
Mathematical Programming-Based Approach to Scheduling of

Communicating Tasks

Tatjana Davidović1, Leo Liberti2, Nelson Maculan3, Nenad Mladenović1,4

1 Mathematical Institute, Serbian Academy of Science and Arts,

Kneza Mihaila 35, 11000 Belgrade, Yugoslavia

email: {tanjad,nenad}@mi.sanu.ac.yu

2 DEI, Politecnico di Milano, P.zza L. da Vinci 32, 20133 Milano, Italy

email: liberti@elet.polimi.it

3 COPPE-Systems Engineering, Federal University of Rio de Janeiro

P.O. Box 68511, 21941-972 Rio de Janeiro, Brazil

email: maculan@cos.ufrj.br

4 GERAD, 3000 ch. de la Cote-Sainte-Catherine,

Montréal, H3T 2A7, Canada

December 15, 2004

Abstract

We present a MILP mathematical programming formulation for static scheduling of dependent
tasks onto homogeneous multiprocessor system of an arbitrary architecture with communication
delays. We reduce the number of constraints by applying a Reduction Constraint reformulation to
the model. We solve several small-scale instances of the reformulated problem by using CPLEX 8.1.
Upper bounds are computed with the Variable Neighborhood Search meta-heuristic applied directly
to the graph-based formulation of the problem, whereas lower bounds are obtained by solving linear
relaxations of the MILP formulation, further tightened by using load balancing and critical path
method arguments.

Résumé

Nous présentons une formulation sous la forme d’un modèle de programmation linéaire en nombres
entiers (PLNE) pour le problème d’ordonnancement avec des tâches dépendantes dans un système de
multiprocesseurs homogènes associés à une architecture arbitraire en présence de délais de communi-
cations. Pour diminuer le nombre de contraintes nous utilisons une reformulation du modèle à l’aide
d’une procédure de Réduction de Contraintes. Nous avons résolu plusieurs exemples de petite taille
du modèle reformulé avec CPLEX 8.1. Les bornes supérieures ont été calculées par des techniques
VNS appliquées directement à une formulation basée sur la théorie des graphes. Les bornes inférieures
ont été obtenues en résolvant des relaxations linéaires de la formulation PLNE et améliorées par des
méthodes du chemin critique et par des techniques de balancemment de charges.

Key words: Static scheduling, homogeneous multiprocessors, communication delays, reduction con-
straints, VNS.

1 INTRODUCTION 2

1 Introduction

Parallel computing has been a very attractive research field for more than forty years [8]. One of the main
problems is scheduling modules (tasks) to processors, i.e. definition of distribution among processors and
execution order of tasks. There is a bulk of papers considering different variants of scheduling problems; a
recent survey can be found in [1]. This problem is known to be NP-hard in the majority of cases, although
there are several special cases that can be solved in polynomial time. Therefore, heuristic methods for
finding good solutions are essential. Such suboptimal solutions can be used as upper bounds for an exact
solution method based on Branch-and-Bound.

There are several possible ways to formulate scheduling problems: using graph representation for the
program and/or multiprocessor architecture [3, 10, 26], via sets of instructions [20], or as a mathematical
programming problem. In the literature one can find mathematical formulations for different variants of
scheduling problems. For example, in [22] the formulation for scheduling of independent tasks is given.
Scheduling of dependent tasks without communication is modelled in several different ways [2, 18, 27].
In [17] the authors considered the problem of scheduling dependent tasks onto completely connected
heterogeneous multiprocessor architecture, but with negligible communication time. All these models
do not involve data communication among processors. Moreover, it has always been assumed that the
processor grid is completely interconnected. In this paper, we are interested in scheduling dependent
tasks with communication delays onto a homogeneous, arbitrarily connected multiprocessor architecture.
This variant of the scheduling problem has been referred to as Multiprocessor Scheduling Problem With
Communication Delays (MSPCD). In this paper we propose a novel mixed-integer bilinear programming
formulation for the MSPCD.

Traditionally, scheduling problems are solved by purpose-built heuristics; attempting to solve the
MSPCD via a general purpose solver like CPLEX [9] is not usually a viable alternative. In this paper
we suggest that, at least for small-scale instance, the MSPCD can actually be solved to optimality by
using CPLEX 8.1. Upper bounds are computed by using Variable Neighborhood Search (VNS — see
Section 4.2); lower bounds are obtained by solving a continuous relaxation of the problem which has been
suitably reformulated by using Reduction Constraints [14, 12, 15], which are a subset of RLT constraints
[24] (see Section 4.1). Further tightening of the lower bound is performed with considerations based on
load balancing and critical path.

The paper is organized as follows. In the next section we give a description of the MSPCD problem
based on graph theory. Section 3 contains the mathematical programming formulation of the problem,
and shows an exact reformulation containing less constraints. Section 4 discusses the methods used to
derive tight lower and upper bounds to be used in the Branch-and-Bound algorithm in CPLEX 8.1.
Computational results are described in Section 5.

2 Problem description

The Multiprocessor Scheduling Problem With Communication Delays (MSPCD) is defined as follows:
tasks (or modules) have to be executed on several processors; we have to find where and when each task
will be executed, such that the total completion time is minimum. The duration of each task is known
as well as the precedence relations among tasks, i.e. what tasks should be completed before some other
could begin. In addition, if dependent tasks are executed on different processors, the data transferring
times (or communication delays) are also considered as part of the set of input parameters.

The set of tasks to be scheduled is represented by a Directed Acyclic Graph (DAG) [3, 10, 26] defined
by a quadruplet G = (M, E, C, Λ) where M = {1, . . . , n} denotes the set of tasks (modules); E =
{eij | i, j ∈ M} represents the set of communication edges; C = {cij | eij ∈ E} denotes the set of edge
communication costs; and Λ = {L1, . . . , Ln} represents the set of task computation times (execution
times, lengths). The communication cost cij ∈ C denotes the amount of data transferred between tasks i

3 MATHEMATICAL FORMULATION 3

and j if they are executed on different processors. If both tasks are scheduled to the same processor the
communication cost equals zero. The set E defines precedence relation between tasks. A task cannot be
executed unless all of its predecessors have completed their execution and all relevant data is available.
Task preemption and redundant executions are not allowed.

The multiprocessor architecture A = {1, 2, . . . , p} is assumed to contain p identical processors with
their own local memories which communicate by exchanging messages through bidirectional links of the
same capacity. This architecture is modelled by a p × p distance matrix [3, 7]. The (k, l)-th element of
the distance matrix D = (dkl) is equal to the minimum distance between the nodes k and l. Here, the
minimum distance is calculated as the number of links along the shortest path between two nodes. It is
obvious that distance matrix is symmetric with zero diagonal elements.

The scheduling of DAG G onto A consists of determining the index of the associated processor and
starting time instant for each of the tasks from the task graph in such a way as to minimize some objective
function. The usual objective function (which we use in this paper as well) is completion time of the
scheduled task graph Tmax (also referred to as makespan, response time or schedule length). The starting
time of a task i depends on the completion times of its predecessors and the amount of time needed for
transferring the data from the processors executing these predecessors to the processor that has to execute
the task i. Depending on multiprocessor architecture the time that is spent for communication between
tasks i and j can be calculated in the following way:

γkl
ij = cij · dkl · ccr, (1)

where it is assumed that task i will be executed on processor k, task j on processor l and ccr represents
the Communication-to-Computation-Ratio which is defined as the ratio between time for transferring the
unit amount of data and the time spent for performing single computational operation. This parameter
is used to describe the characteristics of multiprocessor system. In message passing systems ccr usually
has a large value because communication links are very slow. For shared–memory multiprocessors the
communication is faster since it consists of writing data from main (electronic) memory of one processor
into global (also fast) memory and then into main memory of another processor. If the tasks are scheduled
to the same processor, i.e. k = l, the amount of communication equals zero since dkk = 0.

3 Mathematical formulation

In this section we give a mathematical programming formulation of the MSPCD. Let us denote the set
of immediate predecessors of task j by Pred(j), i.e. Pred(j) = {i ∈ M | eij ∈ E}.

Let

ys
jk =

{

1, if task j is the s-th task executed on processor k,
0, otherwise,

∀j ∈ M , k ∈ A. Variables tj denote the starting time of task j for all j ∈ M .

The MSPCD can be formulated as follows:

min
y,t

max
j≤n

{tj + Lj} (2)

subject to:
p
∑

k=1

n
∑

s=1

ys
jk = 1 ∀j ≤ n (3)

n
∑

j=1

y1
jk ≤ 1 ∀k ≤ p (4)

3 MATHEMATICAL FORMULATION 4

n
∑

j=1

ys
jk ≤

n
∑

j=1

ys−1
jk ∀k ≤ p ∀s ∈ {2, . . . , n} (5)

tj ≥ ti + Li +

p
∑

k=1

n
∑

s=1

p
∑

l=1

n
∑

r=1

γkl
ij ys

ikyr
jl (6)

∀i ∈ Pred(j),∀j ≤ n

tj ≥ ti + Li − α

[

2 −

(

ys
ik +

n
∑

r=s+1

yr
jk

)]

(7)

∀k ≤ p,∀s ≤ n − 1,∀i, j ≤ n

ys
jk ∈ {0, 1}, ∀j, s ≤ n ∀k ≤ p (8)

tj ≥ 0 ∀j ≤ n, (9)

where α � 0 is a sufficiently large penalty coefficient and γkl
ij represent the amount of communication

between tasks i and j as defined in (1).

Equations (3) ensure that each task is assigned to exactly one processor. Inequalities (4)-(5) state
that each processor can not be simultaneously used by more than one task. (4) means that at most one

task will be the first one at k, while (5) ensures that if some task is the sth one (s ≥ 2) scheduled to
processor k then there must be another task assigned as (s−1)-th to the same processor. Inequalities (6)
express precedence constraints together with communication time required for tasks assigned to different
processors. Constraints (7) define the sequence of the starting times for the set of tasks assigned to the
same processor. They express the fact that task j must start at least Li time units after the beginning
of task i whenever j is executed after i on the same processor k. If tasks i and j are not assigned to the

same processor and they are mutually independent, the previous reasoning does not hold: even being rth

(r > s) task on some other processor l, j may start before i completes its execution. The last term of

inequalities (7), i.e. α
[

2 −
(

ys
ik +

∑n

r=s+1 yr
jk

)]

, is added to cover that case.

The mathematical formulation of MSPCD given by (2)-(9) contains bilinear terms in the y variables,
and therefore belongs to the class of mixed integer bilinear programs. Variables ys

ik are of 0-1 type and
variables ti are continuous. It is possible to linearize this model by introducing a new set of (continuous)
variables zsr

ijkl ∈ [0, 1] which replace the bilinear terms ys
ikyr

jl in Eq. (6).

Variables zsr
ijkl have to satisfy the following linearization constraints:

ys
ik ≥ zsr

ijkl (10)

yr
jl ≥ zsr

ijkl (11)

ys
ik + yr

jl − 1 ≤ zsr
ijkl (12)

∀i, j, s, r ≤ n,∀k, l ≤ p, which guarantee that zsr
ijkl = ys

ikyr
jl. The following constraints:

zsr
ijkl = zrs

jilk (13)

zss
iikk = ys

ik, (14)

based on the observations that ys
ikyr

jl = yr
jly

s
ik (commutativity of product) and (ys

ik)2 = ys
ik (a squared

binary variable has the same value as the variable itself), are also valid constraints. In particular, (13)
makes it possible to reduce the number of z variables by about half. The number of variables in the
original model is O(n6). Constraints (14) can be added to the formulation.

The number of linearization constraints (10)-(12) is rather large: O(n6). These linearization con-
straints were experimentally observed to slow down the solution process considerably, even when the y

4 BOUNDS 5

variables were relaxed to continuous. It was shown in [13] that assignment constraints like (3) can be
multiplied by each yr

jl variables (and successively linearized by substituting each resulting bilinear term
with the appropriate z variable) to obtain reduction constraints which, together with constraints (13),
turn out to be equivalent to the linearization constraints (10)-(12). The reduction constraint system for
the MSPCD is as follows:

p
∑

k=1

n
∑

s=1

zsr
ijkl = yr

jl ∀i, j, r ≤ n, l ≤ p. (15)

Notice that there are only O(n4) reduction constraints. Next, we show that a reformulation of the problem
containing the reduction constraint system instead of the usual linearization constraints (10)-(12) is exact.

3.1 Proposition

Constraints (3), (13), (15) imply the linearization constraints (10)-(12).

Proof. By (13) and (15), we have

∀i, j, s, r ≤ n ∀k, l ≤ p (zsr
ijkl ≤ ys

ik ∧ zsr
ijkl ≤ yr

jl). (16)

By (16), for any set J of index pairs (f, t) with f ≤ p, t ≤ n, we have
∑

(f,t)∈J ztr
ijfl ≤

∑

(f,t)∈J yt
if . Pick

k ≤ p, s ≤ n and consider the set J = M × M\{(k, s)}. For each i, j, r ≤ n and l ≤ p, we have:

∑

(f,t)6=(k,s)

yt
if ≥

∑

(f,t)6=(k,s)

ztr
ijfl ⇒ (add and subtract zsr

ijkl)

∑

(f,t)6=(k,s)

yt
if ≥

p
∑

f=1

n
∑

t=1

ztr
ijfl − zsr

ijkl ⇒ (substitute yr
jl by (15))

zsr
ijkl ≥ yr

jl −
∑

(f,t)6=(k,s)

yt
if ⇒ (add and subtract ys

ik)

zsr
ijkl ≥ ys

ik + yr
jl −

p
∑

f=1

n
∑

t=1

yt
if ⇒ (substitute 1 by (3))

zsr
ijkl ≥ ys

ik + yr
jl − 1. (17)

Constraints (16) and (17) are exactly the linearization constraints (10)-(12), as claimed. 2

Our computational results show that this reformulation is much faster to solve than the original
formulation.

4 Bounds

In this section we discuss the methods used to find tight lower and upper bounds T , T to the objective
function value throughout the Branch-and-Bound solution process, as simply using CPLEX built-in lower
and upper bounding procedures was found to be inefficient.

4.1 Lower bound

A continuous relaxation of the above MILP formulation can be used to find a valid lower bound to the
objective function value at each step of the Branch-and-Bound algorithm in CPLEX. This bound can be
further tightened in two ways: Load Balancing (LB) and the Critical Path Method (CPM). The optimal
solution cannot have a shorter execution time than the ideal load balancing case, i.e. when there is no idle

5 NUMERICAL EXPERIMENTS 6

time intervals and all the processors complete the execution exactly at the same time. In other words,
if we let Tmax = maxj≤n{tj + Lj} denote the objective function, we have Tmax ≥ 1

p

∑n

i=1 Li = TLB .
Furthermore, the length of final schedule can not be smaller that the length of the critical path, the
longest path connecting a node with no predecessors to a node without successors. Let us denote by
Succ(j) the set of immediate successors of task j, i.e. Succ(j) = {j ′ : ejj′ ∈ E}. By using CPM the
corresponding lower bound TCP can be defined as TCP = maxj≤n CP (j) where

CP (j) =

{

Lj , if Succ(j) = ∅,
Lj + max

j′∈Succ(j)
CP (j′), otherwise,

Let T be the greatest of the bounds obtained by LB and CPM; a constraint of the form Tmax ≥ T is
then also added to the formulation. Notice that this lower bound is valid throughout the whole solution
process and does not depend on the current Branch-and-Bound node being solved.

4.2 Upper bound

CPLEX is supplied with a general purpose heuristic that finds sub-optimal solutions for the problem at
hand. For any given Branch-and-Bound region, some of the variables are fixed. For MILPs which model
a combinatorial problems, more efficient heuristics are usually available based on the graph structure of
the problem. In particular, several efficient heuristics and meta-heuristics exist for the MSPCD. These
heuristics are seldom applicable to a Branch-and-Bound algorithm because at any given Branch-and-
Bound iteration, some of the variables are fixed — and it is usually difficult to force the graph-based
heuristics to constrain the parts of the graph structure which correspond to the fixed variables. At the
first iteration, however, no variables are fixed, which makes it possible to apply the efficient graph-based
heuristics as a kind of pre-processing step to the whole Branch-and-Bound run.

In our tests, we used VNS [21] to compute tight upper bounds T to the objective function value, and
a constraint Tmax ≤ T was added to the formulation prior to starting CPLEX. We employed the VNS
based method proposed in [6] which is very efficient in solving the MSPCD.

5 Numerical experiments

In this section we discuss the numerical results obtained by solving the proposed model with CPLEX
8.1. We describe our test examples in the next subsection, while the comparative numerical results are
presented in subsection 5.3.

5.1 Description of test examples

Several small size test instances known from the literature [3, 11, 19, 23, 25] were used in our experiments.
In addition, we tested a few examples with known optimal solutions generated as in [5] (which proved
to be hard instances for meta-heuristic methods). We selected examples with different characteristics
in order to examine the influence of task graph parameters on the efficiency of model-based solution
methods. The relevant parameters to describe an instance of the task graph are for example:

• n- the number of tasks;

• ρ - the density of task graph edges;

• fp - level of parallelism, i.e. average value of mutually independent tasks;

5 NUMERICAL EXPERIMENTS 7

• fc - the ratio between the required computation and communication time; and so on.

The value for fp is calculated based on the number of processors, number of levels within task graph
and the average number of tasks per level. This definition is different from the one given in [11] and it is
more realistic since it depend on various parameters. Our fc is equivalent to the CCR parameter of [11]
and is calculated as follows

fc =

∑

j Lj
∑

i

∑

j cij

.

Moreover, there are two parameters describing the target multiprocessor architecture, namely the
number of processors p and the distance matrix D describing the processor interconnection network.

According to the small size of test instances, we select the following values for these parameters

p = 2 with D =

[

0 1
1 0

]

; p = 3 with D =

0 1 1
1 0 1
1 1 0

; and p = 4 with D =

0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

.

Task graphs used in this paper are illustrated on the figures below and are selected as the representative
examples for different characteristics. For example, the counter is task graph containing 5 tasks that was
used in [3] to illustrate the need of combining different heuristics during the scheduling process. Its CP
based schedule onto 2-processor system happen to have longer execution time then the sequential one.
Test is multistage graph with a good balance between parallelism and dependencies between tasks.

The task graph density was also shown to be an important parameter [4] and therefore we selected
several examples with the same number of tasks and different densities. The parameters describing each
particular task graph example are listed in the table containing scheduling results given in the next
subsection.

n1

n2

n3

n4
n5

-

-

��
�*

HHHj
3

5

12

8

i 1 2 3 4 5
Li 2 3 5 8 4

a)

n2

n1
n3

n4

n5

n6
���

@@R

���

@@R

@
@
@R-

�
�
��

3

2

7

1

4

4

2

i 1 2 3 4 5 6
Li 5 12 8 3 3 7

b)

Figure 1: a) counter - Task graph example from [3]; b) test - Task graph with 6 nodes

Task graphs with known optimal solutions generated with the procedure proposed in [5] are all named
with the prefix ogra. The optimal solution value is obtained when the tasks are well packed (as in
ideal schedule) in the order defined by the task indices. For these task graphs it is always the case
that Tmax = TLB = TCP . This means that they have a special structure which makes them very hard
instances for heuristic methods. In other words, in the cases when the task graph density is small, i.e.
the number of mutually independent tasks is large, it is hard to find the task ordering which yields the
optimal schedule.

5 NUMERICAL EXPERIMENTS 8

n5

n1
n2

n3

n6

n4

n7 n8
���

@@R

@@R

-

-

�
�
��

-

3

2

3

1

1

4

2

i 1 2 3 4 5 6 7 8
Li 5 6 2 3 6 4 4 2

a)

n1

n5

n2

n3

n4

n6

n7

n8

n9

�
��
-
@
@R
B
B
B
BBN

PPPPPPq

���:HHHj
HHHj
-

Q
Q
QQs-

��
��*

1
4

1
1

1

1
3

1

1

5

6

5

i 1 2 3 4 5 6 7 8 9
Li 2 3 3 4 5 4 4 4 1

b)

Figure 2: a) sih91 - Task graph example from [25]; b) kwok - Benchmark task graph from [11]

n1

n6

n2

n3

n7

n4
n5 n8

n9
�
�
�
���

Z
Z
Z
Z
Z
Z~

XXXXXXz

��

��
�*

J
JĴ

PPPPPPPPPPPPq
HHj

���
���

��:

-

���
���

���
��:

ZZ~
hhhhhh-

@@R

8

3

10

4

4

3
7

1
8

6
3 12

12

10

5

i 1 2 3 4 5 6 7 8 9

Li 60 30 15 40 15 30 35 50 40

Figure 3: ss91 - The task graph example from the [23]

5.2 Bounds

Together with the optimal solutions, we also computed bounds to the objective function values. The upper
bounds were obtained by running a custom-built implementation of the VNS metaheuristic applied to
this problem (see Section 4.2). We computed three classes of lower bounds: T is the maximum between
Load Balancing and CPM applied to the problem, as described in Section 4.1. LB1 is the lower bound
obtained by solving a linear relaxation of the linearized model from Section 3 using the CPLEX LP solver.
LB2 is the lower bound obtained by globally solving the continuous nonconvex problem obtained from
the model in Section 3 by simply relaxing the binary variables to lie in [0, 1]. This bound was computed
by running a VNS solver for continuous global optimization [16] on the problem instances.

5.3 Computational results

In Table 1 we present the computation times required by CPLEX 8.1 to find the optimal solutions of
selected examples for different improvements and modifications of proposed model. All our computational
results were obtained on a Pentium IV 2.66GHz processor with 1GB RAM running Linux.

The first column of Table 1 contains the names of the test examples. The second one contains
the number of processors p in the target multiprocessor architecture. The next six columns contain
parameters that characterize each particular task graph: number of tasks n, task graph density ρ, level
of parallelism fp, ratio between computation and communication time fc. The computation times of

5 NUMERICAL EXPERIMENTS 9

n1

n3

n2

n4

n5

n7

n6

n8

n9

n10�
�
��

-
A
A
AU

-
A
A
AU

-�
�
��

-

-

-

�
�
��

A
A
AU

A
A
AU

�
�
��

1

3

2

1

2

1
2

3

2

2

1

1

2
1

3

i 1 2 3 4 5 6 7 8 9 10

Li 6 8 7 10 8 12 9 6 8 7

Figure 4: mt91 - Example from [19]

different versions of the MILP model for MSPCD are given in the next four columns. Mod. 1 denotes
the basic model with the lower bound given by Load Balancing (LB) and Critical Path Method (CPM)
constraint Tmax ≥ T = max{TLB , TCP }. Mod. 2 is like Mod. 1 with symmetry and square constraints
(13) and (14). Mod. 3 is obtained from Mod. 2 by replacing the linearization constraints (10)-(12) with
the reduction constraint system (15). Mod. 4 is Mod. 3 where the upper bound to the root node of
the Branch-and-Bound process has been obtained by heuristically solving the problem with VNS. The
running time taken by VNS to find the good initial solution is estimated to be around 1% of the time
needed by Mod. 3, which means that it can be neglected compared to the CPLEX 8.1 execution time
required by Mod. 4. The last five columns contain: the length of optimal schedule Tmax, the length of
upper-bounding heuristic solution TV NS obtained with VNS, and the three lower bounds to Tmax (T ,
LB1 and LB2) discussed in Section 5.2.

Note that parameter α from the inequality (7) was set to 2000 for all the examples. The “—” symbol is
used in Table 1 to denote cases when CPLEX 8.1 was interrupted due to excessive CPU time requirements.

Table 1: Comparison results for different variants of MSPCD model

Instance p n ρ fp fc Mod. 1 Mod. 2 Mod. 3 Mod. 4 Tmax TV NS T LB1 LB2

counter 2 5 40.00 0.83 0.78 0:13 0:03 0:01 0:00 20 23 11 15 15
test 2 6 46.67 1.00 1.65 1:14 0:15 0:05 0:04 25 25 19 22 22
sih91 2 8 25.00 1.00 2.00 50:12 10:27 4:41 0:55 16 16 16 16 16
kwok 3 9 33.33 0.75 1.00 62:13:11 105:44:43 32:58:05 27:47:23 15 16 10 11 11
ss91 2 9 41.67 0.64 3.28 2:18:04 55:11 1:03:43 1:27:50 250 250 157.5 250 250

ogra 1 3 9 13.89 1.50 2.50 14:05:34 13:16:47 5:11:05 2:14:51 20 20 20 13 13
ogra 2 3 9 27.78 1.00 1.46 40:57:50 9:59:16 1:59:56 34:31 20 20 20 20 20
ogra 3 3 9 41.67 0.75 1.05 32:22:54 7:01:19 3:51:18 16:34 20 20 20 20 20
ogra 4 3 10 13.33 1.11 3.00 — 55:29:40 25:07:32 15:42:27 25 25 25 19 19
ogra 5 3 10 26.67 1.11 1.23 — 97:03:57 26:06:48 1:13:14 25 25 25 25 25
ogra 6 3 10 40.00 1.11 0.86 — — 31:51:57 1:12:31 25 25 25 25 25
mt91 2 10 31.11 1.00 3.24 17:13:44 33:03:06 6:05:46 46:05 53 53 40.5 51 51

It appears clear, from our computational results, that the importance of the formulation is paramount
for improving the solution speed taken by the Branch-and-Bound algorithm. Usually, this is taken to
mean that a tightening reformulation, i.e. a formulation with added valid cuts which improve the lower
bound, is bound to be better than the original formulation. In this case, the reduction constraints were
shown to be an exact reformulation for the usual linearization constraints. However, the reformulation
is not tighter in the sense of improved lower bounds, but rather because there are O(n4) reduction
constraints instead of the O(n6) linearization constraints. The upshot of this is that each LP relaxation
is solved in a much shorter time. In some cases, the reduction constraints reformulation (Mod. 3 in the
table) was the only way to actually obtain the optimal solution, as the other methods took inordinately

6 CONCLUSION 10

long times (more than 120h of CPU time). This leads us to think that in some Branch-and-Bound nodes
(certainly not the root one, and possibly quite deep in the node tree) the lower bounds provided by the
reduction constraints reformulation are actually tighter than those given by the LP relaxation of the
original problem; but we have no proof of this as yet.

It is also clear that an optimality approach through generic MILP methods (like Branch-and-Bound)
to the solution of the MSPCD is necessarily limited to small-scale examples. This is certainly a stringent
practical limit for real-life cases. However, when assessing the performance of a new heuristic method,
it is customary to run it on instances with known optima. Our methods can successfully be used to
generate a test set of small instances with known optima, which can then be used for comparison with
heuristic methods.

6 Conclusion

In this paper, we proposed a bilinear MILP formulation for the multiprocessor scheduling problem with
communication delays, where the processor grid has arbitrary topology. The formulation is linearized
in a very efficient manner by using reduction constraints. We solve small-scale instances of the problem
to optimality using CPLEX, where upper bounds are provided by VNS and lower bounds by solving
a continuous relaxation of the problem, further tightened using load balancing and critical path argu-
ments. It appears that the largest improvements in terms of computation time are given by the reduction
constraints reformualtion, which reduces the number of linearization constraints in the problem.

References

[1] J. Blazewicz, M. Drozdowski, and K. Ecker. Management of resources in parallel systems. In
J. Blazewicz, K. Ecker, B. Plateau, and D. Trystram, editors, Handbook on Parallel and Distributed
Processing, pages 263–341. Springer, 2000.

[2] E. H. Bowman. The schedule-sequencing problem. Oper. Res., 7(5):621–624, 1959.

[3] T. Davidović. Exhaustive list–scheduling heuristic for dense task graphs. YUJOR, 10(1):123–136,
2000.

[4] T. Davidović and T. G. Crainic. Benchmark problem instances for static task scheduling of task
graphs with communication delays on homogeneous multiprocessor systems. Centre de Recherche
sur les Transports, CRT-2004-15, (accepted for Comput. & OR).

[5] T. Davidović and T. G. Crainic. New benchmarks for static task scheduling on homogeneous mul-
tiprocessor systems with communication delays. Technical report, Centre de Recherche sur les
Transports, CRT-2003-04.

[6] T. Davidović, P. Hansen, and N. Mladenović. Permutation based genetic, tabu and variable neigh-
borhood search heuristics for multiprocessor scheduling with communication delays. GERAD Tech.
Report, G-2004-19, (accepted for publication in APJOR).

[7] G. Djordjević and M. Tošić. A compile-time scheduling heuristic for multiprocessor architectures.
The Computer Journal, 39(8):663–674, 1996.

[8] T. C. Hu. Parallel sequencing and assembly line problems. Oper. Res, 9(6):841–848, Nov. 1961.

[9] ILOG. ILOG CPLEX 8.1 User’s Manual. ILOG S.A., Gentilly, France, 2002.

[10] Y.-K. Kwok and I. Ahmad. Efficient scheduling of arbitrary task graphs to multiprocessors using a
parallel genetic algorithm. J. Parallel and Distributed Computing, 47:58–77, 1997.

REFERENCES 11

[11] Y.-K. Kwok and I. Ahmad. Benchmarking and comparison of the task graph scheduling algorithms.
J. Parallel and Distributed Computing, 59(3):381–422, Dec. 1999.

[12] L. Liberti. Linearity embedded in nonconvex programs. Journal of Global Optimization (accepted
for publication), 2003.

[13] L. Liberti. Automatic reformulation of bilinear minlps. DEI, Politecnico di Milano, Technical report
n. 2004.24, July 2004.

[14] L. Liberti. Reduction constraints for the global optimization of nlps. International Transactions in
Operations Research, 11(1):34–41, 2004.

[15] L. Liberti and C.C. Pantelides. An exact reformulation algorithm for large nonconvex nlps involving
bilinear terms. Journal of Global Optimization (submitted), 2004.

[16] L. Liberti Writing global optimization software. In L. Liberti and N. Maculan, Global Optimiza-
tion: from Theory to Implementation, Nonconvex Optimization and Its Applications series, Kluwer,
Dordrecht (to appear).

[17] N. Maculan, C. C. Ribeiro, S.C.S. Porto, and C. C. de Souza. A new formulation for scheduling
unrelated processors under precedence constraints. RAIRO Recherche Operationelle, 33:87–90, 1999.

[18] A. S. Manne. On the job–shop scheduling problem. Oper. Res., 8(2):219–223, 1960.

[19] S. Manoharan and P. Thanisch. Assigning dependency graphs onto processor networks. Parallel
Computing, 17:63–73, 1991.

[20] D. A. Menascé and S. C. S. Porto. Processor assignment in heterogeneous parallel architectures. In
Proc. of the IEEE Int. Parallel Processing Symposium, pages 186–191, Beverly Hills, 1992.

[21] N. Mladenović and P. Hansen. Variable neighborhood search. Comput. & OR, 24(11):1097–1100,
1997.

[22] M. Queyranne and A. Schulz. Polyhedral approaches to machine scheduling. Technical report,
TUB:1994–408, Technical University of Berlin, 1994.

[23] A. K. Sarje and G. Sagar. Heuristic model for task allocation in distributed computer systems. IEE
Proceedings-E, 138(5):313–318, Sept. 1991.

[24] H.D. Sherali and A. Alameddine. A new reformulation-linearization technique for bilinear program-
ming problems. Journal of Global Optimization, 2:379–410, 1992.

[25] G. C. Sih. Multiprocessor Scheduling to Account for Interprocessor Communication. PhD thesis,
University of California, Berkeley, 1991.

[26] G. C. Sih and E. A. Lee. A compile-time scheduling heuristic for interconnection-constrained het-
erogeneous processor architectures. IEEE Trans. Parallel and Distributed Systems, 4(2):175–187,
February 1993.

[27] H. M. Wagner. An integer linear-programming model for machine scheduling. Nav. Res. Log. Quart.,
6(2):131–140, 1959.

