We investigate intuitionistic propositional modal logics in which a modal operator \Box is equivalent to intuitionistic double negation. Whereas $\neg\neg$ is divisible into two negations, \Box is a single indivisible operator. We shall first consider an axiomatization of the Heyting propositional calculus H, with the connectives \to, \land, \lor and \neg, extended with \Box. This system will be called Hdn ("dn" stands for "double negation"). Next, we shall consider an axiomatization of the fragment of H without \neg extended with \Box. This system will be called Hdn^+. We shall show that these systems are sound and complete with respect to specific classes of Kripke-style models with two accessibility relations, one intuitionistic and the other modal. This type of models is investigated in [2] and [3], and here we try to apply the techniques of these papers to an intuitionistic modal operator with a natural interpretation. The full results of our investigation will be published in [4] and [1].

The system Hdn. The language L is the language of propositional modal logic with the propositional variables p, q, \ldots and the connectives \to, \land, \lor, \neg and \Box (\leftrightarrow is defined as usual in terms of \to and \land, and in formulae bind more strongly than \to). As schemata for formulae we use A, B, C, \ldots. The system Hdn is axiomatized with modus ponens and the following axiom-schemata:

$H1. \quad A \to (B \to A);$
$H2. \quad (A \to (B \to C)) \to ((A \to B) \to (A \to C));$
$H3. \quad (C \to A) \to ((C \to B) \to (C \to A \land B));$
$H4. \quad A \land B \to A;$
H_5. \(A \land B \rightarrow B; \)

H_6. \(A \rightarrow A \lor B; \)

H_7. \(B \rightarrow A \lor B; \)

H_8. \((A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow (A \lor B \rightarrow C)); \)

H_9. \((A \rightarrow \neg B) \rightarrow (B \rightarrow \neg A); \)

H_{10}. \(\neg A \rightarrow (A \rightarrow B); \)

dn_1. \(\Box (A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B); \)

dn_2. \(A \rightarrow \Box A; \)

dn_3. \(\Box ((A \rightarrow B) \rightarrow A); \)

dn_4. \(\neg \Box \neg (A \rightarrow A). \)

It is easy to show that the system obtained by replacing $dn_1 - dn_4$ by

dn_0. \(A \leftrightarrow \neg \neg A \)

has the same theorems as HD_n. Using $dn_1 - dn_4$ is, however, more suitable when one wants to connect HD_n with the models given below and to compare HD_n with HD_n^+. Since HD_n is closed under replacement of equivalent formulae, dn_0 guarantees that \Box in HD_n stands for intuitionistic double negation.

An HD_n frame is \(\langle X, R_I, R_M \rangle \) where \(X \neq \emptyset, R_I \subseteq X^2 \) is reflexive and transitive, \(R_M \subseteq X^2 \) and

1. \(R_I \circ R_M \subseteq R_M \circ R_I, \)
2. \(R_M \subseteq R_I, \)
3. \(\forall x, y (x R_M y \Rightarrow \forall z (y R_I z \Rightarrow z R_I y)), \)
4. \(\forall x \exists y x R_M y; \) the variables \(x, y, z, \ldots \) range over \(X. \)

An HD_n model is \(\langle X, R_I, R_M, V \rangle \) where \(\langle X, R_I, R_M \rangle \) is an HD_n frame and the valuation \(V \) is a mapping from the set of propositional variables of \(L \) to the power set of \(X \) such that for every \(p, \forall x, y (x R_I y \Rightarrow (x \in V(p) \Rightarrow y \in V(p))). \) The relation $|=$ in $x |=$ A is defined as usual for \rightarrow, \land, \lor and \neg, using R_I for \rightarrow and \neg, whereas $x |=$ $\Box A$ if $\forall y (x R_M y \Rightarrow y |=$ $A)$. A formula \(A \) holds in a frame \(Fr \) iff \(A \) holds in every model with the frame \(Fr \); and \(A \) is valid iff \(A \) holds in every frame. An HD_n frame (model) is condensed iff \(R_I \circ R_M = R_M \) and it is strictly condensed iff \(R_I \circ R_M = R_M \circ R_I = R_M. \) Strictly condensed HD_n frames form a proper subclass of condensed HD_n frames, with form a proper subclass of the class of all HD_n frames.

Let \(Fr \) be a frame which satisfies only (1), and not necessarily also (2)-(4). Then it is possible to show that: dn_2 holds in Fr iff (2) holds for
Fr; dn3 holds in Fr iff (3) holds for Fr; and dn4 holds in Fr iff (4) holds for Fr.

By a fairly standard proof with a canonical model it is possible to show that Hdn is sound and complete with respect to the class of all (all condensed, all strictly condensed) Hdn frames.

In the definition of strictly condensed Hdn frames (1)-(3) and the condition \(R_I \circ R_M = R_M \circ R_I = R_M \) can all be replaced by the condition

\[
\forall x, y (x R_M y \Leftrightarrow (x R_I y \text{ and } \forall z (y R_I z \Rightarrow z R_I y)))
\]

yielding the same class of frames. So in these frames \(R_M \) is definable in terms of \(R_I \). Now, if in the definition of Hdn frames we require that \(R_I \) is not only reflexive and transitive, but a partial ordering, our soundness and completeness results still hold. However, in that case all Hdn frames are strictly condensed (just show \(R_M \circ R_I \subseteq R_M \)). Hence, we have shown Hdn sound and complete with respect to partially ordered frames where for any \(x \) there is a maximal element \(y \) above \(x \), \(x R_M y \) means that \(y \) is one of these maximal elements, and \(x \models \Box A \) means that \(A \) holds in all these maximal elements.

The system Hdn+. The system Hdn+ will be formulated in the language \(L^+ \) which is \(L \) without \(\neg \), and in addition to modus ponens and the axiom-schemata \(H1 - H8 \), \(dn1 - dn3 \) it will have the axiom-schema

\[
dn5. \Box (\Box A \rightarrow A).
\]

This system axiomatizes Heyting’s positive propositional logic extended with intuitionistic double negation, but not with negation. To show that we proceed as follows.

An Hdn+ frame differs from an Hdn frame in having

\[
(5) \forall x, y (x R_M \circ R_I y \Rightarrow y R_M \circ R_I y)
\]

instead of (4). It is easy to show that Hdn frames form a proper subclass of Hdn+ frames. It is also possible to show that for any frame Fr which satisfies only (1), dn5 holds in Fr iff (5) holds for Fr.

Again by a standard proof with a canonical model shows that Hdn+ is sound and complete with respect to the class of all Hdn+ frames.

In order to prove that Hdn+ captures all the theorems of Hdn without \(\neg \) we proceed as follows. Suppose a formula \(A \) from \(L^+ \) is not a theorem of Hdn+; hence, it is falsified in an Hdn+ model \(\langle X, R_I, R_M, V \rangle \). The closure
of this model will be \((X, R_I, R_M, V) \) where \(X = X \cup \{1\} \), \(xR_Iy \Leftrightarrow (xR_Iy \) or \(y = 1 \) and \(\exists z(xR_iz \) and not \(\exists zR_Mt) \) or \(x = y = 1 \), \(xR_My \Leftrightarrow (xR_My \) or \(xR_Iy \) and \(y = 1 \)), and \(V(p) = V(p) \cup \{1\} \). Since it is possible to show that the closure of an \(Hdn^+ \) model is an \(Hdn \) model, and that in these two models the same formulae for \(L^+ \) holds in the members of \(X \), it follows that \(A \) is falsified in \(Hdn \) model, and hence \(A \) is not a theorem of \(Hdn \).

The system \(Hdn^+ \) extended with \(H9 \) and \(H10 \) is weaker than \(Hdn \), since \(dn4 \) and \(\Box A \rightarrow \neg\neg A \) are not provable in it. Alternatively, it is also possible to axiomatize \(Hdn^+ \) using \(\Box\Box A \rightarrow \Box A \) instead of \(dn5 \).

References

Institute of Mathematics
Beograd, Yugoslavia