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Abstract

A spectral graph theory approach is described for representing melo-
dies as graphs, based on intervals between the notes they are com-
posed of. These graphs (or digraphs) are then indexed using eigen-
values of some graph matrices. The eigenvalues are used to define 
a spectral distance between graphs. Two graphs are considered as 
similar if their spectral distance is small. This makes it possible to find 
melodies similar to a given melody. Our contribution includes some 
improvements of the basic graph model as well as the selection of 
graph matrices which are used in indexing melodies. We recommend 
the matrix AAT, where A is the adjacency matrix of a digraph. The 
spectrum of AAT is called the non-negative spectrum or N-spectrum 
of the digraph. We survey some properties of the N-spectrum. We 
also present some examples and musicians’ intuitive approach to 
similarity of melodies. Our contributions are presented within a short 
review of the huge areas of music recognition and spectral recogni-
tion of graphs.
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1. Introduction

Spectral graph theory is a mathematical theory in which linear algebra 
and graph theory meet. Spectral graph theory is a very well developed 
mathematical field5 but also an engineering discipline6 

For any graph matrix M we can build a spectral graph theory in which 
graphs are studied by means of eigenvalues of the matrix M. This theory 
is called M-theory. In order to avoid confusion,to any notion in this theory 
a prefix M-could be added (e.g., M-eigenvalues). Frequently used graph 
matrices are the adjacency matrix A, the Laplacian L = D — A and the sign-
less Laplacian Q = D + A, where D is a diagonal matrix of vertex degrees. 
The spectral graph theory includes all particular theories together with 
interaction tools.

In the last twenty years or so, it has been recognized that graph spec-
tra have several important applications in computer sciences.7 Graph 
spectra appear in the literature in Internet technologies, computer vi-
sion, pattern recognition, data mining, multiprocessor systems, statisti-
cal databases and in many other areas. There are thousands of papers in 
which these topics are treated.

In surveys8 of the applications of graph spectra in Computer Science, 
applications in the following branches of Computer Science have been 
identified:

1. Expanders and combinatorial optimization, 2. Complex networks 
and the Internet topology, 3. Data mining, 4. Computer vision and pat-
tern recognition, 5. Internet search, 6. Load balancing and multiproces-
sor interconnection networks, 7. Anti-virus protection versus spread of 

5 Dragoš Cvetković, Michael Doob and Horst Sachs, Spectra of Graphs, Theory 
and Application, 3rd edition (Heidelberg-Leipzig: Johann Ambrosius Barth Verlag, 
1995); Dragoš Cvetković, Peter Rowlinson and Slobodan K. Simić, An Introduction 
to the Theory of Graph Spectra (Cambridge: Cambridge University Press, 2009).
6 Daniel A. Spielman, “Spectral Graph Theory and its Applications”, in 48th Annual 
IEEE Symposium on Foundations of Computer Science (Los Alamitos: IEEE, 2007), 
29-38.
7 Dragoš Cvetković and Ivan Gutman, eds., Application of Graph Spectra, Zbornik 
radova 13, 21 (Belgrade: Mathematical Institute SANU, 2009); Dragoš Cvetković 
and Ivan Gutman, eds., Selected Topics on Application of Graph Spectra, Zbornik 
radova 14, 22 (Belgrade: Mathematical Institute SANU, 2011); Dragoš Cvetković 
and Slobodan K. Simić, “Graph spectra in Computer scince”, Linear Algebra and its 
Applications, 434, 6 (2011): 1545-1562.
8 Cvetković and Simić, “Graph spectra in Computer science”, 1545-1562; Branko 
Arsić et al, “Graph spectral techniques in computer sciences”, Applicable Analysis 
and Discrete Mathematics, 6, 1 (2012):1-30.
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knowledge, 8. Statistical databases and social networks, 9. Quantum 
computing, 10. Bio-informatics, 11. Coding theory, 12. Control theory.

It is not unusual that graph specta appear in computer science since 
graphs themselves are quite relevant in computer sciences. Graphs that 
are treated in computer sciences using graph spectra typically represent 
either some physical networks (computer network, Internet, biological 
network, etc.) or data structures (documents in a database, indexing 
structure, etc.) In the first case the graphs usually have a great number 
of vertices (thousands or millions) and they are called complex networks 
while in the second case graphs are of small dimensions.

Moreover, in some applications in data mining graph spectra are used 
to encode graphs themselves.9 The following examples are illustrative in 
this respect.

The indexing structure of objects appearing in computer vision (and 
in a wide range of other domains such as linguistics and computational 
biology) may take the form of a tree. An indexing mechanism that maps 
the structure of a tree into a low-dimensional vector space using graph 
eigenvalues is developed.10

In several databases the data are often represented as graphs. Very 
frequently graphs are indexed by their spectra.11

In order to introduce a suitable graph matrix, note that for any real 
matrix A, not necessarily a square matrix, the matrices AAT and ATA are 
symmetric. Therefore they have real eigenvalues which are non-negative. 
Non-zero eigenvalues of AAT and ATA are the same. Square roots of these 
eigenvalues are called singular values of A.

Let A be the adjacency matrix of a digraph D. The eigenvalues of AAT 
and ATA are the same and they constitute the N-spectrum of D.

9 Fatih M. Demirci, Reiner H. van Leuken and Remco C. Veltkamp, “Indexing 
through laplacian spectra”, Computer Vision and Image Understanding, 3 (2008): 
312, DOI 10.1016/j.cviu.2007.09.012; Lei Zou et al, “A novel spectral coding in a 
large graph database”, in Proceedings of the 11th international conference on 
extending database technology (EDBT”08) (2008), 181-192.
10 Ali Shokoufandeh et al, “Indexing using a spectral encoding of topological 
structure”, IEEE Trans. Comput. Vision Pattern Recognition, 2 (1999): 491-497.
11 Alberto Pinto et al, “Indexing music collections through graph spectra”, in 
Proceedings of the 8th International Conference on Music Information Retrieval 
(ISMIR’07) (2007), 153-156; Shokoufandeh et al, “Indexing using a spectral 
encoding of topological structure”, 491-497; Zou et al, “A novel spectral coding 
in a large graph database”, 181-192.
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In the paper12 a spectral graph theory approach is presented for 
representing melodies as graphs, based on intervals between the notes 
they are composed of. These graphs are then indexed using their Lapla-
cian spectrum. This makes it possible to find melodies similar to a given 
melody.

The query for such a database is given by a graph. To find similar 
data in the database it is necessary to compare subgraphs of the query 
graph with subgraphs of the graphs stored in the database. One should 
efficiently select a small set of database graphs, which share a subgraph 
with the query. Instead of comparing subgraphs one can compare their 
spectra. While the subgraph isomorphism problem is NP-complete, com-
paring spectra can be done in polynomial time.

The model from the paper13 has been discussed and improved in the 
paper.14

The rest of the paper is organized as follows. Section 2 presents a 
short review of the area of spectral recognition of graphs, Section 3 gives 
a description of the procedure for recognizing music melodies including 
our improvements. Section 4 studies some basic properties of the N-
spectrum of a digraph. Section 5 presents some examples and computa-
tional experiments. Section 6 gives concluding remarks.

2. Spectral recognition of graphs

Spectral recognition of graphs is in the core of applications of spectral 
graph theory to Computer Science. We mention here main points15 ac-
cording to our paper. 16

At some time, in the childhood of spectral graph theory, it was conjec-
tured that non-isomorphic graphs have different spectra, i.e. that graphs 
are characterized by their spectra. Very quickly this conjecture was refut-
ed and numerous examples and families of non-isomorphic graphs with 
the same spectrum (cospectral graphs) were found. Still some graphs are 

12 Alberto Pinto, MIREX2007 - Graph spectral method, unpublished.
13 Ibid.
14 Dragoš Cvetković and Vesna Manojlovic, “Spectral recognition of music 
melodies”, in SYM-OP-IS (2013), 269-271.
15 Presented at the Conference on Applications of Graph Spectra in Computer 
Science, Barcelona, July 16 to 20, 2012.
16 Dragoš Cvetković, “Spectral recognition of graphs”, Yugoslav Journal of 
Operations Research, 20, 2 (2012): 145-161.
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characterized by their spectra and several mathematical papers are de-
voted to this topic. In applications to computer sciences, spectral graph 
theory is considered as very strong. The benefit of using graph spectra in 
treating graphs is that eigenvalues and eigenvectors of several graph ma-
trices can be quickly computed. Spectral graph parameters contain a lot 
of information on the graph structure (both global and local) including 
some information on graph parameters that, in general, are computed 
by exponential algorithms. Moreover, in some applications in data min-
ing, graph spectra are used to encode graphs themselves. The Euclidean 
distance between the eigenvalue sequences of two graphs on the same 
number of vertices is called the spectral distance of graphs. Some oth-
er spectral distances (also based on various graph matrices) have been 
considered as well. Two graphs are considered as similar if their spectral 
distance is small. If two graphs are at zero distance, they are cospectral. 
In this sense, cospectral graphs are similar. Other spectrally based mea-
sures of similarity between networks (not necessarily having the same 
number of vertices) have been used in Internet topology analysis, and in 
other areas. The notion of spectral distance enables the design of vari-
ous meta-heuristic (e.g., tabu search, variable neighbourhood search) al-
gorithms for constructing graphs with a given spectrum (spectral graph 
reconstruction).

Several spectrally based pattern recognition problems appear in 
many areas (e.g., image segmentation in computer vision, alignment of 
protein-protein interaction networks in bio-informatics, recognizing hard 
instances for combinatorial optimization problems such as the travelling 
salesman problem).

3. Spectral recognition of music melodies

A melody M is a finite sequence of pitches (or corresponding notes) p1, 
p2,... , pm. The usual 12-tone system is used. Our considerations are re-
lated to a digraph G whose vertex set V = {1, 2,..., 12} represents pitch 
classes. For example, the same vertex represents c in all octaves. The di-
graph G has all possible arcs (oriented edges) and loops.

A melody M considered as a sequence of vertices of G determines in G 
a closed walk consisting of arcs (p1,p2), (p2,p3),..., (pm,p1). Note that some 
of the arcs in this walk may be repeated and also that the arc (pm,p1) 
does not actually represent an interval between the pithes in the melody. 
The vertex set V together with arcs from this closed walk determines a 
(multi-)digraph GM associated with the melody M.
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The digraph GM, as a labelled digraph, determines uniquely pitch class-
es of the melody M. However, different melodies can have isomorphic 
associated digraphs. Nevertheless, this representation is good enough in 
the task of finding similar melodies.

This model appeared in papers17 and it does not take into account 
the duration of pitches. An obvious way to overcome this is to introduce 
weights on arcs in GM. The weight of the arc (pi, pi+1) would denote the 
duration of the pitch pi.

Since all arcs of a digraph GM lie on a closed walk, GM consists of a 
strongly connected component and a number of isolated vertices.

The papers18 consider spectra of the adjacency matrix and the Lapla-
cian of GM for indexing GM.

Two melodies are considered as similar if the corresponding graph 
spectra are close one to the other. In particular, one should consider 
the Euclidean distance in R12 between the eigenvalue sequences and re-
quire that this distance is small. A number of melodies similar to a given 
melody M is than obtained from melody database by general retrieval 
procedures.19

A number of objections to this procedure can be made. The main ob-
jections are related to the choice of graph matrices. Both the adjacen-
cy matrix and the Laplacian matrix are generally non-symmetric for di-
graphs. Therefore the corresponding spectra are complex which causes 
some difficulties. It is well-known that main results of spectral graph 
theory are related to undirected graph where graph matrices are sym-
metric and eigenvalues are reals. In addition, the Laplacian matrix is un-
appropriate for digraphs with loops since no loop can be recorded in the 
Laplacian matrix.

In general, adjacency matrix is not good since arcs not laying in closed 
walks are not reflected in the spectrum (this does not applies to the con-
sidered situation). Also, the reference to the paper20 for benefits of using 
Laplacian matrix is not relevant here since this paper considers undirect-
ed graphs.

17 Pinto, MIREX2007 - Graph spectral method; Pinto et al, “Indexing music collec-
tions through graph spectra”, 153-156.
18 Ibid.
19 Demirci, Leuken and Veltkamp, “Indexing through laplacian spectra”.
20 Willem Haemers and Edward Spence, “Enumeration of cospectral graphs”, Eu-
ropean Journal of Combinatorics, 25, 2 (2004): 199-211.
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We have pointed out in the paper21 that in treating music melodies by 
graph spectra the multidigraph GM should be indexed by eigenvalues of 
AAT where A is the adjacency matrix of GM, including the case when GM is 
a weighted (multi-)digraph. In this way the mentioned objections in the 
approach from papers22 would be overcome.

4. The N-spectrum of a digraph

We present here basic properties of the N -spectrum of a digraph.
Let D = (V(D), A(D)) be a digraph of order n, with the set of vertices 

V(D) = {vi, v2,..., vn} and whose adjacency matrix is A = [aij]. Structural ver-
sus spectral properties of digraphs related to the matrices AAT and ATA 
will be considered in this section. Some of these results also appear els-
where.23 The N -spectrum of a digraph was not onsidered earlier in math-
ematical literature24 but appears in applications.25

The matrices AAT and ATA are non-negative square and symmetric. 
One can easily check that these matrices are also positive semi-definite, 
so that their eigenvalues are non-negative.

The statement given by the following proposition is also well known.26

Proposition 1. The (i, j)-entry of the matrix AAT (ATA) of D is equal to the 
number of common out-neighbours (in-neighbours) of vj and vj. Diagonal 
entries of the matrix AAT (ATA) represent out-degrees (in-degrees) of the 
vertices of D.

Proof. The (i, j)-entry of the matrix AAT is equal to the sum of all prod-
ucts аilаl

T
j, for each l= 1, 2,..., n. Further, ailаl

T
j = 1 if аil = 1 and аl

T
j = 1 

hold, i.e. if vi; is the common out-neighbour of vi and vj. The case of ATA is 
treated in a similar way.                

21 See footnote 14.
22 See footnote 17.
23 Irena Jovanović, “Spectral recognition of graphs and networks” (PhD Thesis, 
School of Mathematics, University of Belgrade, 2015); Irena Jovanović, “Non-
negative spectrum of a digraph”, Ars Mathematica Contemporanea, 12, 1 (2017): 
167-182.
24 Richard A. Brualdi, “Spectra of digraphs”, Linear Algebra and its Applications, 
432 (2010): 2181-2213.
25 Ami N. Langville and Carl D. Meyer, “A survey of eigenvector methods for web 
information retrieval”, SIAM Review, 47, 1 (2005): 135-161.
26 Ibid.
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According to the previous remarks and proposition, we can intro-
duce the following notation: Nout = AAT and Nin = ATA. The characteristic 
polynomial det (λI — Nin) of Nin is the Nin- characteristic polynomial of 
D, while the characteristic polynomial det(λI — Nout) of Nout  is the Nout-
characteristic polynomial of D. The spectrum of Nout and of Njn are the 
same and they are denoted by the single name - the N-spectrum. So, the 
characteristic polynomials N(x) of these matrices can be named the N 
-polynomials. However, we underline that through the investigation we 
mainly considered the Nout(D) matrix of D, whose spectrum we denote 
by η1 ≥ η2 ≥ ... ≥ ηn. The N-spectral radius ρN(D) of D is defined to be the 
spectral radius of Nout(D), i.e. Nin(D).

Remark 1. For the N-spectrum η1, η2, ..., ηn of a digraph D the following 
holds:

• The numbers η1, η2,. .., rn are real and non-negative,
• ηi + П2 + ... + ηn = trNout (= trNin) = Σn

i=1 outdeg(vi) (=Σn
i =1 indeg(vi)),

• D consists only of isolated vertices if and only if η1 = η2 = ... = ηn = 0.
We say that a digraph D is r-regular if the in-degree and the out-degree 

of each its vertex are equal to r.
Lemma 1. The N-spectral radius ρN(D) of an r-regular digraph D = (V(D), 

A(D)) of order n is r2.
Remark 2. The eigenvector that corresponds to the N-eigenvalue r2 of 

an r-regular digraph D is all-1 vector.
Example 1. The complete digraph of order n is the digraph

↔
Kn in which 

for each pair of vertices there is an arc, including a loop at each vertex. 
Thus, 

↔
Kn has n2 arcs and it is n-regular digraph.

Since the in-degree and the out-degree of each vertex of this digraph is 
n, and every pair of its vertices has n common out-neighbours, apropos n 
common in-neighbours, the N-characteristic polynomial of this digraph is:

N↔Kn (x) = (x — n2)xn-1, 

and thus its N-spectrum consists of: n2, [0]n-1.
Here an eigenvalue λ of the multiplicity k is denoted by [λ]k.
The complement DC = (V(DC), A(DC)) of a digraph D = (V(D), A(D)) has 

vertex set V(DC) = V(D) and a ϵ A(DC) if and only if a ϵ/ A(D). Also, there is a 
loop at vertex V1 in DC if and only if there is no loop at vi in D. Similarly to 
the proof of the corresponding theorem for regular graphs we can prove 
the following:
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Proposition 2. If the N-eigenvalues of an r-regular digraph D of order n 
are ni(D), i = 1, 2,... ,n, then the N-eigenvalues of DC are n1(DC ) = n2 – 2nr + r2 
and ni(DC ) = ni(D), i = 2, 3,... ,n.

5. Some examples and experiments

In conference presentation27 the third author illustrated the main ideas 
of our approach by the following two examples of pairs of similar melo-
dies, provided by the second author:

1.1. Pyotr Ilyich Tchaikovsky: Piano Concerto No. 1, B-flat minor, 
movement I;

1.2. Pyotr Ilyich Tchaikovsky: song Den li tsarit.
2.1. Antonio Vivaldi: Si fulgida per te, aria di Abra from oratorio Juditha 

triumphans,
2.2. Antonio Vivaldi: Io son quel gelsomino, aria from the opera Arsilda, 

regina di Ponto.
Example 1.1. is Tchaikovsky piano concerto in B-flat minor, beginning 

of the first movement, not the introduction, but the theme written in 
orchestral part. While piano is playing chords, orchestra plays the first 
theme in form of D-flat major arpeggiated cord.

Example 1.1. Tchaikovsky piano concerto in B-flat minor

Comparative example 1.2. is song by Tchaikovsky Den li tsarit, theme 
in soprano line.

Example 1.2. Tchaikovsky Den li tsarit
This example is in E-major key, which doesn’t change anything regard-

ing the recognition of this motif, since transposition doesn’t affect the 
recognition of melody, because all parameters are preserved (melody, 
harmony and rhythm). More importantly for our purposes, a melody can 
still be uniquely identified after it has undergone transposition (we still 

27  Vesna Todorčević, “Some remarks on spectral recognition of music melodies”, 
Book of Abstracts (2016), 41-42.
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recognize a familiar tune in a different key as being the same tune).28 In 
this case, only meter is changed, in the example 01 there is 3/4 and in the 
example 02 there is 9/8 meter.

Example 2.1. is aria of Abra from the oratorium Juditha triumphans by 
Antonio Vivaldi, Si fulgida per te. It is written in A-minor, melody is easily 
recognized by ascending triplets in soprano. Even visually, without listen-
ing to music, this theme is graphically very significant.

Example 2.1. Antonio Vivaldi: Si fulgida per te

Comparative example 2.2. is also by Antonio Vivaldi, Io son quel gel-
somino, aria from the opera Arsilda regina di Ponto. Key is G-minor, meter 
is the same, only this melody begins at another part of the bar in 12/8 
meter.

Example 2.2. Antonio Vivaldi: Io son quel gelsomino

Musicians consider identifying the melody by default, like, for in-
stance, identifying words and sentences. When musician hears a melody, 
this auditory stimulus is immediately transposed into sequences of sound 
grouped by expectations, based on former experience. This is pointing to 
complexity of perception of melodic aspects of music, respectively gen-
eral level of organization, based on gestalt principles.29

Visual recognizing of sheet music is regularly used, but it is always 
connected to sound. A musician always hears the music he is looking 
at, and this is always happening in his intrinsic imagination, because he 
learned to do so since childhood, during a period of learning music. Simi-
lar phenomenon occurs when we are reading some text, we recognize 
meaning of the words, not only seeing signs on the paper (unless we are 
looking at some lines written in unknown language).

28 Youngmoo E. Kim et al, “Analysis of a contour-based representation for melo-
dy”, in Proceedings of 1st International Symposium on Music Information Retrieval 
(ISMIR 2000), accessed August 16, 2018, https://pdfs.semanticscholar.org/bc27/
f7d4a549a0d3dd36b74afab6ae7ba5514e6b.pdf.
29 Ksenija M. Radoš, Psihologija muzike (Beograd: Zavod za udžbenike i nastavna 
sredstva, 1996), 106.
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Musicians perceive music as an integral aural stimulus, which includes 
recognizing of the rhythm, harmony and tempo, not only the melody. 
Perceptual organization cannot be defined by only one component for 
instance by height, or by rhythm but by interaction, or even collision of 
different components.30

Musicians and nonmusicians perceive music as holistic entirety, not 
only listening to some outstanding thematic material, like first bar of 
some sonata, symphony, or aria. Motif in the middle of a musical piece 
can be recognized as prominent melody, as well. However, it is possible 
that listeners do not attend to individual notes, but rather analyze the 
overall shape or structure of the melody.31

For further illustration we quote the third pair of similar melodies.
3.1. Mozart’s aria of Dona Elvira from the opera Don Giovanni, Mi 

tradi, the very beginning of aria.

Example 3.1. Wolfgang Amadeus Mozart, aria of Donna Elvira, Mi tradi

3.2. Comparative example is Mozart’s concert aria for bass/bariton 
K.612, one motif from the middle of aria, not the thematic material as in 
the former example.

Example 3.2. Wolfgang Amadeus Mozart, concert aria  
for bass/bariton K.612

These examples match completely in melody, but keys and meters 
are different. In the example 3.1.there is 4/4 meter, but in the example 
3.2. there is 6/8 meter.

Musicians and nonmusicians both experience music as whole stimuli, 
but trained musicians tend to analyse what they hear or see written 
on paper. They rely to their perennial experience of learning music by 

30 Ibid., 107.
31 Matthew D. Schulkind, Rachel J. Posner and D. C. Rubin, “Musical Features That 
Facilitate Melody Identification: How Do You Know It’s “Your Song When They Fi-
nally Play It?”, Music Perception: An Interdisciplinary Journal, 21, 2 (2003): 217-249.
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gathering informations, so to say, on higher level. Accordingly, it might 
be that listeners without musical training tend to rely on momentary, 
distinctive features to recognize melody, whereas musicians draw on the 
information in a melodic sequence in a cumulative fashion.32

Melodies recognized as similar by musicians are recognized as similar 
by musicians are recognized as similar by our formal procedure as well.

In his final examination work33 at Faculty of Organizational Sciences 
M. Putnikovic has implemented in R programming language a procedure 
for finding similar music melodies.

The aim of this project was to examine the eectiveness of various 
mathematical methods for computing similarity of melodies. In particu-
lar, eigenvalues of dierent types of graphs were used, as well as several 
string distance measures. Melodies have been transformed into letter 
notation, so that graphs could be easily constructed. A sequence of 
notes is understood as a string of letters, each letter representing one 
note, which enabled us to use the existing methods for computing string 
sequence similarities.

The dataset contains 17 instances, with compositions by Johann Se-
bastian Bach and Wolfgang Amadeus Mozart. These composers were 
chosen as their style and epoch differ significantly both in music theory 
and practice.

All melodies were transcribed to letter-duration notation. Also, the 
sheets are for violin, not for pianos, since accords make computability 
inefficient.

The included melodies are as follows, with scale specified:

Melodies by Johann Sebastian Bach:
Prelude from Suite no. 1 for unaccompanied cello - C major,
Air on G-string - A major,
Menuet from French Suite no. 3 - A minor,
Aria from Goldberg Variations - G major,
Bist Du Bei Mir - D major,
Arioso from Cantata - G major,
Prelude no. 1 from 48 Preludes and Fuges - D major,
Menuet - G major,
Sonata no. 5 BWV 1034 - D major,
Violin Concerto BWV 1056 - F-sharp minor;

32 Freya Bailes, “Dynamic melody recognition: Distinctiveness and the role of mu-
sical expertise”, Memory & Cognition, 38 , 5 (2010): 641-650.
33 Marko Putniković, “Recognition of melodies by means of graphs” (Diploma 
Thesis, Faculty of Organizational Scences, Belgrade, 2017).
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Melodies by Wolfgang Amadeus Mozart:
Menuet from Don Giovanni - D major,
Menuet - D major,
German Dance no. 1 K 605 - A major,
Laudate Dominum - G major,
March of the Priest from The Magic Flute - A major,
Oh Isis Und Osiris - G major,
Lacrimosa Dies Illa - E minor.

A melody can be given in the form of a digraph, where the adjacency 
matrix can be determined, and then the eigenvalues in the N-spectrum 
can be calculated. The spectral distance between each pair of melodies 
has been calculated and clustering methods applied to partition melo-
dies into groups of similar melodies. The hierarchical clustering method 
proved to be the most accurate one. The author claims that compos-
ers and types of melodies (concert, menuet, aria etc.) could have been 
distinguished.

6. Concluding remarks

A spectral graph theory approach for representing melodies as (multi-)
digraphs34 is improved35 and illustrated in this paper. These digraphs are 
then indexed using eigenvalues of some graph matrices. Our contribu-
tion includes some improvements of the basic graph model (taking into 
account the duration of pitches) as well as the selection of graph matri-
ces which are used in indexing melodies. After presenting some short-
comings of the procedure from36 we have suggested using singular val-
ues of the adjacency matrix i.e. the N -spectrum of digraphs considered. 
The theory has been supported by some examples and preliminary com-
putational experiments.

34 See footnote 17.
35 See footnote 14.
36 See footnote 17.
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ПреПознаВање музичких мелоДија у сПекТралној  
Теорији графоВа

Музичка мелодија, која је састављена од тонова, карактерише се и 
интервалима између тонова. Овако схваћена мелодија се може пред-
ставити графовима а они се могу третирати средствима спектралне тео-
рије графова. Ови графови (или диграфови) се могу индексирати помоћу 
сопствених вредности неких графовских матрица. Помоћу сопствених 
вредности дефинише се спектрално растојање графова. Две мелодије се 
сматрају сличним ако је спектрално растојање њихових графова мало. То 
омогућава да се нађу мелодије сличне задатој мелодији. Наш допринос 
укључује побољшање основног модела као и избор графовских матрица 
које се користе за индексирање мелодија. Ми препоручујемо употребу 
матрице AAT, где је A матрица суседства једног диграфа. Спектар матри-
це AAT назива се N-спектар диграфа. У раду се даје преглед неких особи-
на N-спектра. Наводе се примери сличних мелодија и описује интуитивни 
приступ музичара проблему препознавања сличних мелодија. Описују се 
прелиминарни рачунарски експерименти са скицираном теоријом. Наши 
доприноси су приказани у контексту сажетог прегледа широке области 
препознавања музике и спектралног препознавања графова.
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