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Maritime Faculty, University of Montenegro Kotor, Montenegro

e-mail: knatasa@ac.me

Zorica Stanimirović
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Abstract. This study considers the Minimum Cost Hybrid Berth Allocation Problem (MCHBAP) with fixed handling
times of vessels. The goal of MCHBAP is to minimize the total costs of waiting and handling, as well as earliness or tardiness
of completion, for all vessels. It is well known that even simpler variants of Berth Allocation Problems are NP hard. There-
fore, meta-heuristic methods represent the natural choice to deal with MCHBAP. A new optimization method based on the
deterministic variant of Variable Neighborhood Search (VNS) method is developed. Namely, we define three types of neigh-
borhoods based on sequence pair solution representation and incorporated them into Variable Neighborhood Descent (VND)
environment. The proposed VND implementation is tested on two sets of examples and compared with other metaheuristic
approaches from the recent literature. Our computational results show that the proposed VND is able to find optimal solutions
for real life test instances significantly faster than other methods. On randomly generated instances, VND outperformed other
methods with respect to the running time with negligible deterioration of solution quality for 4 out of 15 examples.
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1. Introduction

The Berth Allocation Problem (BAP) assumes
that the berth layout of a port is given, along with a
set of vessels that are to be served within the planning
time horizon. The main goal is to assign a berthing
position and a berthing time to each incoming vessel
to be served within a given time horizon in order to
minimize some objective [1]. Vessels are represented
by the expected time of arrival, the size, anticipated
handling time, a preferred berth in the port, and penal-
ties. BAP is proved to be NP-hard in [2].

Various approaches to different variants of BAP
can be found in recent literature [1, 3–7]. In this study,
the case of static hybrid BAP [3] is considered with
the objective to minimize the total cost of berthing
and penalties of earliness and delay of each vessel.
We refer to this variant as Minimum Cost Hybrid
Berth Allocation Problem, MCHBAP. This variant of
BAP was introduced in [8], the Mixed Integer Lin-
ear Programming formulation (MILP) was proposed
and used with CPLEX 11.2 and MIP-based meta-
heuristics on real life test instances. The proposed for-
mulation was shown to be very complex, and it was

not possible to obtain optimal solutions for the exam-
ples with more than 20 vessels. Therefore, nature in-
spired meta-heuristic approaches were proposed for
dealing with larger problem instances: Bee Colony
Optimization (BCO) method [6] and Evolutionary-
based approach (EA) [7].

We now propose a new approach, based on the
Variable Neighborhood Search (VNS) method. VNS
is a simple and effective meta-heuristic method based
on local search procedure [9, 10]. The basic idea of
VNS is the systematic change of neighborhoods both
within a descent phase, to find a local optimum, and a
perturbation phase to escape from the corresponding
valley. VNS has been widely used to address combi-
natorial and global optimization problems [10]. It has
already been applied to minimum cost discrete BAP
in [4]. The considered variant of BAP penalizes tardi-
ness and awards earliness of vessels. Discrete BAP
is simpler than MCHBAP, since each vessel occu-
pies only one berth. Therefore, it was easy to define
several neighborhood structures for VNS. The results
presented in [4] show that VNS is able to provide op-
timal solutions for all small size instances and to out-
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perform concurrent algorithms on large instances.
These results inspired us to apply VNS to MCH-

BAP. As the first attempt we use deterministic vari-
ant of VNS called Variable Neighborhood Descent
(VND). The proposed VND is compared against ex-
isting heuristic methods proposed in the literature
for solving MCHBAP: BCO and EA. Our computa-
tional results show that the proposed VND produces
high-quality solutions and outperforms existing meta-
heuristic approaches with respect to CPU time.

The rest of this paper is organized as follows.
Sect. 2 contains the description of MCHBAP. Sect. 3
is devoted to the proposed VND approach. Experi-
mental evaluation is given in Sect. 4. Concluding re-
marks and the directions for future work are in Sect. 5.

2. Problem description

As described in [8], input data of MCHBAP are:
l : The total number of vessels;
m : The total number of berthing positions;
T : The total number of time segments

in the planning horizon;
vessel : The sequence of data describing vessels

with the following structure (k=1, l):
vessel={(ETAk, ak, bk, dk, sk, c1k, c2k, c3k, c4k)}.
The elements of a 9-tuple vessel represent the fol-
lowing data for each vessel: The expected arrival time
(ETAk), the processing time (ak), the length (bk), the
required departure time (dk), the least-cost berthing
location for reference point (sk) and the associated
costs for missing the preferred berth (c1k), speeding
up (c2k) or slowing down (c3k) the vessel and missing
the the departure time (c4k).

A feasible solution of MCHBAP satisfies two
sets of constraints: each berth can be assigned to only
one vessel at time segment t ∈ T , and a berth is al-
located to the vessel only between its arrival and de-
parture times. The goal of MCHBAP is to minimize
total penalty cost for a feasible solution including: the
penalty incurred as a result of missing the least-cost
berthing location of the reference point; the penalties
resulted by the actual berthing earlier or later than the
expected time of arrival and the penalty cost induced
by delaying the departure after the promised due time.
The last three terms influence the objective function
in case they are positive. More precisely, the objective
function can be expressed as follows:

f =
l∑

k=1

(c1kσk + c2k(ETAk −Atk)++ (1)

+ c3k(Atk − ETAk)+ + c4k(Dtk − dk)+),

where (a− b)+ =
{
a− b,if a > b,
0, otherwise. (2)

σk denotes the distance from the least-cost berthing
location of the reference point, calculated as

σk =
∑

t,i

{|i−sk| : vessel k is at position (t,i)}, (3)

and Atk and Dtk represent actual berthing and depar-
ture times for a vesselk, respectively.

3. Proposed VNS-based approach to MCHBAP

The proposed VND is based on sequence pair so-
lution representation introduced in [11]. It involves
two types of permutations, denoted as H i V , which
describe the positions of vessels in the port. These
permutations are formed based on the following rules:
(a) if vessel j precedes vessel i in the permutation H ,
than vessel i "can not see" vessel j on "left-up" view,
(b) if vessel j precedes vessel i in the permutation V ,
than i "can not see" j on "left-down" view.

Each allocation may be represented as a pair of
permutations (H, V ), while each pair (H,V ) cor-
responds to a class of allocations. Pair of permuta-
tions (H,V ) is often used for the VLSI layout design
problems that require creating tight packed elements,
since the total used space is to be minimized [11].
This requirement is explored to break the ties when
decoding (H, V ) for these problems.

Differently from VLSI layout design problems,
MCHBAP requires allocation of vessels such that the
total cost is minimized. Therefore, the decoding pro-
cess has to differ. We have developed a procedure that
finds the best reference point for each vessel starting
from a pair of permutations H and V , in such a way
that allocations of vessels are still defined by the con-
structed pair (H, V ).

Our VND algorithm starts with creating an initial
solution by forming initial groups of vessels. The con-
flicted vessels (regarding their most preferred berths
and ETA parameter values) are placed in the same
group. If a group has a single element, the vessel from
this group is not conflicted with other vessels. There-
fore, it can be directly allocated on the cheapest pos-
sible position for this vessel.

After allocating single element groups, remain-
ing groups of vessels are sorted in non-increasing or-
der regarding their cardinality, and the vessels are al-
located on available positions. Vessels belonging to
the same group are sorted in non-decreasing order
according to their ETA parameter values, and placed
one by one in the port (starting from left to right) on
the cheapest available position. In this way, a feasible
initial solution is obtained, which represents a starting
point for creating initial permutations H and V . Fur-
thermore, based on the obtained initial solution, we
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identify the group of vessels that are not placed on
their most preferred positions. This group is denoted
as ωS, and the vessels included in ωS are sorted in
non-increasing order of their costs with respect to the
current best solution. During the algorithm’s run, the
structure of ωS may change, but the elements are al-
ways sorted according to the corresponding costs.

The proposed VND uses three types of neighbor-
hoods, which are used only for the vessels from ωS.
We always start from the vessel in ωS with the high-
est cost and later process vessels with lower costs. For
a given size k, k = 1, 2, 3, ...kmax, the neighborhoods
are used in the following order:
(i) ChangePositionH: selected vessel is first moved
k positions to the left in permutation H , and if there
is no improvement, the same vessel is moved k posi-
tions to the right in H , while permutation V remains
unchanged,
(ii) ChangePositionV : selected vessel is first moved
k positions to the left in permutation V , and if there
is no improvement, the same vessel is moved k posi-
tions to the right in V , while permutation H remains
unchanged,
(iii) ChangePositionHV : combination of Change
PositionH and ChangePositionV , where all pos-
sible changes of H and V are considered.

Parameter kmax depends on the current position
of the selected vessel and can take values between 1
and l−1.

4. Experimental results

In order to compare the efficiency of the pro-
posed VND with existing metaheuristic approaches
from [6, 7], two sets of test instances were consid-
ered. The first set contains real-life instances for BAP
proposed in [12], which involve 21 up to 28 vessels,
12 berths and the time horizon of 54 units. The sec-
ond set of instances is a subset of randomly generated
BAP data set from [5], with 35 vessels, 8 berths, and
112 time units. The instances from the second set are
considered as hard, since exact solver could not find
optimal solutions within a half an hour time limit.

All experiments were conducted on an Intel Pen-
tium 4, with 3.00-GHz CPU and 512 MB of RAM
running on the Microsoft Windows XP Professional
Version 2002 Service Pack 2 operating system. The
proposed VND is coded in the Wolfram Mathematica
v8.0 programming language, as well as the BCO and
EA [6, 7]. BCO and EA methods are run 10 times on
each test example with different seed values with the
time limit of 10 minutes of CPU.

The obtained results are presented in Tables 1
and 2. In the first column of Table 1, the number
of vessels for real-life test instances are given, while

the first column of Table 2 contains instance’s num-
ber. Objective values corresponding to optimal/best
known solutions are given in the second column, with
the heading Opt and BK, respectively. Next columns
are related to the results obtained by BCO [6], EA [7]
and the VND approach proposed in this paper.

Table 1. Results for real-life test examples:
l ∈ {21, . . . , 28}, m = 12, T = 54

BCO EA VNS
l Opt AvgT(s) AvgT(s) minT(s)

21 4779 8.41 196.35 0.50
22 4983 4.97 119.44 0.55
23 5193 4.25 189.85 0.61
24 5643 13.52 109.25 0.66
25 5953 5.30 156.82 0.67
26 6298 18.25 156.12 0.83
27 6478 8.14 188.95 0.89
28 6980 18.12 324.74 0.95
av. 5778.375 10.12 180.19 0.71

Since for real life instances, all methods were al-
ways able to generate optimal solutions, Table 1 con-
tains only CPU times. From results presented in Ta-
ble 1, it can be seen that the proposed VND approach
showed to be superior comparing to both BCO and
EA. The average running time of VND through all
real-life instances is 0.71 seconds, compared to 10.71
seconds and 180.19 seconds of average running times
of BCO and EA, respectively.

In each run of BCO and EA, the best found to-
tal cost is memorized and the minimal values ob-
tained after 10 executions of algorithms are presented
in the columns named Best. After 10 runs of BCO
and EA, the corresponding average values are cal-
culated and presented in columns named AvgC and
AvgT , respectively. The resulting gap G% (percent-
age of relative error) of AvgC from the optimal Opt
or best-known BK objective value is calculated as
100·(AvgC−Opt)/Opt, or 100·(AvgC−BK)/BK.

For the VND method, the best total cost is pre-
sented in the column Best, and the corresponding
CPU time is given in the column minT . The resulting
gap G% of the best VNS solution Best is calculated
in similar way as in the case of BCO and EA method.

By analyzing the results presented in Table 2,
which are obtained on the subset of randomly gen-
erated test instances, it can be seen that VND still
has shortest average running time (28.5 s) compared
to BCO (86.74 s) and EA (240.27s). EA showed
the best performance regarding solution quality, since
it reached best-known solution in all considered
examples. However, BCO produced solutions with
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Table 2. Results for generated test examples: l = 35, m = 8, T = 112

BCO EA VNS
Inst. no. BK Best AvgC AvgT(s) G(%) Best AvgC AvgT(s) G(%) Best minT(s) G(%)

1 717 718 718 143.75 0.1395 717 717 104.44 0 717 20.94 0
2 491 491 491 54.00 0 491 491 282.21 0 493 1.44 0.4073
3 683 683 683 51.80 0 683 683.4 246.88 0.0586 683 15.26 0
4 554 554 554 237.64 0 554 554 169.15 0 554 123.11 0
5 594 594 594 40.41 0 594 594 114.75 0 594 91.34 0
6 486 486 486 41.42 0 486 486 108.11 0 486 1.72 0
7 543 543 543 34.09 0 543 543 583.80 0 543 149.66 0
8 554 554 554 52.30 0 554 554.6 267.55 0.1083 554 2.27 0
9 531 531 531 34.84 0 531 531 207.60 0 537 1.40 1.1299
10 486 486 486 42.31 0 486 486.6 487.42 0.1235 486 1.834 0
11 480 480 480 190.81 0 480 480 108.38 0 480 1.43 0
12 573 573 573 145.77 0 573 573 188.12 0 578 1.98 0.8726
13 520 520 520 47.23 0 520 520 116.29 0 520 7.02 0
14 557 557 557 59.77 0 557 557 135.95 0 569 3.62 2.1543
15 627 627 627 124.95 0 627 632.2 483.35 0.8293 627 4.43 0
av. 559.8 559.8 86.74 0.0093 559.7 560.2 240.27 0.0746 561.4 28.50 0.3043

lower average gap (0.0093%), compared to both EA
(0.0746%) and VND (0.3043%). In four cases, the
best solutions obtained by the proposed VND have
certain gaps from the best-known solutions. However,
in these four cases, the VND running times were sig-
nificantly shorter compared to corresponding running
times of BCO and EA approaches.

5. Conclusion

MCHBAP with fixed handling times of vessels
is considered. A new optimization method based on
VND is proposed and compared with the state-of-the-
art approaches. Our preliminary computational re-
sults show that the proposed VND is competitive with
the best performing metaheuristic methods (BCO and
EA). Solutions of similar quality are obtained much
faster with our VND. Presented results indicate that
VNS based methods represent a promising approach
to MCHBAP, as well as other variants of BAP. The
future work will be directed to further improvements
of the proposed VND approach, developing new VNS
based methods and possible combinations with other
metaheuristic or exact solvers.
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