism Fh. If A is a modal
algebra, Q'A will have a carrier CA made of all ultrafilters
of 4, and if for an element b of A we have q(b) = {XGCA:
bGX}, then NA(X) = {q(b): LbGX}. The mapping q is an iso-
morphism from A to R (FA), as in Stone’s Representation
Theorem. Now, dually, we define a mapping p:C—bm(@C) by
p(x) = {B: x €B}, where B is in AF. A frame is descriptive

iff p is one-one and onto.
The frame morphisms of DF are defined as follows. If

. £ = . i
f.Cl—>02 and (uQ--)(BZ) {xl. f(x )GBZS, then f is a frame

morphism iff for every B, in (/EFz
(i) (kAf)(Bg)e(AFl’

(ii) (%f)(Bz)éNl(xl) < B

1

3

A frame morphism is a frame isomorphism iff f is one-one and

onto, and f_l is also a frame morphism (which is not automat-
ically satisfied). The mapping p defined above is a frame
isomorphism from a descriptive F to % (AF). Now, if h:Al—-> A2
is a homomorphism, we define the frame morphism
Fn:cteschl by (Fh)(X,) ={b1: h(bl)exz}. So, we have
completely defined the functor gr" from categories of modal
algebras into categories of frames. In the same way, K is

a functor from categories of frames into categories of

modal algebras. The functors A and F are contravariant.
. It is possible to establish the following theorem:

THEOREM 1. The categories MA and DF are dual by the functors
& and F.

This theorem means that the following diagrams commute:
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h f
A - A, F > F,
e a2 151 Py
A(Fn) F(AT)
A(FA) A(FA,) F (ARF,) F(ARE,)

A neighbourhood frame F is a filter frame iff for every
x €C we have that N(x) is a filter (not necessarily proper)
of AF. The category DFF is defined by the following:

objects: descriptive filter frames,
morphisms: frame morphisms.

We can prove the following:

THEOREM 2. The categories NMA and DFF are dual by the functors
A and F.

Reducible relational frames are intertranslatable not
with filter frames, but with a slightly more restrictive type

of neighbourhood frames, which we call hyperfilter frames; for

every B in (AF these frames satisfy:
A N(x)SB = BEN(x).

(Note that this does not entail that for every x the set N(x)

is a complete filter, i.e. it does not entail that N N(x)€ N(x),
since N N(x) need not belong to AF.) A hyperfilter frame is
always a filter frame, but for infinite frames we don’t neces-
sarily have the converse. A reducible frame becomes a hyper-

filter frame with the following definition of N:

N(x) ={B: S(x)< B},
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where B is in (LF. Conversely, a hyperfilter frame becomes

a reducible frame with the following definition of S:
S(x) = NN(x).

Frame morphisms on descriptive hyperfilter frames can equi-
valently be defined by replacing (ii) by:
(117) 5,(£(x)) = {£(x,): x,€5 (x)}.

Although not every filter frame is a hyperfilter frame,
every descriptive filter frame is a hyperfilter frame. So,
descriptive filter frames are intertranslatable with descrip-
tive reducible frames. Our Theorem 2 then amounts to a re-
sult of [Goldblatt 1976] which establishes dunlity between
NMA and the category of descriptive reducible frames with

frame morphisms.,

Let us now consider the frames F of a more usual kind,
where AP is the whole power set algebra. We shall call such
frames full. What categories of modal algebras are dual with
categories of full frames? An answer is provided by the fol-

lowing.
Let CAA be the category:

objects: complete atomic modal algebras,

morphisms: complete homomorphisms,
and let FNF be the category:

objects: full neighbourhood frames,
morphisms: frame morphisms.

The functor (2 from CAA to FNF is defined by the following.
If A is an object of CAA, then for the frame (%A we have:

CA = {a: a is an atom of A},

N(a) = {zcct: ag1 Uzl
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If h:Ai—;A is a complete homomorphism, then the frame mor-
. . A2 Al : . -
phism C& h:C"—»C"1l is defined by (Cgh)(ag)— 31® azgh(al).

Then we can prove the following:

THEOREM 3. The categories CAA and FNF are dual EX EEE func-
tors A and C;.

If NCAA differs from CAA by requiring moreover that its
objects be normal modal algebras, and FFNF differs from FNF
by requiring moreover that its objects be filter frames, we

can prove:

THEOREM 4. The categories NCAA and FFNF are dual by the
functors (R and C; .

Full relational frames, which are always reducible, are
intertranslatable with full hyperfilter frames, as above.
Full relational frames are the usual Kripke frames for modal

logic.

Let now CCAA be the category which differs from CAA by
requiring moreover that its objects be modal algebras which
satisfy: ‘

pN{v;: i€t} = n{Iov;: i€tk
These modal algebras are normal., Next, let HFNF be the
category which differs from FNF by requiring moreover that
its objects be hyperfilter frames (in these frames for every
x we now have that N(x) is a complete filter). The following

theorem, with which we conclude this lecture, can be derived

from [Thomason 1975]:

THEOREM 5. The categories CCAA and HFNF are dual by the
functors (& and q;.
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