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Abstract

We present the overview of some areas of inter-
connectedness between mathematics and music.
Specifically, we focus on the problem of construc-
tion of certain type of counterpoint.

1 Introduction

The theme of interaction between mathematics
and music is ancient and well established topic,
begining with Pythagoras1, the first philoso-
pher, great mathematician and music theo-
rist. Pythagoras was primarily concerned with
tuning theory, specifically just inotation and
what we now call Pythagorean tuning. How-
ever, Pythagoras connection between mathemat-
ics and music was mostly philosophical and mys-
tical and it will remain as such up until the Age
of Enlightenment when many great mathemati-
cians, having put aside philosophical and mysti-
cal bases for the connection of mathematics and
music, were trying to apply mathematical meth-
ods, by then much more advanced then that of
the ancient Greeks, to problems in music the-
ory, in particular, its foundation. Among those
mathematicians were Marin Mersenne2, some-
times referred to as ”father of acoustics” due
to his book LHarmonie Universelle (1637) in
which he described the frequency of oscillation
of a stretched string. It is also important to
note that he was de facto the center of the world
of mathematics and science due to his exten-

1Pythagoras of Samos (570 B.C. - 495 B.C.) - An-
cient Greek philosopher, mathematician and founder of
religious/philosophical movement that bears his name.

2Marin Mersenne (1588 - 1648) - French theolo-
gian, philosopher, mathematician and music theorist.
Mersenne primes are named after him.

sive correspondence with many mathematicians
and other scientists. d’Alembert3 was fascinated
with Rameau’s4 magnum opus Démonstration
du principe de l’harmonie (1750), and tried to
emphasizing Rameau’s claim that music was a
mathematical science which has a certain set of
principals (axioms) from which all elements of
music can be deduced; he explained his theory in
Eléments de musique théorique et pratique suiv-
ant les principes de M. Rameau (1752). How-
ever, the most important mathematician that
made contributions to music theory in this pe-
riod was Euler5, one of the most important and
prolific mathematician of all time. In 1739 he
wrote Tentamen novae theoriae musicae hoping
to establish musical theory as a mathematical
discipline. Unfortunately, his work did not re-
ceive wide attention it deserved; it was consid-
ered too mathematical for musicians and too mu-
sical for mathematicians of the time. However,
his work is fundamental for among other things
it introduced Tonnetz6, a way of representing
the tonal space. More than a century after Eu-
ler, Hugo Riemann7 would reinvent the Tonnetz
and make it a foundation of his music theory.
His work was subsequently improved and current
musical theory that derived from it is now called
neo-Riemannian, one of whose modern propo-

3Jean le Rond d’Alembert (1717 - 1783) - French
mathematician, physicist, philosopher, and music theo-
rist. Know for finding the general solution to the one-
dimensional wave equation.

4Jean-Philippe Rameau (1683 - 1764) - French com-
posers and music theorists of the Baroque era.

5Leonhard Euler (1707 - 1783) - Swiss mathematician
and physicist.

6German for ”tone-network”.
7Karl Wilhelm Julius Hugo Riemann (1849 - 1919) -

German music theorist and composer.
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nents and developers was David Lewin8. The
advancement in computer technology also stim-
ulated interest in mathematical modeling of mu-
sic. Currently, the problems connecting math-
ematics and music range form the traditional
questions of tuning theory, group theory, algo-
rithmic composition etc.
In this article we will illustrate how mathemat-
ical models can be used to solve one particular
problem, creating a counterpoint for a given can-
tus firmus.

2 Counterpoint

Counterpoint is a type of compositional tech-
nique best defined as the art of combining two
or more independent melodic lines (voices) in a
harmonic (i.e. musically satisfying) way, most
actively developed and used during the Renais-
sance and Baroque. It achieved its highest point
in the works of J. S. Bach9 such as The Art of
The Fugue10 and The Well-Tempered Clavier11.
In this article we consider a specific form of coun-
terpoint called species counterpoint. It was de-
fined by Johann Fux12 in his famous treatise on
counterpoint, Gradus ad Parnassum13, that be-
came the single most influential book on coun-
terpoint, specifically Palestrina14 style of Renais-
sance polyphony. Many great composers such as
J. S. Bach, Mozart, Beethoven, Haydn and many
other, studied from it and held it in high regard.

8David Lewin (1933 - 2003) - American music theorist,
music critic and composer.

9Johann Sebastian Bach (13 March 1685 - 28 July
1750) - German composer, organist, harpsichordist, vi-
olist, and violinist. Wildly considered the greatest com-
poser of all time.

10Die Kunst der Fuge, BWV 1080
11Das Wohltemperierte Klavier, BWV 846-893
12Johann Joseph Fux (1660 - 13 February 1741) - Aus-

trian composer, music theorist and pedagogue.
13Lat. Steps to Parnassus.
14Giovanni Pierluigi da Palestrina (2 February 1526 -

2 February 1594) - Italian Renaissance composer of sa-
cred music. His work is wildly regarded as high point of
Renaissance polyphony.

3 Preliminary definitions

Fux defined several types of species counterpoint.
In this article we consider the fist one. As-
suming equal-temperment, we identify the set
of notes with the set Z of integers by assign-
ing to each note the number of semitones it is
distant from chosen fixed note, say C4. The
pitch space is a space obtained by identifying
all pitches that are separated by a whole num-
ber of octaves. Since the octave has 12 semi-
tones the pitch space is isomorphic to Z12. By
distance between the two notes we shall consider
their distance in Z and by interval between them,
their distance in Z12. For example, the distance
between the notes C4 and F5 is 17 (they are 17
semitones apart) while the interval between them
is 5 (or perfect fourth). The intervals: unison,
3rd, 5th, 6th and octave are called consonances.
The other intervals are called dissonances. Since
in first species counterpoint all of the notes are
of the same length, we can consider canus firmus
and contrapunct as two arrays of equal lenght.
Let us call (cp(i), cf(i)), (cp(i + 1), cf(i + 1)) a
basic segment. To each such basic segment we
can assign the 4-tuple (cp(i)− cf(i), cp(i + 1)−
cp(i), cf(i+ 1)− cf(i), cp(i+ 1)− cf(i+ 1)) that
we shall call d-bloc. It is obvious that both cf
and cp are uniquely determined by any one of
their notes and the series of corresponding d-
blocks. Contrapuntal motions are types of pro-
gression that can occur within a segment of coun-
terpoint. They can be defined in terms of d-
blocks (l, u, d, r) of a basic segment as follows:

Type of motion Condition on d-block

similar ud > 0
paralel u = d
obleque ud = 0 ∧ u2 + d2 6= 0
contrary ud < 0

Since Contrapuntal composition is uniquely de-
termined by any one of its notes and a sequence
of its d-blocks, the problem of constructing the
contrapuntal composition is equivalent to con-
struction of the sequence of d-block that satisfy
given set of rules.
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4 Construction of counterpoint
graph

We have divided the rules Fux gave in three cat-
egories, R, E and S. The R-rules will be used
to determine the middle part of counterpoint,
i.e. the part of counterpoint that respect all the
rules except possibly the rules concerning the be-
ginning and ending segment; we shall also refer
to those as open counterpoints. E-rules will be
used for determining the beginning and ending
segment. Finlay, S-rules will be used for the con-
struction of the function of aesthetic measure,
i.e. they will be used to order the set of all pos-
sible solutions thus helping us find the most de-
sirable (most musically pleasing) ones. We shall
call d-blocks that satisfy the R-rules, admissible.
The following is the algorithm that decides if a
given d-block (l, u, d, r) is admissible if cons is
set of consonances and inc the set of admissible
melodic motions:
(1) Check if either u or d is a step, i.e. weather
u ∨ d ∈ {1, 2}.
(2) Check if l and r belong to a given set of con-
sonances and if u and d belong to a given set of
admissible melodic movements.
(3) If l is a prefect consonance check if motion if
not parallel.
(4) if r is a prefect consonance check if motion is
contrary.
(5) d-block if admissible iff all (1)-(4) are valu-
ated as true.
From the set of admissible d-block we can con-
struct a directed graph Γ in the following way.
The vertices of Γ are pairs (x, y) such that i(x, y)
is a consonance. For each two vertices (x1, y1)
and (x2, y2), if (x1− y1, x2− x1, y2− y1, x2− y1)
is admissible d-block we add a directed edge from
(x1, y1) to (x2, y2) and label it (x2−x1, y2− y1).
By construction, it is obvious that the following
holds.

Theorem 4.1. If b0, b1, ..., bn, bi = (li, ui, di, ri),
ri = l + i + 1 are d-block of some counterpoint
then l1(u1, d1)r1(u1, d1) is a path in Γ.

Now for a given cantus firmus we construct a
suitable counterpoint recursively in the following
way:

(1) Construct the last segment using the E-rules,
if possible.
(2) Recursively do the following:
If possible select the interval between cf and cp
such that there is a directed edge in Γ from it
to the one selected in the previous step. If that
is not possible, go one step back. Repeat until
reaching the first segment or exhausting all pos-
sibilities.
(3) If the first segment is reached construct the
first segment using E-rules.
Since Γ is finite the process find all admissible
solutions in a finite time. One all the solutions
have been found, sort them using the function of
aesthetic measure constructed form S-rules.

5 Example

We conclude by giving an one of Fux’s examples
of first species counterpoint and some of our
alternative solutions constructed using the
method previously described. Fux’s example15:

Some our alternative solutions with the maximal
score in respect to our function of aesthetic
measure:

15All of the notes in the first species counterpoint are
semibreves in the original. Here we use crotchets instead.
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