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A B S T R A C T

Wave dispersion and topology of phononic crystals in classical mechanical systems are well
understood and extensively studied subjects. However, the topological properties of acoustic
metamaterials with more complex unit cells having several masses, internal resonators, and
inerter elements is an insufficiently investigated topic. In this work, we study a class of locally
resonant acoustic systems having diatomic- and triatomic-like mass-in-mass unit cells with
inerter elements and different springs connecting outer masses. Winding numbers and signs
of band gaps are investigated to assess the topological characteristics of a lattice band structure
that support edge/interface modes and whether that property is affected when inerter elements
are embedded into the system. The dynamics of finite undamped and damped chains constituted
of two connected sub-lattices are investigated to demonstrate the existence of interface modes
and their localization in space. We reveal that the presented diatomic-like and triatomic-
like mass-in-mass chains can generate several interface modes that reside within both lower
and higher frequency band gaps. The concept is illustrated through the investigation of the
eigenvalue spectrum for varying and fixed stiffness of outer springs and frequency response
function. The effect of arbitrary viscous damping is explored based on steady-state responses
of the lattice interface mass points. Numerical analysis reveals that the introduction of inerters
in combination with local resonators can significantly shift the band gaps and corresponding
interface modes to lower frequency values while keeping the main topological properties of
the initial configuration without inerters. The effect of damping is shown to be significant and
capable to attenuate both lower and higher frequency interface mode amplitudes. We anticipate
that this study will pave the wave for future works on the topic that include more reliable
models of inerters in the topological mechanical metamaterial design.

. Introduction

Since the discovery of topological insulators in condensed matter physics [1] it was known that their topological properties
etermined by the geometrical phases are not related to the spatial scale or the physical nature of the system [2]. This initiated
esearch on topological wave phenomena in other branches of physics such as photonics [3], phononics [4], acoustics and
echanics [5–9]. If wave motion is supported by the topologically protected edge states, it can be robust to backscattering i.e. to
efects and disorders in the medium. The term topology in this study refers to the topological properties of Bloch eigenmodes within
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the first Brillouin zone and not the geometry of the observed medium. In classical mechanical wave systems space and time properties
can be easily controlled, which makes them more suitable for practical realization and detection of topological effects than in their
condensed matter system counterparts [2]. Topological insulators can be considered inequivalent if they have different topologies.
However, the topology can be changed at the interface of two in-equivalent insulators such that they support the topologically
protected localized interface states.

Depending on how their non-trivial topology is created, one can distinguish two main groups of topological insulators in their
lassical mechanical setup. The first group belongs to insulators whose non-trivial topology is created by breaking the time-reversal
ymmetry [10–12], which is usually related to the quantum Hall effect in electronic and quantum systems. The second group
efers to time-reversal-invariant systems emulating the quantum spin Hall [13] and valley Hall [14–16] effects. Such systems often
se localized edge modes immune to defects and disorders for robust waveguiding of acoustic or elastic waves. Here, special
ttention is devoted to the band inversion effect where topological edge/interface states are generated in one-dimensional (1D)
attices. In parallel with 1D discrete mechanical phononic systems [9] this effect was also investigated in phononic-like elastic
tructures [17,18]. The bulk band topological properties of such systems are usually characterized by the geometric phase, which
n the 1D case is known as Zak’s phase [19]. This paved the way to study topological interface states in the sub-wavelength range
n translational metamaterials [20] and quasiperiodic locally resonant meta structures [21]. It was also unveiled that topological
dge modes can emerge in metamaterials only from their patterning, independently from the coupling and structure of local
esonators [22]. Another interesting feature of quasiperiodic acoustic lattices is that they can exhibit both, adiabatic pumping which
as confirmed by mapping the edge state spectrum, and non-adiabatic pumping confirmed by mapping the Hofstadter butterfly

pectrum [23].
Tuning of topological interface states can be achieved in several ways and this became an important subject of investigation

mong researchers. Some of the examples include a change of the shear modulus by imposing the external electric field [24] or
hange of contact stiffness between particles in the granular crystal [25]. Inerters are known as two-terminal devices whose terminals
an move freely to provide a resisting force that is proportional to their relative acceleration due to its mass amplification effect [26–
8]. In particular, these properties are often used in vibration reduction problems [29], where only by tuning the properties of
he inerter device [30,31] one can achieve optimal vibration absorption [32]. The dynamic mass-amplifying effect of inerters
as applied in [33] to investigate longitudinal elastic wave propagation characteristics of acoustic metamaterials with different

nerter configurations. Inerters were also used in acoustic metamaterials to demonstrate bandgap widening via inertial amplification
ffect [34], seismic wave attenuation [35] or tuning of interface modes in elastic beam systems [36]. Topological interface states
ased on sub-wavelength in-plane waves were also studied in elastic metamaterials with translational resonators [20]. Moreover,
n [37] the authors were able to form a band gap in the ultra-low frequency through inerters embedded into the matrix material.

Topological properties of sub-wavelength bands in the mass-in-mass locally resonant acoustic system were studied in [38] based
n the spring–mass model and in [39] for a more complex structural acoustic-like system. The active control was also suggested
o tune the interface states in a diatomic mass-in-mass acoustic metamaterial system having nonlinear springs [40]. The analysis
n the aforementioned works [38,40] is confined to the diatomic-like locally resonant lattices with a limited number of non-trivial
aps and topologically protected edge/interface states. In [41], the authors have demonstrated the existence of several edge states
n 1D polyatomic lattices with different cyclic permutations of springs and masses in the chain. Complex band structures and
opological properties were obtained for different lattice configurations having multiple bands associated with higher winding
umbers. However, the effect of local resonances on band structure and topological properties was not investigated in that study,
hich we aim to address in our work with special attention devoted to both diatomic-like and triatomic-like mass-in-mass lattices.

Topological properties of inerter-based lattices are less explored in the literature. In recent work [42], a new class of architected
nertial metamaterials was suggested for 1D and 2D mechanical lattice design with novel topological and dispersion characteristics.
owever, most of the studies apply ideal inerter elements to represent the inertia amplification effect in mechanical systems. Such

dealized properties is difficult to achieve in real inerter devices where damping and nonlinear effects are also present. In [43],
ifferent inerter-based hierarchical mechanical networks were considered in locally resonant flexural beams to study the effects
f damping and inertance on wave propagation. A significant effect of damping on higher frequency interface modes of locally
esonant phononic crystals was also observed in [44] based on theoretical and experimental analysis. Topological interface states
re also realized in soft elastic metamaterials, which shown to be backscattering immune and robust to defects and changes in
he environment [45]. However, as concluded in [46], due to their soft nature such metamaterials are having high damping ratio
nd propagation of elastic waves is possible only at short distances, which can also affect localized interface states. Therefore,
onsideration of damping can be crucial for reliable analysis of topological interface states in mechanical metamaterials and periodic
tructures.

In this work, we focused on the investigation of interface states in periodic damped inerter-based and locally resonant acoustic
hains with diatomic-like and triatomic-like mass-in-mass unit cell configurations. To the best of the authors’ knowledge, this is the
irst study to address such a topic with interesting findings regarding topological properties and the dynamic behavior of specific
ypes of one-dimensional mechanical lattices. First, dispersion analysis will be performed based on the free wave propagation in the
ulk locally resonant acoustic lattice and then topological properties will be examined based on the topological invariant winding
umber and signs of the corresponding band gaps. The main reason for the investigation of bulk lattice topological properties in
he momentum space is their connection to the existence of topological edge/interface states in finite lattices. Therefore, finite
ne-dimensional chains having two sub-lattices connected at the interface will be also considered and their dynamic behavior
nvestigated. The influence of inerters and mass perturbation in local resonators on interface modes is compared based on the three
llustrative examples of finite chains with different mass-in-mass unit cell configurations. Moreover, the effect of arbitrary viscous
2

amping on steady-state responses of lattice outer mass points is investigated to reveal its effect on particular interface modes.
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Fig. 1. One-dimensional inerter-based lattice with local resonators: (a) Illustration of the periodic slider mechanism with inerters based on lever-arms and
secondary masses; (b) Equivalent mechanical model of a unit cell with  identical mass-in-mass subsystems and different springs connecting outer masses.

2. Wave dispersion and topology of ideal inerter-based lattices

In the seminal work by Smith [47], inerters were introduced as mechanical analogous to electrical networks. The basic
idea of inerter elements in mechanical systems is to make a two-terminal device whose resistive force is proportional to the
relative acceleration between the terminals. Such features can be achieved in many ways including pure mechanical [48],
electromechanical [49], acoustic [50] or fluid-based inerters [51]. The force–displacement relationship of the ideal inerter is given
as

𝐹 = 𝑏
(

�̈�2 − �̈�1
)

(1)

where 𝐹 is the resistive force, 𝑏 is the inertance parameter and 𝑢1 and 𝑢2 are the displacements of two terminals. However, behavior
of real inerter devices is far from ideal and different damping, hysteric or nonlinear effects need to be considered for accurate
modeling [48].

A comprehensive study by Al Ba’ba’a et al. [42] explored the effect of inertance on both dispersion and topological characteristics
of 1D and 2D architected inertial metamaterials (AIM). Special attention was devoted to ideal and linearized inerter-based infinite
monoatomic AIM representing the lockable rigid slider system with tunable angle 𝜃. The following relationship between the inertance
and tunable angle was found 𝑏 = 𝑚(tan2 𝜃 − 1)∕4, implying the values of 𝜃 ∈ (0, 𝜋∕2] in order to satisfy the stability requirements
(positive definite mass matrix). Similar linearized relationship was used in the work by Hussein et al. [52] for the inertially amplified
metamaterials, where the effect of coupling of inertially amplified and local resonance attenuation peaks were investigated in detail.
However, the aim of the analysis in this section is to reveal the effect of inertance and locally resonant mass on dispersion and
topological characteristics of inerter-based mass-in-mass lattices while the effects of damping on interface states in finite locally
resonant lattices will be elaborated in the following section.

Let us consider an infinitely long one-dimensional chain with a unit cell having  mass-in-mass subsystems that are mutually
connected with different springs and inerter elements as illustrated in Fig. 1(b). This mechanical model could represent a real
mechanical slider chain (see Fig. 1(a)) with large masses mutually connected through inerters based on lever-arms and secondary
masses (e.g. see [53]), where motions of these masses (denoted with 𝑚in) are supported by inclined lever arms with the angle of
inclination 𝜃. In that case, inertance parameters are calculated as 𝑗𝑎,𝑏 = 𝑚in∕4 tan2 (𝜃). Moreover, such a system can have both local
resonators and inerters exhibiting the additional inertia amplification effect. Consideration of the soft layer foundation in the slider
chain-like mechanism connecting the outer masses with the fixed base enables small displacements in the chain (Fig. 1(a)). In the
chain model from Fig. 1(b), we introduce ground springs of stiffness 𝑘𝑔 , which represents a resistance of the soft layer to motion in
the 𝑥 direction. Under the assumption of small displacements and considering the ideal inerter elements, the motion equations of
the 𝑝th unit cell in the chain are given as

𝑚𝑎�̈�
𝑝
(𝜁 )𝑎 +

(

𝑘𝜁 + 𝑘𝜁+1
)

𝑢𝑝(𝜁 )𝑎 − 𝑘𝜁𝑢
𝑝
(𝜁−1)𝑎 − 𝑘𝜁+1𝑢

𝑝
(𝜁+1)𝑎 + 𝑘𝑏

(

𝑢𝑝(𝜁 )𝑎 − 𝑢𝑝(𝜁 )𝑏
)

+

𝑗
(

2�̈�𝑝 − �̈�𝑝 − �̈�𝑝
)

+ 𝑗
(

�̈�𝑝 − �̈�𝑝
)

+ 𝑘 𝑢𝑝 = 0,
(2)
3

𝑎 (𝜁 )𝑎 (𝜁−1)𝑎 (𝜁+1)𝑎 𝑏 (𝜁 )𝑎 (𝜁 )𝑏 𝑔 (𝜁 )𝑎
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𝑚𝑏�̈�
𝑝
(𝜁 )𝑏 + 𝑘𝑏

(

𝑢𝑝(𝜁 )𝑏 − 𝑢𝑝(𝜁 )𝑎
)

+ 𝑗𝑏
(

�̈�𝑝(𝜁 )𝑏 − �̈�𝑝(𝜁 )𝑎
)

= 0, (3)

here 𝜁 = 2, 3,… , − 1. The equations for the first mass-in-mass sub-system within the unit cell are given as

𝑚𝑎�̈�
𝑝
(1)𝑎 +

(

𝑘1 + 𝑘2
)

𝑢𝑝(1)𝑎 − 𝑘1𝑢
𝑝−1
( )𝑎

− 𝑘2𝑢
𝑝
(2)𝑎 + 𝑘𝑏

(

𝑢𝑝(1)𝑎 − 𝑢𝑝(1)𝑏
)

+

𝑗𝑎
(

2�̈�𝑝(1)𝑎 − �̈�𝑝−1
( )𝑎

− �̈�𝑝(2)𝑎
)

+ 𝑗𝑏
(

�̈�𝑝(1)𝑎 − �̈�𝑝(1)𝑏
)

+ 𝑘𝑔𝑢
𝑝
(1)𝑎 = 0,

(4)

𝑚𝑏�̈�
𝑝
(1)𝑏 + 𝑘𝑏

(

𝑢𝑝(1)𝑏 − 𝑢𝑝(1)𝑎
)

+ 𝑗𝑏
(

�̈�𝑝(1)𝑏 − �̈�𝑝(1)𝑎
)

= 0, (5)

and for the last mass-in-mass sub-system in the unit cell as

𝑚𝑎�̈�
𝑝
( )𝑎

+
(

𝑘1 + 𝑘
)

𝑢𝑝
( )𝑎

− 𝑘1𝑢
𝑝+1
(1)𝑎 − 𝑘 𝑢𝑝

(−1)𝑎
+ 𝑘𝑏

(

𝑢𝑝
( )𝑎

− 𝑢𝑝
( )𝑏

)

+

𝑗𝑎
(

2�̈�𝑝
( )𝑎

− �̈�𝑝+1(1)𝑎 − �̈�𝑝
(−1)𝑎

)

+ 𝑗𝑏
(

�̈�𝑝
( )𝑎

− �̈�𝑝
( )𝑏

)

+ 𝑘𝑔𝑢
𝑝
( )𝑎

= 0,
(6)

𝑚𝑏�̈�
𝑝
( )𝑏

+ 𝑘𝑏
(

𝑢𝑝
( )𝑏

− 𝑢𝑝
( )𝑎

)

+ 𝑗𝑏
(

�̈�𝑝
( )𝑏

− �̈�𝑝
( )𝑎

)

= 0, (7)

where 𝑢(𝜀)𝑎 and 𝑢(𝜀)𝑏 for 𝜀 = 1, 2,… , are displacements of outer 𝑚𝑎 and inner 𝑚𝑏 masses, 𝑘𝜀 denotes stiffnesses of springs connecting
outer masses, 𝑗𝑎 is the inertance parameter of inerters connecting outer masses, 𝑘𝑏 is the stiffness and 𝑗𝑏 is the inertance of local
resonators while 𝑘𝑔 is the stiffness of ground springs. We remark that the last outer mass in the unit cell is connected to the next
unit cell through the spring 𝑘+1 = 𝑘1. We should also emphasize that values of outer and inner masses, inerter parameters, and
stiffness of inner mass springs are the same throughout the unit cell while only stiffness of springs connecting outer masses can be
varied.

Based on the Bloch theorem and boundary conditions for the unit cell, we can write the following relation for the displacements
of the ending outer masses

𝑢𝑝∓1
(1, )𝑎

= 𝑢𝑝
( ,1)𝑎

exp (∓i𝜇), (8)

with 𝜇 denoting the dimensionless wave number and i =
√

−1. After assuming the harmonic solution as 𝑢𝑝(𝜀)𝑎,𝑏(𝑡) = �̂�(𝜀)𝑎,𝑏(𝜔) exp (i𝜔𝑡),
ne can obtain the matrix equation for the 𝑝th unit cell in the following form

𝐃𝑝(𝜔, 𝜇)�̂� = 𝟎, (9)

here �̂�𝑇 =
[

�̂�(1)𝑎, �̂�(1)𝑏,… , �̂�( )𝑎, �̂�( )𝑏
]

2 and 𝐃𝑝(𝜔, 𝜇) is the dynamic stiffness matrix that is given as

𝐃𝑝
2×2

(𝜔, 𝜇) = 𝐊𝑝 (𝜇) − 𝜔2𝐌𝑝 (𝜇) (10)

here we have

𝐌𝑝 = 𝐌𝑚
𝑝 +𝐌𝑏

𝑝, (11)

𝐌𝑚
𝑝 = 𝐝𝐢𝐚𝐠

[

𝑚𝑎, 𝑚𝑏, 𝑚𝑎, 𝑚𝑏,… , 𝑚𝑎, 𝑚𝑏
]

, (12)

𝐌𝑏
𝑝(𝜇) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2𝑗𝑎+𝑗𝑏 −𝑗𝑏 −𝑗𝑎 0 ⋯ 0 −𝑗𝑎𝑒−i𝜇 0

−𝑗𝑏 𝑗𝑏 0 ⋯ ⋯ ⋯ ⋯ 0

−𝑗𝑎 0 2𝑗𝑎+𝑗𝑏 −𝑗𝑏 −𝑗𝑎 0 ⋯ ⋮

0 0 −𝑗𝑏 𝑗𝑏 0 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

0 ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ 0

−𝑗𝑎𝑒i𝜇 0 ⋯ 0 −𝑗𝑎 0 2𝑗𝑎+𝑗𝑏 −𝑗𝑏
0 ⋯ ⋯ ⋯ ⋯ 0 −𝑗𝑏 𝑗𝑏

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (13)

nd

𝐊𝑝(𝜇) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑2
𝑢=1 𝑘𝑢+𝑘𝑏+𝑘𝑔 −𝑘𝑏 −𝑘2 0 ⋯ 0 −𝑘 𝑒−i𝜇 0

−𝑘𝑏 𝑘𝑏 0 ⋯ ⋯ ⋯ ⋯ ⋮

−𝑘2 0
∑3

𝑢=2 𝑘𝑢+𝑘𝑏+𝑘𝑔 −𝑘𝑏 −𝑘3 0 ⋯ ⋮

0 0 −𝑘𝑏 𝑘𝑏 0 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

0 ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ 0

−𝑘1𝑒i𝜇 0 ⋯ 0 −𝑘 0 𝑘 +𝑘1+𝑘𝑏+𝑘𝑔 −𝑘𝑏
0 ⋯ ⋯ ⋯ ⋯ 0 −𝑘𝑏 𝑘𝑏

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (14)

y setting the determinant of the above dynamic stiffness matrix equal to zero, one can obtain the characteristic equation and
4

orresponding eigenvalues in terms of the dimensionless wavenumber. This enables us to plot dispersion curves for the suggested unit
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cell configuration and determine the band structure. To characterize the topology of eigenvectors associated with the corresponding
bands we employ the topological invariant named Zak phase [19], which for the 𝑚th band is calculated as

𝜃Zak
(𝑚) = i∫

𝜋

−𝜋

[

�̂�𝐻𝑚 (𝜇) ⋅ 𝜕𝜇 �̂�𝑚(𝜇)
]

d𝜇, (15)

here �̂�𝐻𝑚 (𝜇) is the Hermitian of the eigenvector �̂�𝑚(𝜇). However, for the numerical calculations of the Zak phase in this study we
use the discretized form of the equation [19] that is given as

𝜃Zak
(𝑚) = −Im

𝑁𝑠−1
∑

𝑛=−𝑁𝑠

ln
[

�̂�𝐻𝑚 ( 𝑛
𝑁𝑠

𝜋) ⋅ �̂�𝑚(
𝑛 + 1
𝑁𝑠

𝜋)
]

, (16)

where 𝑁𝑠 is the number of discretization steps. In general, Zak phase takes the values of 𝜃Zak
(𝑚) = 0 and 𝜃Zak

(𝑚) = 𝜋, which is also related
o another topological invariant called winding number 𝑤 = 𝜃Zak

(𝑚) ∕𝜋(mod 2) that will take the values 𝑤 = 0 and 𝑤 = 1, respectively.
owever, as given in [54], this is not always true for generic multi-band systems (SSH chains), where one can distinguish the

o-called intracellular and intercellular Zak phase, since the contribution of phase from a band may take larger values such as
Zak
(𝑚) = 2𝜋, which also affects the winding numbers. Further, if we form a block of two lattices with a unique band structure, the
ajor requirement to have a topologically protected interface state within some 𝑛th band gap is that they have bands with different

opologies. According to [55], interface states in 1D phononic crystals (PCs) with inversion symmetry can be characterized by
umming all Zak phases below the gap. Based on the bulk-interface correspondence principle, which is equivalent to the bulk-edge
orrespondence in topological insulators, they proposed the sign of the impedance as a measure for the existence of interface states
n PCs. More precisely, if the signs of some 𝑛th gap of the lattices on opposite sides of the interface are different, then that band
ap is characterized as topologically non-trivial. The sign of the 𝑛th band gap can be determined based on the following relation

sign[𝜁 (𝑛)] = (−1)𝑛(−1)𝑙exp
[

𝑖
𝑛
∑

𝑚=1
𝜃Zak
(𝑚)

]

, (17)

where numeration is executed such that the lowest frequency (1st) band is 𝑚 = 1, while the 1st band gap 𝑛 = 1 is the one above
he 1st band (zero-frequency gap starting at zero and cutoff, while the frequency of the first band is not considered). Note, that 𝑙
enotes the number of crossing points below the gap, where the entire term can be neglected (𝑙 = 0) if there are no crossings. This
ection provides the framework to investigate topological characteristics of diatomic-like and triatomic-like mass-in-mass unit cell
onfigurations and reveal the influence of ideal inerters on band topology.

. Finite inerter-based lattices with damping

From the preceding theoretical analysis one can investigate elastic wave dispersion and topological properties of 1D inerter-based
iatomic- and triatomic-like chains with a local resonator. Based on the assumption of infinite lattices, one can discover whether
hey support topologically protected interface modes at the interface between the two lattice types or not. In practice, only the
inite lattices can be realized and the existence of interface states is confirmed through the eigenvalue and frequency response
unction analysis. However, apart from the dispersion properties, such large periodic systems will always exhibit some kind of
issipation, especially when inerter devices are embedded into the lattice. Here, we attempt to extend the theoretical investigation
y including the viscous dissipation effect through the mechanical model representing the electromagnetic damper (EMD). For
xample, in [43] the authors considered different mechanical networks involving spring, dashpot, and inerter elements to represent
echanical inerters in an elastic beam system with local resonators. Recently, in [56] the authors proposed a motor-based EMD in
mechanical system capable to perform as both a damper and energy-harvesting device. This EMD mainly consists of a motor and
ball-screw (see Fig. 2(a)) and it forms a two-terminal device whose resisting force is defined as

𝐹 = 𝑏
(

�̈�2 − �̈�1
)

+ 𝑐𝑒𝑞
(

�̇�2 − �̇�1
)

(18)

here 𝑏 = 𝐽 (4𝜋2∕𝑙2) is the inertance, 𝐽 is the sum of moments of inertia of EMD, 𝑙 is the lead of the ball-screw and 𝑐𝑒𝑞 = 𝑐𝑒𝑞(2𝜋∕𝑙)2
s the linear equivalent viscous damping coefficient with 𝑐𝑒𝑞 denoting the rotary damping coefficient of the motor. Here, we will
mploy this phenomenological model to represent the resistive forces of mechanical inerters (or EMDs) embedded into the diatomic-
nd triatomic-like chains with local resonators.

The finite inerter-based one-dimensional mass-in-mass chains with interface and three different types of unit cells are illustrated
n Fig. 2. The chain is formed as a block of two sub-lattices connected at the interface, which can be but not necessarily inverted
opies of each other. In general case, the outer masses are mutually connected through springs with different stiffness coefficients 𝑘1
nd 𝑘2 for diatomic-like lattices and 𝑘1, 𝑘2 and 𝑘3 for the triatomic-like lattices and parallelly connected inerter elements of inertance
𝑎 and dashpot elements with viscous damping coefficient 𝑐𝑎. The stiffness 𝑘𝑏, inertance 𝑗𝑏 and viscous damping coefficient 𝑐𝑏 are
elated to inner mass local resonators. Note that the choice of unit cells and numeration of outer springs for both sub-lattices in
he chain is different from the one given in the previous section (see Fig. 2 for details). First, we write the motion equations of
he diatomic-like mass-in-mass chain. By following the notation from Fig. 2(b), we can write four motion equations for the 𝑟th
ass-in-mass subsystem in the 𝑝th unit cell of the sub-lattice I on the left side of the interface as

𝑚𝑎�̈�
𝑝
(𝑟)𝑎 + 𝑗𝑎

(

2�̈�𝑝(𝑟)𝑎 − �̈�𝑝(𝑘)𝑎 − �̈�𝑝+𝑃(𝑘)𝑎

)

+ 𝑗𝑏
(

�̈�𝑝(𝑟)𝑎 − �̈�𝑝(𝑟)𝑏
)

+ 𝑐𝑏
(

�̇�𝑝(𝑟)𝑎 − �̇�𝑝(𝑟)𝑏
)

+

𝑐𝑎
(

2�̇�𝑝(𝑟)𝑎 − �̇�𝑝(𝑘)𝑎 − �̇�𝑝+𝑃(𝑘)𝑎

)

+ 𝑘2
(

𝑢𝑝(𝑟)𝑎 − 𝑢𝑝(𝑘)𝑎
)

+

𝑘
(

𝑢𝑝 − 𝑢𝑝+𝑃
)

+ 𝑘
(

𝑢𝑝 − 𝑢𝑝
)

+ 𝑘 𝑢𝑝 = 0,

(19)
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Fig. 2. Damped inerter-based one-dimensional finite diatomic-like and triatomic-like mass-in-mass chains: (a) Illustration of the electromagnetic damper
(e.g. see [56]); (b) Block of two connected sub-lattices having diatomic-like mass-in-mass unit cells and outer springs defined as 𝑘1 = 𝑘(1 + 𝛾) and 𝑘2 = 𝑘(1 − 𝛾);
(c) Block of two connected sub-lattices having triatomic mass-in-mass unit cells and outer springs defined as 𝑘1 = 𝑘(1 + 𝛾), 𝑘2 = 𝑘1 and 𝑘3 = 𝑘(1 − 𝛾); (d) Block of
two connected sub-lattices having triatomic mass-in-mass unit cells and outer springs defined as 𝑘1 = 𝑘(1 + 𝛾), 𝑘2 = 𝑘(1 − 𝛾) and 𝑘3 = 𝑘1 in the sub-lattice I and
𝑘1 = 𝑘(1 + 𝛾), 𝑘2 = 𝑘1 and 𝑘3 = 𝑘(1 − 𝛾) in the sub-lattice II.

𝑚𝑏�̈�
𝑝
(𝑟)𝑏 + 𝑗𝑏

(

�̈�𝑝(𝑟)𝑏 − �̈�𝑝(𝑟)𝑎
)

+ 𝑐𝑏
(

�̇�𝑝(𝑟)𝑏 − �̇�𝑝(𝑟)𝑎
)

+ 𝑘𝑏
(

𝑢𝑝(𝑟)𝑏 − 𝑢𝑝(𝑟)𝑎
)

= 0. (20)

where subscript indices are defined as 𝑟, 𝑘 = 1, 2 for 𝑟 ≠ 𝑘 and 𝑃 = 1 for 𝑟 = 1 while 𝑃 = −1 for 𝑟 = 2. The equations for the
sub-lattice II on the right side of the interface can be written in the same manner where only springs 𝑘1 and 𝑘2 swap their places.

For the triatomic-like chain, the motion equations for the 𝑟th mass-in-mass subsystem of the 𝑝th unit cell in the sub-lattice I are
given as

𝑚𝑎�̈�
𝑝
(𝑟)𝑎 + 𝑗𝑎

(

2�̈�𝑝(𝑟)𝑎 − �̈�𝑝+𝑃(𝑘)𝑎 − �̈�𝑝(𝑠)𝑎
)

+ 𝑗𝑏
(

�̈�𝑝(𝑟)𝑎 − �̈�𝑝(𝑟)𝑏
)

+ 𝑐𝑏
(

�̇�𝑝(𝑟)𝑎 − �̇�𝑝(𝑟)𝑏
)

+

𝑐𝑎
(

2�̇�𝑝(𝑟)𝑎 − �̇�𝑝+𝑃(𝑘)𝑎 − �̇�𝑝+𝑃(𝑠)𝑎

)

+ 𝑘(𝑚)
(

𝑢𝑝(𝑟)𝑎 − 𝑢𝑝+𝑃(𝑘)𝑎

)

+

𝑘(𝑛)
(

𝑢𝑝(𝑟)𝑎 − 𝑢𝑝(𝑠)𝑎
)

+ 𝑘𝑏
(

𝑢𝑝(𝑟)𝑎 − 𝑢𝑝(𝑟)𝑏
)

+ 𝑘𝑔𝑢
𝑝
(𝑟)𝑎 = 0,

(21)

𝑚 �̈�𝑝 + 𝑗
(

�̈�𝑝 − �̈�𝑝
)

+ 𝑐
(

�̇�𝑝 − �̇�𝑝
)

+ 𝑘
(

𝑢𝑝 − 𝑢𝑝
)

= 0. (22)
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with subscript indices defined as 𝑟, 𝑘, 𝑠, 𝑛, 𝑚 = 1, 2, 3 (note that indices 𝑛 and 𝑚 do not refer to the band’s or gap’s numbers), 𝑟 ≠ 𝑘 ≠ 𝑠,
𝑛 ≠ 𝑚, where for 𝑟 = 1 we have that 𝑚 = 1, 𝑛 = 3, 𝑘 = 3, 𝑠 = 2, 𝑃 = −1 for 𝑟 = 2 we have 𝑚 = 3, 𝑛 = 2, 𝑘 = 1, 𝑠 = 3, 𝑃 = 0 and
for 𝑟 = 3 we have 𝑚 = 1, 𝑛 = 2, 𝑘 = 1, 𝑠 = 2, 𝑃 = 1. For the convenience we adopted that 𝑘(1) ≡ 𝑘1, 𝑘(2) ≡ 𝑘2 and 𝑘(3) ≡ 𝑘3. The
equations for the mass-in-mass sub-system in the sub-lattice II can be obtained if we swap the places of the springs 𝑘1 and 𝑘3. These
equations are valid for both triatomic-like mass-in-mass configurations from Figs. 2(c) and 2(d), where only corresponding equal
stiffness springs in the sub-lattice I and II should be applied to obtain the corresponding finite lattice equations.

The equations of motion of a viscously damped finite diatomic-like and triatomic-like chains with some external excitation can
be also written in the compact matrix form as

𝐌�̈�(𝑡) + 𝐂�̈�(𝑡) +𝐊𝐪(𝑡) = 𝐟 (𝑡), (23)

where vector 𝐪 for the diatomic-like mass-in-mass lattice is given as

𝐪 =
[

𝑢−𝑁(2)𝑎, 𝑢
−𝑁
(2)𝑏, 𝑢

−𝑁+1
(1)𝑎 , 𝑢−𝑁+1

(1)𝑏 ,… , 𝑢0(1)𝑎, 𝑢
0
(1)𝑏,… , 𝑢𝑁(2)𝑎, 𝑢

𝑁
(2)𝑏

]

, (24)

while for the triatomic-like mass-in-mass lattice we have

𝐪 =
[

𝑢−𝑁(1)𝑎, 𝑢
−𝑁
(1)𝑏, 𝑢

−𝑁
(2)𝑎, 𝑢

−𝑁
(2)𝑏, 𝑢

−𝑁
(3)𝑎, 𝑢

−𝑁
(3)𝑏..., 𝑢

0
(1)𝑎, 𝑢

0
(1)𝑏, 𝑢

0
(2)𝑎, 𝑢

0
(2)𝑏,… , 𝑢𝑁(3)𝑎, 𝑢

𝑁
(3)𝑏

]

, (25)

where 𝐌 is the mass matrix, 𝐂 is the damping matrix and 𝐊 is the stiffness matrix, which are obtained based on Eqs. (19)–(22) for
the mass-in-mass unit cells of diatomic-like and triatomic-like chains with local resonators. The solution procedure of Eq. (23) and
steady-state responses of lattice points in arbitrary viscous damping case is given in Appendix. Damped response will be utilized
in the next section to investigate its effect on interface states. Further, by neglecting the excitation force and damping terms and
assuming the solution of the form 𝐪(𝑡) = �̃�𝑒i𝛺𝑡 one can determine the natural frequencies of the finite undamped chain by finding
the eigenvalues of the following characteristic equation

det
(

𝐊 −𝛺2𝐌
)

= 0. (26)

By using the above equations one can also compute the frequency response function (FRF) to illustrate the dynamic behavior of the
chain. To test whether finite lattices support interface modes, three different cases with corresponding boundary conditions will be
considered in this study. The first case includes a diatomic-like mass-in-mass unit cell with alternating springs 𝑘1 and 𝑘2 in the lattices
on the left and right side of the interface (Fig. 2(b)). The second case includes triatomic-like lattices on both sides of the interface,
where springs 𝑘1 and 𝑘2 are equal 𝑘1 = 𝑘2 while 𝑘3 is different in the sub-lattices I and II that are mirror-like images (different from
the mirror symmetry in the sub-lattice unit cell) of each other, Fig. 2(c). The third example considers the case where 𝑘1 = 𝑘3 in
the sub-lattice I and 𝑘1 = 𝑘2 in the sub-lattice II Fig. 2(d). Therefore, in all considered cases there are only two different stiffness
springs in the sub-lattice unit cell connecting the outer masses that can take either the value 𝑘(1+𝛾) or 𝑘(1−𝛾), where 𝑘 is the mean
stiffness and 𝛾 is the dimensionless stiffness parameter. Note that numerations of outer springs in the finite chain sub-lattices are
different from those given in the previous section and also 𝛾 = 0 will result in all equal springs in the lattice. Therefore, dispersion
analysis of diatomic- or triatomic-like chain unit cells on different sides of the interface would result in the same band structures
but different topology, which is an important condition to study the existence of interface states in finite lattices. In the following,
to study the finite diatomic-like and triatomic-like mass-in-mass chains with local resonators we consider 𝑝 = 2𝑁 unit cells (with
numeration 𝑝 = [−𝑁,… ,−1, 0, 1..., 𝑁]), thus, having 𝑁 unit cells in each of the two sub-lattices.

4. Discussion and numerical results

Investigating the band structure and topological properties of periodic lattices can give us important information about the oc-
currence of topologically protected interface states. It is well known that diatomic and certain polyatomic unit cell configurations for
different cyclic or non-cyclic permutations can have identical band structures but different topological properties of eigenvectors [9].
In such lattices one can notice ‘‘twisting’’ of eigenvectors in sign since some of the branches attempt to localize deformations at softer
springs and thus leaving the stiffer ones undeformed. In the literature, this phenomenon is called band inversion. Another important
sign of the band inversion is the process of band gap closing/opening for certain values of parameters in the unit cell (band-folding
induced band gaps). In our case, band gap closing occurs when different springs in the unit cell are having equal stiffness. Important
metrics for measuring topological properties of one-dimensional solids is the geometrical phase called Zak’s phase. Normalization
of Zak’s phase by the unit 𝜋 yields the so-called winding number (here denoted as 𝑤) that actually quantifies the number of times
certain eigenvector winds around the origin of the complex plane in the momentum space. It should be noted that the Zak phase is
not always quantized (equal to 𝜋) due to its dependence on the unit cell symmetry, which also means that the winding number is
not necessarily an integer [41].

In the first part of our numerical study we will investigate dispersion and topological characteristics of diatomic-like and
triatomic-like mass-in-mass unit cells with and without inerters based on the equations presented in Section 2. This will give us
an important information for interpretation of topological properties of band gaps in adopted lattice configurations. The second
and third part of the numerical study shows the dynamic behavior of finite lattices with existing interface states as well as the
effect of non-proportional viscous damping on particular interface modes. We remark that, in all given numerical examples, natural
frequency is normalized by the local resonance frequency of the internal resonator (frequency of the initial configuration without
inerters and changes in the locally resonant mass), which is given as 𝜔𝑏 =

√

𝑘𝑏∕𝑚𝑏. The following values of parameters are used in
simulations if not given otherwise in figures: 𝑘 = 10000 N∕m, 𝑘 = 8000 N∕m, 𝑘 = 3000 N∕m, 𝑚 = 1 kg, 𝑚 = 0.5 kg.
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Fig. 3. Comparison of the tuning effect of local resonators and inerters on dispersion and topological characteristics of the diatomic-like mass-in-mass unit cell
ith springs 𝑘1 = 𝑘(1 + 𝛾) and 𝑘2 = 𝑘(1 − 𝛾) when 𝛾 = 0.5, 𝛾 = −0.5 and 𝛾 = 0 (from left to right). The panels (a)–(c) refers to the lattices without inerters when
𝑏 = 𝑚𝑏(0) (solid lines) and with change 𝛥𝑚𝑏 = 0.1 in locally resonant mass according to 𝑚𝑏 = 𝑚𝑏(0) + 𝛥𝑚𝑏 (dashed lines). The panels (d)–(f) refers to the lattices
ithout (solid lines) and with inerters 𝑗𝑎,𝑏 = 0.025 (dashed lines) and no change in locally resonant mass 𝑚𝑏 = 𝑚𝑏(0).

.1. Dispersion and topological properties of inerter-based lattices with local resonators

Here we investigate the dispersion and topological properties of inerter-based lattices with diatomic-like and triatomic-like mass-
n-mass unit cells. Special attention is devoted to infinite lattices that satisfy the unit cell mirror symmetry condition, which in
nalogy to the simple diatomic and some triatomic lattices [41] means that neighboring cells from two sides of the mirror are
eciprocal arrangements of one another, which in the case of diatomic-like and triatomic-like mass-in-mass unit cells can be achieved
hen there are only two different outer springs in the lattice. This feature is crucial to achieving the quantized Zak phase. For that
urpose, in Eq. (10) of the diatomic-like mass-in-mass unit cell we use springs 𝑘1 = 𝑘(1 + 𝛾) and 𝑘2 = 𝑘(1 − 𝛾) with 𝑘 denoting the

mean stiffness, while for the triatomic-like mass-in-mass unit cell we have 𝑘1 = 𝑘(1 + 𝛾), 𝑘2 = 𝑘(1 − 𝛾) and 𝑘3 = 𝑘2. In this section, to
obtain realistic values of inertance that are related to the rigid lever-arms like inerter mechanism (Fig. 1(a)), we use the following
equation 𝑗𝑎,𝑏 = 𝑚in∕4 tan2 (𝜃), where 𝑚in and 𝜃 are inerter’s mass and inclination angle, respectively. For the sake of simplicity, the
inerter parameters 𝑗𝑎 and 𝑗𝑏 are considered to be the same and given in units of kilograms, where their values are calculated for
the inclination angle 𝜃 = 43◦ and small values of inerter’s secondary mass 𝑚in = 0.1 kg.

It is well known that local resonators can be used in periodic lattices to shift bands and consequently band gaps to lower
frequencies, especially in the sub-wavelength range. Graded design of local resonators can significantly enhance the tunability
properties of such lattices [57]. However, embedded inerter elements into 1D lattices will introduce some new but different band
tuning variables. In the following analysis, the effects of both local resonators and inerters on dispersion and topological properties of
1D lattices will be compared. Fig. 3 shows dispersion curves, corresponding winding numbers, and signs of band gaps of diatomic
mass-in-mass unit cells with and without inerters and with small perturbations in locally resonant masses. Solid lines states for
the unchanged (initial) configuration of the lattice without inerters and unchanged inner masses of local resonators while dashed
lines refer to changed configurations. Moreover, parameter 𝛾 is varied as 𝛾 = 0.5 (𝑘1 > 𝑘2), 𝛾 = −0.5 (𝑘1 < 𝑘2) to show the band
structures of the lattices with different spring stiffness variations. It should be noted that the folded dispersion diagram of Figs. 3(c)
and 3(f) corresponds to the case where 𝛾 = 0 (𝑘1 = 𝑘2), so that band-folding induced gaps are opening for 𝛾 ≠ 0. Same band
structures with four bands and three band gaps but different topology and quantized topological invariant are obtained for 𝛾 = 0.5
and 𝛾 = −0.5. The first three panels (Fig. 3(a)–(c)) refers to the case without inerters where only mass of the local resonator is
increased for 𝛥𝑚𝑏 = 0.1 according to 𝑚𝑏 = 𝑚𝑏(0) +𝛥𝑚𝑏, where 𝑚𝑏(0) is the locally resonant mass in initial configuration. Here, shifting
of frequency to lower values can be noticed in both higher and lower frequency bands (dashed lines). However, this shifting is
8
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Fig. 4. Comparison of the tuning effect of local resonators and inerters on dispersion and topological characteristics of the triatomic-like mass-in-mass unit cell
with springs 𝑘1 = 𝑘(1 + 𝛾), 𝑘2 = 𝑘(1 − 𝛾) and 𝑘3 = 𝑘2 when 𝛾 = 0.5, 𝛾 = −0.5 and 𝛾 = 0 (from left to right). The panels (a)–(c) refers to the lattices without inerters
when 𝑚𝑏 = 𝑚𝑏(0) (solid lines) and with change 𝛥𝑚𝑏 = 0.1 in the locally resonant mass according to 𝑚𝑏 = 𝑚𝑏(0) + 𝛥𝑚𝑏 (dashed lines). The panels (d)–(f) refers to
the lattices without (solid lines) and with inerters 𝑗𝑎,𝑏 = 0.025 (dashed lines) and no change in locally resonant mass 𝑚𝑏 = 𝑚𝑏(0).

much more pronounced in the lower frequency bands, which is in line with the previous findings in the literature. Next three
panels (Fig. 3(d)–(f)) refers to the case of inerter-based lattice with inertance 𝑗𝑎 = 𝑗𝑏 = 0.025 calculated according to the previously
given formula and corresponding to the inerter’s secondary mass 𝑚in = 0.1. In this case, shifting of bands (dashed line) to lower
frequency values can be noticed in all bands but changes are much more pronounced in the higher frequency bands. This influence
is opposite to the influence of local resonators that mostly affect the lower frequency bands. By observing the band structure, one
can notice three band gaps whose topological properties are determined based on Eq. (17) and indicated in figures as 𝜁 (𝑛) ≶ 0,
where 𝑛 = I, II, II is the gap number (excluding the zero-frequency gap). The observation shows that band gaps of both initial and
changed lattice configurations are having the same topological properties. This fact is important from the viewpoint of the capability
of inerter-based locally resonant lattices to tune interface modes without changing the topological properties of the initial lattice
configuration without inerters. Further, a comparison of non-trivial and trivial topological properties of individual bands and band
gaps gives us important information for the possible existence of interface states within the band gaps of the two lattice types with
different topology. The obtained results shows that all the bands are having quantized Zak’s phase indicated by the integer winding
numbers with the values 𝑤𝑚 = 0 or 𝑤𝑚 = 1 for 𝑘1 < 𝑘2 and 𝑘1 > 𝑘2, respectively. However, observation of band gap topology through
the sign of 𝜁𝑛 shows that only gaps I and III are non-trivial due to the opposite signs while gap II is the trivial one (same signs for
both lattice types). This means that non-trivial interface states will exist in the long chain, constructed from the two lattice types
(𝑘1 < 𝑘2 and 𝑘1 > 𝑘2), only within the gaps I and III. The second gap remains the same through all three band structure examples
indicating its locally resonant origin and trivial topology nature, which is in line with the previous findings by other authors [38].

Further, Fig. 4 shows dispersion curves and topological properties of bands and corresponding band gaps of the triatomic mass-
in-mass unit cells with and without inerters. The case with three springs 𝑘1 = 𝑘(1 + 𝛾), 𝑘2 = 𝑘(1 − 𝛾) and 𝑘3 = 𝑘2 is studied, i.e. only
one spring connecting the outer masses is different from others. This configuration is adopted in analogy to the simple triatomic
unit cell with mirror symmetry and quantized Zak’s phase. It should be noted that mirror symmetry within the bulk lattice with
triatomic mass-in-mass unit cells, when masses are equal, can be achieved only when one of the springs in the unit cell is different
from the others (see [41]). Band structure shows six bands and five band gaps (excluding the zero-frequency band gap) in both
unit cell configurations with and without inerters. However, the band structures of the lattices in the configuration 𝛾 = −0.5 and
𝛾 = 0.5 are distinct due to the obvious change in the overall stiffness and different gap opening after the band-folding case 𝛾 = 0.
Here, we again compare the effects of change of the locally resonant mass and inerter elements on the dispersion and topological
behavior of the lattice. The dashed lines in the first three panels (Fig. 4(a)–(c)) refers to the lattice with 𝛥𝑚 change in locally
9
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Table 1
Sign 𝜁 (𝑛) of the 𝑛th band gap for the diatomic-like and triatomic-like unit cells with local resonators and inerters. The band gaps
of triatomic-like mass-in-mass unit cell configurations with bands having non-quantized Zak’s phase are indicated with NQ.

Diatomic mass-in-mass Triatomic mass-in-mass

𝑘1 > 𝑘2 𝑘1 < 𝑘2 𝑘1 > 𝑘2 = 𝑘3 𝑘1 < 𝑘2 = 𝑘3 𝑘3 ≶ 𝑘1 = 𝑘2 𝑘2 ≶ 𝑘1 = 𝑘3
sgn[𝜁 (I)] + – + – NQ NQ
sgn[𝜁 (II)] + + – + NQ NQ
sgn[𝜁 (III)] + – – – NQ NQ
sgn[𝜁 (IV)] – + NQ NQ
sgn[𝜁 (V)] + – NQ NQ

resonant mass according to 𝑚𝑏 = 𝑚𝑏(0) +𝛥𝑚𝑏, while the initial lattice configuration without inerters and locally resonant mass given
as 𝑚𝑏 = 𝑚𝑏(0) = 0.5 is indicated by solid lines. It can be observed that an increase of the locally resonant mass shifts all the bands to
ower frequencies. This shifting is more pronounced for the lower frequency bands, same as in the case of diatomic-like mass-in-mass
attices. On the other hand, the effect of introduced inerters with inertance parameters 𝑗𝑎,𝑏 = 0.025 is the opposite, where the most

affected are the higher frequency bands when compared to the initial lattice configuration (Fig. 4(d)–(f)). The topological properties
of individual bands are indicated by the winding numbers that can take value 𝑤 = 0 corresponding to 𝜃Zak

𝑚 = 0 or integer values
𝑤 = 1 and 𝑤 = 2 corresponding to 𝜃Zak

𝑚 = 𝜋 and 𝜃Zak
𝑚 = 2𝜋, respectively. One can notice that the second and fifth bands are

having winding numbers 𝑤 = 2, which means that corresponding complex eigenvectors are ‘‘wrapping’’ twice around the center
of the complex plane. According to [58] quantized Zak’s phase can take only the values of 0 and 𝜋 owing to the modulo of 2𝜋,
which would possibly require modification of Eq. (17) for the sign of band gaps. However, Eq. (17) can still be used in its present
form since for the higher values of the Zak phase a contribution of additional 𝜋 in the geometric phase also takes into account
corresponding change in the sign (double winding of the eigenvectors). Further, different signs of 𝜁 (𝑛) for the gaps I, II, IV, and V in
two lattice configurations 𝛾 = −0.5 and 𝛾 = 0.5 demonstrates the non-trivial nature of these band-folding induced band gaps. Though
the size of gap III seems to remain the same through all three band structure examples, a change in the frequency of all bands and
band gaps size occurs between the configurations 𝛾 = 0.5 and 𝛾 = −0.5 owing to the obvious difference in the overall stiffness (there
is an odd number of outer springs). However, this is the only gap that has the same signs of 𝜁 (𝑛) for both lattices, 𝛾 = −0.5 and
𝛾 = 0.5, indicating its trivial topology. The results demonstrate the potential of inerters to significantly tune the band gaps and
corresponding interface states with very small secondary masses of the inerter’s mechanism. This inertia amplification effect can be
even more enhanced for a smaller inclination angle (𝜃 < 43◦) of the inerter and the same secondary mass. Moreover, a combined
effect of perturbations in locally resonant mass and inerters’ parameters can, even more, contribute to tuning capabilities of the
inerter-based locally resonant lattices in both higher and lower frequency bands, while keeping the main topological properties of
the initial configuration without inerters.

Finally, Table 1 shows the sign of 𝜁 (𝑛) for different band gaps of the diatomic-like and triatomic-like mass-in-mass unit cells for
all possible permutations of springs 𝑘1, 𝑘2 and 𝑘3 connecting outer masses when only one spring is different from others. The table
outlines the previous results demonstrating the existence of non-trivial gaps between the two lattice types. As previously mentioned,
only one choice of outer springs in the triatomic-like mass-in-mass unit cell has quantized Zak’s phase which enables us to investigate
the topology of the band gaps. The other two cases are having non-quantized geometric phase. However, despite the triatomic-like
lattices with unit cell springs 𝑘1 < 𝑘2 = 𝑘3 and 𝑘1 > 𝑘2 = 𝑘3 having quantized geometric phases with different topology, it is difficult
to construct a large chain from these two lattice types since they exhibit different band structures due to the reasons given before.
Therefore, in the next sub-section, it will be attempted to construct the finite lattices from the triatomic-like sub-lattices with the
same band structure properties but not necessarily quantized geometric phases. In [59], the authors demonstrated the possibility
of the existence of interface states in one-dimensional lattices with multi-degree of freedom unit cells and coexisting quantized
and non-quantized geometric phases due to hidden inversion symmetry in a subspace of the system. Some authors also suggested
the methodology for quantization of the geometric phase [58] while others proposed the corrected formula for Zak’s phase of the
one-dimensional (1D) lattice [60] when the unit cell lacks the centered inversion axis. However, such investigation is out of the
scope of this study and the existence of interface states will be assessed through the investigation of the bulk and interface mode
spectrum of finite lattices.

4.2. Dynamics of finite inerter-based lattices with local resonators and interface

Here, we first study the dynamics of finite one-dimensional undamped (𝑐𝑎 = 𝑐𝑏 = 0) inerter-based lattices with local resonators to
demonstrate the existence of band gaps and corresponding interface modes. The chain is constituted of two sub-lattices connected
at the interface (see Fig. 2). First, we investigate the eigenvalue spectrum corresponding to a variation of two different sub-lattice
springs connecting outer masses from 𝛾 = −1 to 𝛾 = 1 such that the sum of 𝑘1 = 𝑘(1 + 𝛾) and 𝑘2 = 𝑘(1 − 𝛾) is equal to the double
value of the mean stiffness 𝑘1 + 𝑘2 = 2𝑘. However, in the case of triatomic-like lattices the summation of springs in combination
𝑘1 = 𝑘(1 + 𝛾), 𝑘2 = 𝑘1 and 𝑘3 = 𝑘(1 − 𝛾) or 𝑘1 = 𝑘(1 + 𝛾), 𝑘2 = 𝑘(1 − 𝛾) and 𝑘3 = 𝑘1, is not constant for variations of 𝛾 (odd number of
outer springs). The case 𝛾 = 0 corresponds to the band-folding diagrams in the previous dispersion analysis of lattice unit cells when
all outer springs have equal stiffness. Moreover, the frequency response functions (FRF) of the interface mass are given to show the
effect of inerters and changes in the locally resonant mass on modes localized at the interface between the two sub-lattices. In all
10

the presented cases in this sub-section, we adopted 𝑁 = 30 unit cells on each side of the interface.
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Fig. 5. The eigenvalue spectrum and highlighted eigenmodes of the finite inerter-based diatomic-like mass-in-mass chains with 𝑁 = 30 unit cells on each side
of the interface, 𝑗𝑎 = 𝑗𝑏 = 0.02, varying stiffness parameter 𝛾 and (a) fixed-free edge conditions (b) free-free edge conditions.

Fig. 5 shows bulk and interface spectra of the fixed-free and free-free inerter-based diatomic-chains with local resonators
(configuration from Fig. 2(b)) when 𝑗𝑎 = 𝑗𝑏 = 0.02. In both cases, one can identify three band gaps (apart from the zero-frequency
gap), where two gaps are closing at 𝛾 = 0 and the middle gap remains open. Fig. 5(a) shows eigenvalue spectra and corresponding
highlighted eigenmodes of the fixed-free chain demonstrating the existence of four characteristic interface modes for 𝛾 > 0. However,
previous topological analysis demonstrates that only gaps I and III are non-trivial, which indicates the existence of non-trivial
interface states. According to the observations in [61] for simple diatomic-like mass–spring chains, those modes where interface
mass is at rest 𝑢0(1)𝑎 = 0 while neighboring masses are of equal amplitude but opposite sign 𝑢0(2)𝑎 = −𝑢−1(2)𝑎 can be defined as symmetric
modes. In the case of anti-symmetric mode shapes, the interface mass and the neighboring masses are having some displacement
amplitudes such that 𝑢0(1)𝑎 ≠ 0 and 𝑢0(2)𝑎 = 𝑢−1(2)𝑎. A similar observation is also valid for triatomic-like mass–spring chains. Following
this, it can be noticed that the interface modes emerging within gaps I and III in Fig. 5(a) are symmetric about the interface mass
for 𝛾 > 0. Therefore, natural frequencies of such interface modes remain constant for variations of 𝛾 when there are two adjacent
heavy springs at the interface. On the other hand, the interface modes that appear within gap II are trivial and will migrate into
the bulk for changes in the interface springs 𝛾 < 0 i.e. for the weak stiffness interface springs. Therefore, only two interface modes
exist on the left side (𝛾 < 0) of the spectra having antisymmetric mode shapes about the interface mass and whose frequency varies
with the change of stiffness in the interface springs. However, two edge modes of constant frequency also exist on the left side of
the spectra (𝛾 < 0), which are localized at the fixed edge of the lattice. These two modes will disappear in the free-free chain whose
spectrum is given in Fig. 5(b). The other two interface modes will remain the same in the configuration with free boundaries. When
the first outer mass on the left side of the chain is connected to the fixed edge through a stronger stiffness spring 𝑘2 = 𝑘(1 − 𝛾), an
edge state occurs for 𝛾 < 0 (weak stiffness springs at the interface) at the same frequency as the symmetric interface mode for 𝛾 > 0
(stronger stiffness springs at the interface). When a fixed boundary condition is imposed on the edge, that edge is behaving as a mass
whose displacement is set to zero, therefore resembling the behavior of the symmetric interface mode. This observation is similar
11

to the behavior of the semi-infinite one-dimensional chain studied in [9], where edge localized modes emerge in the configuration
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Fig. 6. The eigenvalue spectrum and highlighted eigenmodes of the finite fixed-free inerter-based triatomic-like mass-in-mass chains with 𝑁 = 30 unit cells on
each side of the interface, 𝑗𝑎 = 𝑗𝑏 = 0.02 and varying stiffness parameter 𝛾: (a) configuration from Fig. 2(c) (b) configuration from Fig. 2(d).

hen a stronger stiffness spring is connected to the fixed edge. It should be also mentioned that the introduction of the fixed-fixed
dge conditions in the chain would result in additional edge localized modes (especially in the triatomic-like mass-in-mass chains),
herefore, this case of edge conditions is not elaborated in this study.

Next, we investigate the eigenvalue spectrum of the finite fixed-free inerter-based triatomic-like mass-in-mass chains with local
esonators Fig. 6. Here, in the configuration from Fig. 2(c) one can observe five characteristic band gaps (excluding the zero-
requency gap) between the bulk modes that are crossed with corresponding interface modes that exist on both, left (𝛾 < 0) and

right (𝛾 > 0) side of the spectrum Fig. 6(a). Four characteristic interface modes exist for 𝛾 = −0.5 and 𝛾 = 0.5, with eigenmodes of
highlighted eigenstates given in separate panels. These mode shapes show that three eigenmodes are symmetric about the interface
mass while one of them is the anti-symmetric one. However, the behavior of the symmetric interface modes is different from those
in the diatomic-like chains since their frequency varies with 𝛾 owing to the change in overall stiffness (odd number of outer springs).
All four modes on the left side of the spectrum (𝛾 < 0) display the antisymmetric modes shapes and the frequency of these modes
also varies with 𝛾. One can notice that two of the gaps on the left side of the spectrum are very narrow, which is attributed to the
ratio of the stiffnesses of the outer springs that are responsible for the band-folding induced gaps. Despite being very narrow, some
interface modes also exist within these gaps.

Further, observation of the eigenvalue spectrum of the finite chain in the configuration from Fig. 2(d) shows the same number
f band gaps and interface modes on the left side of the spectrum (𝛾 < 0) as in the previous case (see Fig. 6(b)). Eigenmodes of the
our highlighted interface mode eigenstates for 𝛾 = −0.5 and 𝛾 = 0.5 reveals their localization at the interface. Only two interface

modes can be viewed as symmetric about the interface mass whose frequency varies with 𝛾. The rest of the identified interface states
are having antisymmetric mode shapes and their frequency also varies with the change in the stiffness of interface springs. Note
that some additional modes, which can be seen within the same gaps on the right side of the spectrum, are edge modes localized at
the fixed boundary of the chain. It is already discussed in dispersion and topological analysis that in some triatomic-like unit cells
12

certain permutations of outer springs lack the unit cell symmetry, which would result in a non-quantized Zak’s phase. However, in
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Fig. 7. Natural frequencies and frequency response function of the finite undamped diatomic-like mass-in-mass chain (configuration from Fig. 2(b) when
𝑎 = 𝑐𝑏 = 0) for 𝛾 = 0.5 and 𝑁 = 30 unit cells on each side of the interface. The case with 𝑗𝑎 = 𝑗𝑏 = 0 and 𝛥𝑚 = 0 refers to the initial configuration without

inerters and changes in the locally resonant mass.

Fig. 8. Natural frequencies and frequency response function of the finite undamped triatomic-like mass-in-mass chain (configuration from Fig. 2(c) when
𝑐𝑎 = 𝑐𝑏 = 0) for 𝛾 = 0.5 and 𝑁 = 30 unit cells on each side of the interface. The case with 𝑗𝑎 = 𝑗𝑏 = 0 and 𝛥𝑚 = 0 refers to the initial configuration without
inerters and changes in the locally resonant mass.

the literature, it was proven how some hidden symmetries and topologically protected interface modes can still exist in lattices with
co-existing quantized and non-quantized Zak’s phase. Moreover, similar spectrum analysis in [41] demonstrated that topologically
protected interface modes can also exist in one-dimensional polyatomic chains, though they are not as flat as the one in the simple
diatomic lattices. Even at the first sight some of the interface modes in triatomic-like mass-in-mass lattices behave similar to the
trivial defect modes, there is a high possibility that they have a non-trivial nature. The proof of these interface mode properties
would require additional investigation, which could be an interesting topic for future study.

Fig. 7 shows natural frequencies (NFs) and frequency response function (FRF) of the finite fixed-free inerter-based diatomic-like
mass-in-mass chain when stiffness of outer springs is defined by 𝛾 = 0.5 (configuration from Fig. 2(b)). Here, NFs are given only
for the lattice configuration without inerters to demonstrate the existence of interface mode frequencies, which are then validated
through the FRF plots of the nearest neighbor mass to the interface mass (since the interface mass is at rest in symmetric mode
13
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Fig. 9. Natural frequencies and frequency response function of the finite undamped triatomic-like mass-in-mass chain (configuration from Fig. 2(d) when
𝑐𝑎 = 𝑐𝑏 = 0) for 𝛾 = 0.5 and 𝑁 = 30 unit cells on each side of the interface. The case with 𝑗𝑎 = 𝑗𝑏 = 0 and 𝛥𝑚 = 0 refers to the initial configuration without
inerters and changes in the locally resonant mass.

shapes). The FRF results demonstrate the existence of several interface modes in the initial configuration without inerters 𝑗𝑎 = 𝑗𝑏 = 0
and changes in the locally resonant mass 𝛥𝑚 = 0. Four characteristic interface mode frequencies are highlighted and their behavior is
followed in different configurations. The next two FRF plots show how the introduction of inerters with low inertance 𝑗𝑎 = 𝑗𝑏 = 0.03
and 𝛥𝑚 = 0.1 change in the locally resonant mass affect interface mode frequencies. If only inerters are introduced without changes
in the locally resonant mass, a significant shifting of higher frequency interface modes to lower values occurs while this change in
the lower frequency interface modes is minor. On the other hand, the combined effect of inerters and increase of locally resonant
mass (for 𝛥𝑚 = 0.1) significantly shifts both lower and higher frequency interface modes to lower values.

Fig. 8 shows NF and FRF of the finite fixed-free triatomic-like mass-in-mass chains in configuration from Fig. 2(c) (when 𝛾 = 0.5).
NF of the chain in the initial configuration without inerters 𝑗𝑎 = 𝑗𝑏 = 0 and no changes in the locally resonant mass 𝛥𝑚 = 0 shows
several interface modes, where again we chose four characteristic modes within the band gaps I, II, IV, and V and follow their
behavior in the case when inerters and changes in the locally resonant masses are introduced. The first FRF plot from the left side
confirms the existence of interface modes that can be seen in the NFs plot. Introduction of inerters with inertance 𝑗𝑎 = 𝑗𝑏 = 0.03
and 𝛥𝑚 = 0 displays significant shifting of the higher frequency interface modes (gaps IV and V) to lower values while that change
is small for the lower frequency interface modes (gaps I and II). However, by increasing the locally resonant mass for 𝛥𝑚 = 0.1
and using the same inertance we can observe a significant decrease in the frequency of interface modes in both lower and higher
frequency band gaps. Similar behavior of interface modes can be observed in Fig. 9 in FRF plots of triatomic-like mass-in-mass chain
in configuration from Fig. 2(d) when 𝛾 = 0.5. Here, the largest effect on interface modes is achieved by combining the influence
of inerters and perturbations in the locally resonant mass. However, one can notice that some of the states that can be seen in the
NF plots are missing in the FRF. These results are in line with the conclusions from the spectrum analysis where it was shown how
some of the states are localized at the fixed boundary of the chain and not at the interface.

Finally, to reveal the impact of inerters on the lowest frequency interface modes we have chosen to show the first highlighted
interface states of the fixed-free diatomic-like and triatomic-like mass-in-mass chains from Figs. 5(a) and 6 and observe their
frequencies for variations of the stiffness parameter 𝛾 as given in Fig. 10. Here, the effects of perturbations in the locally resonant
mass and inertance on the first interface mode frequency are compared. Same as previously, the perturbation in the locally resonant
mass is defined as 𝛥𝑚𝑏 = 𝑚𝑏 − 𝑚𝑏(0) and for the inertance as 𝛥𝑗𝑎,𝑏 = 𝑗𝑎,𝑏 − 𝑗𝑎,𝑏(0), with 𝑚𝑏 and 𝑗𝑎,𝑏 denoting the current perturbed
parameters while 𝑚𝑏(0) = 0.5 and 𝑗𝑎,𝑏(0) = 0 are values of the locally resonant mass and inertance, respectively, in the initial
configuration. Fig. 10(a) shows changes in the first interface mode frequency of the diatomic-like mass-in-mass chain. As discussed
above, the first interface mode frequency varies for negative 𝛾 while it is a constant value for positive 𝛾 owing to the weak and strong
stiffness interface springs, respectively. By introducing the inerters and increasing the value of inertia amplification parameters 𝑗𝑎 and
𝑗𝑏 (an increase of 𝛥𝑗𝑎,𝑏), the frequency of the interface mode is shifted to lower values without significantly changing the shape of the
interface mode frequency curve for varying 𝛾. However, the same amount of perturbation in the locally resonant mass parameter
shifts the first interface mode frequency to lower values more than the inertance. Therefore, inertance as a tuning parameter in
mechanical lattices can have a different role than the locally resonant mass due to its larger effect on higher frequency interface
modes and much weaker effect on lower frequency modes. Similar behavior can be observed for the finite chains with triatomic-like
mass-in-mass unit cells given in Figs. 10(b) and 10(c). Here, a larger effect on the first interface mode frequency for perturbations
14
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Fig. 10. The comparison of the effects of perturbations in locally resonant mass and inertance on the first interface mode frequency of the finite fixed-free
diatomic-like and triatomic-like mass-in-mass chains in configurations from (a) Fig. 2(b); (b) Fig. 2(c); (b) Fig. 2(d). The first interface mode frequency curves
in the perturbed cases are compared against the initial configuration (blue solid line) where 𝛥𝑚𝑏 = 𝑚𝑏 − 𝑚𝑏(0) = 0 and 𝛥𝑗𝑎,𝑏 = 𝑗𝑎,𝑏 − 𝑗𝑎,𝑏(0) = 0 for 𝑚𝑏(0) = 0.5 and
𝑗𝑎,𝑏(0) = 0.

Fig. 11. Displacement amplitudes of the outer mass points of fixed-free inerter-based diatomic-like mass-in-mass chain in the configuration from Fig. 2(b) with
𝑁 = 12 unit cells on each side of the interface and values of parameters 𝑗𝑎 = 𝑗𝑏 = 0.02 and 𝛾 = 0.5: (a) Interface mode I (b) Interface mode III.

n the locally resonant mass can be also observed. Though shifting of the interface mode frequency becomes more pronounced for
igher values of inertance, high values of inertia amplification could be difficult to achieve in some application scenarios due to
imitations in design parameters of different types of inerter devices. Therefore, if only the first interface mode is the targeted mode
o be tuned to lower frequency values, then the effects of perturbations in locally resonant mass should be used to achieve desired
opological behavior of the periodic lattice systems.

.3. Steady-state responses of damped inerter-based lattices with local resonators

In this part of the numerical study we are exploring the effect of arbitrary viscous damping on normalized steady-state amplitudes
f lattice points when the first mass in the lattice from the fixed side is excited with the frequency of particular interface modes. The
mplitudes are obtained based on Eqs. (19)–(23) and the proposed solution given in Appendix. We chose two characteristic modes
ocated within the gaps that were characterized as non-trivial in the dispersion and topological analysis of unit cells of corresponding
nfinite lattices. Note that only the absolute values of the amplitudes are considered, which are then normalized with the amplitude
f the excited mass. The frequencies of interface modes are adopted for 𝛾 = 0.5 and 𝑗𝑎 = 𝑗𝑏 = 0.02 and numerated according to the gap
umber in which they are situated, which can be also viewed in the corresponding spectrum plots in the previous sub-section. Fig. 11
hows steady-state amplitudes of the finite diatomic-like mass-in-mass chain for different values of damping parameters 𝑐𝑎 = 𝑐𝑏 and
𝑁 = 12 unit cells on each side of the interface. The obtained results for interface mode I (Fig. 11(a)) shows a significant effect of the
15
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Fig. 12. Displacement amplitudes of the outer mass points of fixed-free inerter-based triatomic-like mass-in-mass chain in the configuration from Fig. 2(c) with
𝑁 = 15 unit cells on each side of the interface and values of parameters 𝑗𝑎 = 𝑗𝑏 = 0.02 and 𝛾 = 0.5: (a) Interface mode I (b) Interface mode IV.

Fig. 13. Displacement amplitudes of the outer mass points of fixed-free inerter-based triatomic-like mass-in-mass chain in the configuration from Fig. 2(d) with
𝑁 = 15 unit cells on each side of the interface and values of parameters 𝑗𝑎 = 𝑗𝑏 = 0.02 and 𝛾 = 0.5: (a) Interface mode I (b) Interface mode IV.

iscous damping parameter on the existing interface mode amplitudes. Since the first interface mode is characterized as symmetric,
nly the neighboring masses are symmetrically displaced with respect to the interface mass while amplitudes far from the interface
re at rest. The largest interface amplitudes are obtained for the case of small damping parameters 𝑐𝑎 = 𝑐𝑏 = 0.05 whose maximum
alue is greater than one i.e. the amplitude is larger than the amplitude of the exciting mass. An increase of damping significantly
educes the interface amplitudes that are almost completely attenuated for the larger values of damping parameters. A closer look
t the interface mode III (Fig. 11(b)) shows much lesser amplitudes with respect to the excitation amplitude for all damping cases.
gain, one can observe that the largest interface amplitudes are obtained for the smallest damping parameter 𝑐𝑎 = 𝑐𝑏 = 0.05 while

a significant reduction is achieved for larger damping parameters. Note that an increase in the number of unit cells in the lattice
will lead to a cumulative effect of viscous damping elements in the chain and the interface mode amplitudes will be completely
attenuated for large enough chains. A similar influence of damping on interface mode amplitudes was observed in [44].

Similar observations can be made for the interface states of the finite inerter-based triatomic mass-in mass chains with damping
and 𝑁 = 15 unit cells on each side of the interface. Fig. 12 shows interface mode amplitudes of the chain in configuration from
Fig. 2(c) when 𝛾 = 0.5 and 𝑗𝑎 = 𝑗𝑏 = 0.02. The amplitude of the interface mode I exceed the magnitude of the excitation amplitude
three times) for the case of small damping 𝑐𝑎 = 𝑐𝑏 = 0.05 while the amplitudes of mass points far from the interface are at rest

(Fig. 12(a)). However, the interface amplitudes are largely attenuated for an increase in the value of damping parameters. Here,
the interface mode is considered to be symmetric about the interface mass. Further, Fig. 12(b) shows the lattice point amplitudes
of the interface mode IV (situated in the fourth band gap e.g. see Fig. 6(a) for details) that are much smaller than the amplitude of
the exciting outer mass (around thirty times). Here, the interface mode amplitudes are the highest for the lowest value of damping
16

𝑐𝑎 = 𝑐𝑏 = 0.05 while they are almost completely attenuated for the damping parameter value 𝑐𝑎 = 𝑐𝑏 = 0.3. A similar effect of
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damping can be observed in Fig. 13 for the triatomic-like mass-in-mass lattice configuration from Fig. 2(d), where a significant
attenuation of interface mode amplitudes occurs for an increase of damping parameters. Here, the main difference can be noticed
in the shape of interface mode amplitudes since there are no interface mass points at rest. This behavior of the interface mode
amplitudes is the most similar to the behavior of anti-symmetric interface modes that was observed earlier in the literature [62].

It is well known that the damping effect is present in real engineering structures and systems and cannot be easily neglected
f we want to accurately predict their dynamic behavior. This physical consequence is also important for large periodic chains,
here different damping sources can exist in the lattice, especially when inerter elements are embedded into the lattice. Therefore,

onsideration of damping might be crucial for the reliable investigation of the existence of interface modes in mechanical
etamaterials and periodic structures.

. Conclusion

While topological insulators constitute a topic of significant current interest in condensed matter physics, an engineering route
itherto is less explored. One-dimensional locally acoustic chains to study exotic interface resonances serve as an intriguing platform
o embark in this direction, which should be attested to the ubiquitous use of spring–mass models, both with and without inerters.
his study illustrates the occurrence of interface states in one-dimensional locally resonant acoustic chains with inerter elements.
ispersion and topological properties of two types of inerter-based unit cells having diatomic-like and triatomic-like mass-in-mass
onfigurations were examined based on the Bloch wave dispersion and eigenvector topology analysis. The eigenvalue spectrum and
requency response functions of finite chains given as a block of two connected sub-lattices were studied to demonstrate the existence
f interface states and the impact of inerters, changes in locally resonant masses, and damping on them. The main contributions of
his work are:

• Based on dispersion and topological analysis of diatomic and triatomic mass-in-mass unit cells, we demonstrated that
frequencies of individual bands could be shifted to lower values when introducing the inerters while keeping the topological
properties of the original unit cell configuration without inerters. Moreover, the potential of band gaps for the existence of
topologically protected edge/interface states is examined based on signs of band gaps.

• Dynamic analysis of finite inerter-based diatomic- and triatomic-like mass-in-mass chains confirms the existence of interface
modes and their localization within both lower and higher frequency band gaps. Finally, it is demonstrated how an increase in
inertia amplification parameters shifts the frequency of interface modes to lower values in a different manner than an increase
of the locally resonant mass. It was shown that the best tunability of interface modes can be achieved by combining the effects
of inertance and locally resonant mass.

• Investigation of the steady-state responses of outer mass lattice points demonstrated a significant influence of the arbitrary
viscous damping on interface mode amplitudes, where complete attenuation of the amplitudes was observed for higher values
of damping parameter. The attenuation effect was shown to be much more pronounced in higher frequency modes and for
longer chains.

In this work, we revealed how inerter elements are capable of tuning edge/interface modes in one-dimensional locally resonant
coustic systems with more complex internal unit cell architecture. By introducing the inerters, we were able to keep the topological
roperties of original unit cell configurations and, at the same time, shift the frequency of interface modes. This property can be
romising for consideration of inerters in passive control of topological properties of equivalent continuum elastic locally resonant
coustic systems. Moreover, we have shown how consideration of damping should be an unavoidable step when studying the
dge/interface modes in real mechanical metamaterials. Conclusively, our work should have provided a tutorial, yet detailed study
nto contemporary topological mechanical configurations comprising novel vibrational localizations and their characterization. To
his end, we believe that our findings should stimulate further interest along this line.
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Appendix. The solution for the system with arbitrary viscous damping

A solution to the equations of motion Eq. (23) of finite diatomic-like or triatomic-like chains with arbitrary viscous damping can
e found in the state space (e.g. see [63]). If the overall system has 𝑚-degrees of freedom, the state form of the motion equations
s given as

�̇�(𝑡) = 𝐀𝐱(𝑡) + 𝐁𝐟 (𝑡) (A.1)

where

𝐀 =
[

𝟎 𝐈
−𝐌−1𝐊 −𝐌−1𝐂

]

,𝐁 =
[

𝟎
−𝐌−1

]

and 𝐱 =
[

𝐪𝑇 , �̇�𝑇
]

is the 2𝑚-dimensional state vector. The given matrix 𝐀 is the nonsymmetric matrix for which 𝐀𝑇 ≠ 𝐀. The further
procedure will require to find right 𝐱𝑖, 𝑖 = 1, 2,… , 2𝑚 and left 𝐲𝑖 eigenvectors of 𝐀 by solving the corresponding eigenvalue problems
for 𝐀 and 𝐀𝑇 when 𝐟 = 0. If 𝐗 = [𝐱1, 𝐱2,… 𝐱2𝑚] is the matrix of right and 𝐘 = [𝐲1, 𝐲2,… 𝐲2𝑚] is the matrix of left eigenvectors and
𝜦 = [𝜆1, 𝜆2,… , 𝜆2𝑚] is the matrix of eigenvalues, then the following relations should hold

𝐘𝑇𝐗 = 𝐈, 𝐘𝑇𝐀𝐗 = 𝜦, 𝐘𝑇 = 𝐗−1. (A.2)

By considering the excitation as 𝐟 (𝑡) = 𝐟0 exp (i𝛺𝑡), where 𝐟0 is the vector of force amplitudes, we can obtain the final solution for
the state vector as

𝐱(𝑡) =
2𝑚
∑

𝑣=1

𝐲𝑇𝑣 𝐁𝐟0
i𝛺 − 𝜆𝑣

𝐱𝑣 exp (i𝛺𝑡). (A.3)

Note that only real part of the response should be retained if the excitation is 𝐟 (𝑡) = 𝐟0 cos (i𝛺𝑡) and imaginary part if 𝐟 (𝑡) = 𝐟0 sin (i𝛺𝑡).
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