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Abstract: The minimization of total distance in an asymmetric vehicle routing problem with a hard time window
for serving all the customers is considered. This problem is used to model a real-life problem of delivering
perishable and non-perishable goods to multiple customers. All the customers should be visited exactly ones
with one among a limited number of homogeneous vehicles (with the same capacity and speed). Having in mind
that the problem is NP-hard, we developed a General Variable Neighborhood Search (GVNS) approach and
tested it on a set of available real-life instances. Our computational results show that the proposed GVNS is
able to generate high quality solutions within reasonably short CPU time.

Keywords: Combinatorial optimization, Routing of homogeneous vehicles, Single depot, Minimization of total
distance, Metaheuristics.

1. INTRODUCTION

The problem addressed in this paper is how to organize delivery of perishable and nonperishable goods to
multiple customers within urban and suburban areas. The problem is widely known in the optimization literature
as the Vehicle Routing Problem (VRP) that arises in many everyday situations related to the transportation of
goods [5, 16, 17]. In classical VRP, a fleet of vmax vehicles need to serve n customers. Each vehicle starts and
ends at the depot and each customer must be served exactly once by only one vehicle. There are many variations
of VRPs, and for further detailed explanations the readers are referred to [16, 17]. From practical perspective,
delivering goods to customers is very complex task which requires holistic and interdisciplinary approach. There
are, at least, three key phases that need to be planned and organized in detail. We briefly describe all of them
here in order to highlight our specific case.

In the first phase, the information system for an on-line delivery needs to be implemented. Nowadays,
electronic business (e-business) has been regularly used for many on-line activities. Electronic commerce
(e-commerce) is the most significant portion of e-business due to the possibility to buy or sell goods on-line
and make electronic payment as well. However, the final phase of all e-commerce activities is transportation of
goods. There are two basic forms of e-commerce: Business-to-Business (B2B) and Business-to-Customer (B2C).
The process of transportation planning is different for each of previously mentioned e-commerce forms. In the
B2B environment the orders are planned in-advanced, repeated when needed and usually without breakdowns
in initial transportation route. In the B2C environment the orders are of small size, instantaneous, and placed
by numerous scattered customers [3]. The transportation routes are usually different for each day. In addition,
less time is allowed to perform transportation planning in comparison with the B2B environment. In our case
customers made orders through a web-site. They need to register, choose the desired goods and depict between
two delivery time intervals (between 10AM and 2PM or between 4PM and 8PM) in one of the next four days.

In the next phase, the company needs to organize physical distribution of ordered goods to the customers.
The company can own a fleet of vehicles for distribution or it can rent the vehicles for that purpose. Also,
the company can own a warehouse for storage of goods or it can rent one. In our case, the company owns a
warehouse (distribution center or depot) as well as a fleet of homogenous vehicles with the capacity of 5 tones.

After the on-line orders are made and fleet of vehicles is ready for distribution, the third phase may begin,
i.e., transportation planning has to be performed for each day. It is necessary to define a concrete VRP with
all required constraints, develop mathematical formulation of the problem, and propose solution methods that
will provide optimal or near-optimal solutions. In our case, the classical VRP is extended by three important
constraints related to transportation of goods: capacity of vehicles is presumed, one-way or temporarily closed
directions within the city are taken into account, and the predetermined time window for delivery is set. The first
constraint introduces static and deterministic basic version of the problem in which the demands are known in
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advance and cannot be split, the vehicles are identical and are located at the single depot and only the capacity
restrictions are imposed (this is marked by a prefix C to VRP). The second constraint introduces asymmetric
cost matrix (adds prefix A to CVRP). The third constraint introduces a specific time window, a time period
allowed for delivering goods to all the customers (it is denoted by a suffix TW to ACVRP). Therefore, with
previously defined constraints we extend the classical VRP problem to Asymmetric Capacitated Vehicle Routing
Problem with Time Window (ACVRPTW).

The Mixed-Integer Linear Programming (MILP) formulation for the considered ACVRPTW was proposed
in [10] and used within the framework of CPLEX 12.6 commercial solver to solve two real-life test instances.
The developed MILP enables to solve to optimality smaller instance within the acceptable running time, while
for the larger one the lack of memory problem occurs and a feasible solution with the gap of 18.77% is reported.

Therefore, the next step certainly involves the application of metaheuristics. We decided to use a variant of
the well-known Variable Neighborhood Search (VNS) method as, according to the literature, it proved itself
very successful for dealing with VRPs [1, 4, 7, 8, 11, 13, 15, 18]. We developed General VNS (GVNS) that
explores three neighborhoods, two of them used for shaking and all three in variable neighborhood descent that
substitutes the local search phase in GVNS.

The paper is organized as follows. Section 2. contains a brief description of the considered vehicle
routing problem (ACVRPTW). Our implementation of GVNS is explained in Section 3., while in Section 4.
the experimental evaluation related to the comparison of GVNS and CPLEX commercial solver is presented.
Concluding remarks and directions for future work are given in the last section.

2. PROBLEM DESCRIPTION

An asymmetric vehicle routing problem (AVRP) is defined on a complete direct graph G(N,A), where N =
{0,1,2, . . . ,n,n+1} is the set of vertices (locations, customers) and A = {(i, j)|i, j ∈ N, i 6= j} denotes the set
of arcs with weights di, j representing distances between customers i and j. Vertices 0 and n+1 refer to unique
location (depot), the origin and destination of each route. This notation is adopted due to the simplicity of
formulation.

Each vehicle starts from location 0 (depot), serves a determined subset of customers and then it finishes at
location n+1 (depot). Each vehicle can perform maximum one tour, while each customer should be served
exactly once by only one vehicle. The demands of customers are denoted with ci, i = 1,2, . . . ,n and they
represent the weights of goods to be delivered to each particular customer. The set V of vmax homogeneous
vehicles (with same capacity Q and same speed s) is provided to serve all the customers’ demands. Based on the
vehicle speed, the travel time (ti, j) between customers i and j can be calculated. The time to serve a customer
(to unload goods, deliver them to a customer and collect money) is considered as parameter S j whose values
are given in advance. In order to make the distribution of customers among vehicles more even, the parameter
C (representing the maximum number of customers per vehicle) is introduced. Finally, the distribution of
goods must be completed during the working hours, and therefore, T denotes the maximum allowed time (time
window) for serving customers. The main goal is to minimize the total distance traveled by all vehicles.

3. GVNS IMPLEMENTATION

Variable Neighborhood Search (VNS) is local search based metaheuristic method proposed in [12]. It explores
systematic change of neighborhoods, as well as the distances within a single neighborhood, in both a local
search phase and for escaping from local optima traps. Basic variant of VNS uses one or more neighborhood
structures to explore the search space of a considered optimization problem. It consists of three main steps:
Shaking, Local Search, and Move or Not. The role of Shaking step is to prevent an algorithm being trapped in a
local optimum. It performs a random perturbation of the current best solution in the given neighborhood. Local
Search step has to improve the current solution by examining its neighbors in one or more neighborhoods. After
the Local Search phase, the algorithm performs Move or Not step, i.e., it checks the quality of the obtained local
optimum and moves there if it is better than the current best one. Otherwise, it just changes the neighborhood
for further search. The three main steps are repeated until a pre-specified stopping criterion is satisfied [7, 8].

Among various variants of VNS [6, 9], we implemented General VNS, the variant that explores several
neighborhood structures within the Local Search step. Actually, instead of a simple Local Search, a deterministic
search through several neighborhoods (referred to as Variable Neighborhood Descent, VND) is used. Our
implementation is described in detail in the remainder of this section.
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3.1. Solution representation

A solution of our ACVRPTW is represented by vmax (where vmax is the number of vehicles) doubly linked lists
that contain indices of customers assigned to each vehicle in order they are supposed to be visited. We selected
this structure because it enables to generate a neighbor of a given solution and to calculate its objective function
value in constant number of steps.

3.2. Determination of the initial solution

For generating initial solution we adapted the Nearest Neighbor algorithm, based on [2, 14] in the following
way. We start by selecting vmax customers closest to the depot and assigning them one to each vehicle. Among
the remaining n− vmax customers, we select the one that is the closest to the last customer already included in
the partial route of one of the vehicles. This customer is appended to the end of the partial route of that vehicle.
The process is repeated as long as there are unassigned customers. If the newly generated solution is infeasible,
we correct it by some perturbations of customers among vehicles.

3.3. Neighborhood structures

Selecting adequate neighborhood structures is the most important part of the implementation of any VNS
metaheuristic. After an extensive testing, we decided to use the following three neighborhood structures [2]:

1. Insert(k) ( N1(k) ) This neighborhood consists of selecting k consecutive customers assigned to one
vehicle and moving them to some other position within the route of that same vehicle;

2. Relocate(k) ( N2(k) ) A neighbor in this neighborhood is obtained when k consecutive customers are
moved from the currently assigned vehicle to some other vehicle;

3. Exchange(k) ( N3(k) ) The idea here is to select a pair of k consecutive customers from different vehicles
and exchange their positions.

Within VND all three neighborhoods are explored, while N1 and N2 are used in the shaking phase.

3.4. Shaking

The shaking phase of our GVNS consists of randomly selecting a neighbor at distance k, with respect to either
N1(κ) or N2(κ), κ ∈ {2,3,4,5} neighborhood, from the current best solution x. Here, k represents the index of
the current distance and it changes its values in the range {kmin,kmin +1, . . . ,kmax}. Neighborhoods are used
equally, i.e., each time it is randomly selected which one will be applied. The pseudo-code of the implemented
shaking procedure is presented by Algorithm 1.

Algorithm 1 Shaking
1: procedure SHAKING
2: Input: solution x, value of neighborhood index k
3: i← 0
4: x′← x
5: while i < k do
6: i← i+1
7: Randomly select values p ∈ {0,1} and κ ∈ {2,3,4,5}
8: if p = 0 then
9: Find random neighbor in N1(κ) of x′

10: else
11: Find random neighbor in N2(κ) of x′

return New solution x′

3.5. Variable Neighborhood Descent

Our VND procedure explores all three neighborhood structures of size 1. The order of neighborhoods is
determined experimentally: N1(1), N3(1), and finally N2(1). All the neighborhoods are searched according to
the First Improvement principle. Neighborhood N1(1) is explored as long as an improvement could be made.
When local optimum according to N1(1) is reached, the search continues in N3(1). If an improvement is found
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in N3(1), neighborhood N1(1) is applied to the newly obtained solution, otherwise, the search continues in
N2(1). An improvement obtained in N2(1) will direct the search again to N1(1). On the other hand, if the current
solution cannot be improved in N2(1), VND exits reporting the best obtained local optimum. The pseudo-code
of the implemented VND is presented by Algorithm 2.

Algorithm 2 Variable Neighborhood Descent
1: procedure VND
2: Input: solution x
3: imp← 1
4: x′← x
5: while imp do
6: imp← LS(N1(1),x′)
7: if not imp then
8: imp← LS(N3(1),x′)
9: if not imp then

10: imp← LS(N2(1),x′)
return New solution x′

3.6. The structure of the proposed GVNS

Pseudo-code of the proposed GVNS is presented by Algorithm 3. After all input parameters are read, the initial
solution x is determined using the adapted Nearest Neighbor algorithm. It represents also the first estimation of
the optimal solution. GVNS then performs search in iterations until the stopping criterion (maximum allowed
CPU time) is fulfilled. Within each iteration, k changes between kmin and kmax and the basic steps (Shaking,
Local Search and Move or Not) are performed. Due to a lot of randomness that occurs in the Shaking step, it is
hard to control the feasibility of the resulting solution. Therefore, this step is repeated until a feasible solution is
obtained. On the other hand, local search examines only the feasible neighbors. At the end, the best obtained
solution x is reported. We also measure the CPU time needed to find the best approximation of the optimal
solution. It is saved in the variable tmin and reported at the end of GVNS execution.

Algorithm 3 GVNS-AVRP
1: procedure GVNS
2: Input: Instance to be solved, kmin, kmin, runtime
3: Initialization: Determine initial solution x
4: while Time < runtime do
5: k← kmin
6: while k < kmax do
7: Shaking:
8: repeat
9: x′← SHAKING(x, k)

10: until x′ is feasible
11: Local search: x′′← VND(x′)
12: Move or Not:
13: if f (x′′)< f (x) then
14: x← x′′

15: k← kmin
16: tmin← Time
17: else
18: k← k+1

return The best obtained solution x and the CPU time tmin required to find it
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4. COMPUTATIONAL RESULTS

Our GVNS is coded in C++ programming language and executed on Intel Xeon E5-2620 v3 on 2.40GHz with
31.4 GB RAM and 15 MB cache memory. CPLEX commercial solver is executed on the same platform.

The experimental evaluation is performed on several real-life examples provided by a hypermarket company
from Novi Sad, Serbia. The obtained results are summarized in Table 1:. All vehicles have capacity of 5 tones
and it is assumed that their average speed is 25 km/h. The stopping criterion for GVNS is set to half an hour,
i.e., 1800 s, while CPLEX is allowed to run for 10 hours, i.e., 36000 s.

The structure of Table 1: is as follows. In the first three columns the data describing instances are provided:
instance identification, the number of customers, and the number of vehicles. The next three columns are
devoted to the results obtained by CPLEX, namely, the objective function value with the gap in the parentheses,
the required CPU time, and the time needed to obtain the reported solution. In the case gap equals zero, the
optimal solution is obtained. The remaining three columns contain the results provided by GVNS: the best
obtained objective function value (with the gap in parentheses), the average objective function value over 10
executions (with the gap in parentheses), and the average required CPU time. As GVNS is a stochastic search
method, we performed repetitions with different seed values in order to examine the stability of the proposed
method. For every test example, our GVNS was executed 10 times, each time with different seed to initialize
random number generator. The gaps are calculated with respect to the CPLEX lower bound. The smaller
objective function values and the shorter running times are presented in bold in Table 1:.

Table 1: Comparison of the proposed GVNS and CPLEX

CPLEX GVNS
Example n vmax Obj. (% gap) time [s] tmin Best obj. (% gap) Av. obj. (% gap) Av. time [s]

Ex1 26 2 50.69(00.00) 1925.968 300.25 50.69(00.00) 50.69(00.00) 10.118

Ex2 20 3 20.48(00.00) 86.121 84.713 20.48(00.00) 20.48(00.00) 0.049
Ex3 25 3 43.03(00.00) 5260.865 4312.364 43.03(00.00) 43.03(00.00) 0.969
Ex4 30 3 46.53(00.00) 16144.026 598.531 46.53(00.00) 46.53(00.00) 23.348
Ex5 35 3 48.06(3.29) 36000.00 2723.671 48.04(3.25) 48.04(3.25) 31.791
Ex6 45 3 61.18(20.11) 36000.00 35632.153 59.19(16.20) 59.309(16.43) 302.063

As can be seen from Table 1:, GVNS was able to find all optimal solutions provided by CPLEX within
several orders of magnitude shorter running times. For the two largest instances, GVNS managed to improve
solutions reported by CPLEX. Please note that the presented gaps are related to the CPLEX lower bound, and
therefore, cannot guarantee that the solutions obtained by GVNS are not optimal. As can be seen from the times
needed by CPLEX to obtain the reported solution (tmin), in most of the cases CPLEX was able to find these
solutions quite quickly and then it spent a lot of time proving their optimality. Therefore, we can conclude that
the proposed GVNS is able to provide high quality solutions within very short execution time which is of vital
importance for providing adequate delivery service.

5. CONCLUSION

An asymmetric capacitated vehicle routing problem with time window is considered related to the city delivery
service. As our previous results based on the application of CPLEX commercial solver to the developed MILP
formulation show, the real-life examples cannot be solved to optimality within given time/memory limits.
Therefore, we developed metaheuristic approach based on the variable neighborhood search (VNS) method.
The conducted experimental evaluation revealed the superiority of the proposed General VNS (GVNS) over
CPLEX with respect to the running time and solution quality for larger test examples. The future research may
involve some additional modification of the proposed GVNS, its application to new instances of the considered
problem, and the implementation of other metaheuristics.
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