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Abstract: A variant of Vehicle Scheduling Problem (VSP) arising from the sugar beet transportation in a sugar
factory in Serbia is presented. The objective of the considered VSP is to minimize the required transportation
time under problem-specific constraints. The problem is first formulated as a Mixed Integer Quadratically
Constrained Program (MIQCP) and then transformed to a Mixed Integer Linear Program (MILP). The proposed
MILP model was used within the framework of CPLEX solver, which produced optimal solutions only for
small-size problem instances. Therefore, a General Variable Neighborhood Search (GVNS) is designed to solve
problem instances of larger dimensions. GVNS is evaluated and compared against CPLEX on the set of real-life
and generated problem instances. Obtained computational results show that GVNS is a promising solution
approach to VSP, as it is able to reach high-quality (mostly optimal) solutions within very short running times.

Keywords: Vehicle Scheduling Problem, Mixed Integer Quadratically Constrained Programming, Mixed Integer
Linear Programming, General Variable Neighborhood Search

1. INTRODUCTION

This study considers a variant of Vehicle Scheduling Problem (VSP) that arises from a real-life problem of
optimizing sugar beet transportation in a sugar factory in Serbia. The low price of sugar beet on the market has
two main consequences regarding the organization of transport. First, transportation costs represent significant
percentage of total production costs and therefore, savings in this early production stage are of great importance.
Second, a company needs to keep individual farmers as suppliers of raw material for a longer period. For this
reason, a company usually organizes the transport of sugar beet from each of many producers to the factory on its
own expense by renting vehicles and hiring workers for transporting the goods, including loading and unloading.
Therefore, from the company’s point of view, it is necessary to have an efficient transport organization, which
will satisfy all problem-specific constraints with minimum expenditure of time and money.

In the literature, there are several studies dealing with organizing the transport of agriculture raw materials.
Sethanan and Pitakaso (2016) considered a vehicle routing problem (VRP) for raw milk collection, with the goal
to minimize the sum of fuel costs and the costs of cleaning raw milk tanks on vehicles. The considered problem
was solved by five solution approaches based on differential evolution algorithm. The problem of collecting
olive oil in Tunisia was studied by Lahyani et al. (2015) and formulated as a Multi-Compartment Vehicle
Routing Problem. The authors proposed an integer linear programming formulation and used branch-and-cut
algorithm to provide optimal solutions. A case study of Australian sugar mill was presented by Higgins (2006),
dealing with vehicle scheduling problem in sugar cane transportation. Two metaheuristic methods, Tabu search
and Variable neighborhood search, were proposed as solution approaches to the VSP considered in Higgins
(2006). Milan et al. (2006) integrated the problems of rail and road sugar cane transportation in Cuba, in order
to reduce the total transportation costs. As the resulting problem showed to be difficult to solve, Milan et al.
(2006) first solved a smaller-size subproblem by HyperLINDO solver and than used the obtained solution to
construct a feasible solution of the integrated problem. Thuankaewsing et al. (2015) investigated the problem of
maximizing the estimated sugar cane yield in Thai sugar cane industry, assuming fair benefits for all producers.
The considered problem was solved by a tabu search heuristic proposed in Thuankaewsing et al. (2015). A
review of applications of vehicle scheduling problems and vehicle routing problems together with solution
approaches can be found in Bunte and Kliewer (2009).

Note that the variant of VSP considered in this study differs from the ones considered in Higgins (2006),
Milan et al. (2006), and Thuankaewsing et al. (2015), due to the differences between sugar cane and sugar beet
related to the sustainability in the open, the type of vehicles used for transport, and the available resources of the
sugar factory. The considered VSP is first formulated as a Mixed Integer Quadratically Constrained Program



(MIQCP), with the objective and specific constrains that arise from the real-life situation. The proposed MIQCP
is further reformulated as a Mixed Integer Linear Program (MILP) and tested on real-life and generated problem
instances within the framework of the commercial CPLEX solver. As CPLEX provides optimal solutions only
for small-size instances, a variant of Variable Neighborhood Search (VNS) metaheuristic, known as General
Variable Neighborhood Search (GVNS) is designed to solve problem instances of larger dimensions. The choice
of VNS method is motivated by its successful applications to various vehicle routing and scheduling problems,
such as: inventory routing and scheduling problem in Liu and Chen (2012), location routing scheduling problem
in Macedo et al. (2015), Vehicle Routing Problem with multiple trips in Cheikh et al. (2015), multiple trips
VRP with backhauls in Wassan et al. (2017), Heterogeneous Fleet VRP in Bula et al. (2016), etc. Constructive
elements of the proposed GVNS implementation are adapted to the problem characteristics. GVNS metaheuristic
is tested and compared against the CPLEX solver on the set of real-life instances obtained from a sugar company
in Serbia, as well as on the set of generated instances. The obtained computational results clearly indicate the
potential of GVNS for the considered variant of VSP.

2. PROBLEM DESCRIPTION AND MATHEMATICAL FORMULATIONS

In the harvesting season of the sugar beet, a precise transportation plan has to be made on the daily basis. For
each day, the list of locations with the amounts of goods to be transported is prepared in advance. As the
quantities of collected goods at each location significantly exceed the capacity of vehicles, each location has to
be visited several times in order to be emptied. It is assumed that all vehicles have same technical characteristics
(i.e., average velocity, capacity). The factory area is the starting and the finishing point for each tour, meaning
that each vehicle serves only one location in a tour before it returns to the factory. Tours with more than one
location are not allowed, as it is important to prevent a bad quality mixture of sugar beet from different locations.
Therefore, it is possible that last vehicle that serves some location is not fully loaded. When a vehicle loaded
with sugar beet arrives to the factory area, a certain time is needed for unloading the sugar beet including the
analysis of samples. After the unloading is finished, a vehicle can start a new tour. It is assumed that there
is enough space and labor at each location and in the factory area to complete the loading and unloading of
unlimited number of vehicles at the same time.

Having in mind specific sustainability of sugar beet, it is important that the collected quantities of goods
do not stand in the open for too long, otherwise they will lose quality. In the case that on some location the
goods are standing longer than a predetermined number of days, this location is considered as an urgent one. It
is important that urgent locations are emptied during the working day. The total amount of goods transported to
the factory within the working day should not be lower than a predetermined constant, which ensures continuous
work of factory machines. Once the factory machines start to work, they should not be stopped, because the
starting process is very expensive.

By taking into account all problem specific constrains mentioned above, the goal of the considered VSP is to
find the optimal set of vehicle schedules which minimizes the maximum working time among all vehicles, i.e.,
the moment of time when all vehicles finish their tours. In our problem, a vehicle schedule is defined as the
array of tours and the corresponding departure times from the factory.

In order to present mathematical formulations of the considered VSP, the following notation is introduced:
J : The set of locations; I : The set of vehicles; K : The set of tours;
n : The total number of locations; m : The total number of vehicles;
kmax : The maximum number of tours a vehicle can make during working day;
c j : The quantity of goods collected at location j ∈ J;
d j : The distance between the factory and location j ∈ J;
C : Capacity of vehicle; D : Daily factory needs; v : The average speed of a vehicle;
u : The average time that a vehicle spends in factory area between two tours,

(the time needed for unloading with analyzing the samples);
w : The average time needed for loading a vehicle;
S j : The time needed for serving location j ∈ J, calculated as the sum of driving time in both directions and

loading and unloading time, i.e., S j = 2 d j

v +u+w;
t j: The number of days that the goods are kept in the open at location j ∈ J;
t0: The maximum number of days that the goods can stay in the open without losing quality;
U : The set of urgent locations, i.e., U = { j ∈ J : t j > t0};
Tj : Binary value assigned to location j ∈ J, defined as Tj = 1 if j ∈U , and Tj = 0 otherwise;
ε: Small positive constant, satisfying 0 < ε < c j/C for each j ∈ J;
tstart : Starting time; tend: The end of working day.



Note that vehicles make different number of tours during the working day, depending on the visited locations.
However, the number of tours for each vehicle is limited by kmax. In order to equalize the number of tours for
all vehicles, we introduce the concept of virtual tour. The duration of a virtual tour is equal to zero, as it is
assumed that during this tour a vehicle stays in the factory area. Therefore, by adding virtual tours to vehicles
(if necessary), the objective function value remains unchanged. On the other hand, by setting the number of
tours for each vehicle to kmax, we are able to simplify problem formulations without affecting its characteristics.

The following decision variables are used in mathematical formulations:
Binary variables x j

ik are equal to 1 if a vehicle i ∈ I visits location j ∈ J in the tour k ∈ K, and 0 otherwise.
If a vehicle i ∈ I has virtual tour k ∈ K, then ∑

j∈J
x j

ik = 0 holds;

Real variables tik represent the departure time of a vehicle i ∈ I from the factory in the tour k ∈ K;
Binary variables y j are set to 0 if location j ∈ J is emptied, and 1 otherwise. The role of variables y j is to
keep the track on the total amount of goods delivered to the factory from location j ∈ J. If y j = 1, the
corresponding amount is obtained by multiplying the vehicle capacity C with the number of tours visiting
location j (by all vehicles). Otherwise, in case that y j = 0, whole amount of goods c j collected at j ∈ J is
transported to the factory;
Real variable T stands for the objective function value, i.e., the very last moment of time when all vehicles
finish their last tours.

Using the above notation and decision variables, the considered VSP can be formulated as a Mixed Integer
Quadratically Constrained Program (MIQCP) as follows:

min T (1)

subject to

∑
j∈J

x j
ik ≤ 1, ∀i ∈ I, ∀k ∈ K (2)

∑
i∈I

∑
k∈K

Cx j
ik−C+ ε≤ c j, ∀ j ∈ J (3)

Tj ≤ 1− y j, ∀ j ∈ J (4)

∑
j∈J

(1− y j)c j +∑
i∈I

∑
j∈J

∑
k∈K

Cy jx
j
ik ≥ D, (5)

∑
i∈I

∑
k∈K

x j
ik ≥ (c j/C) · (1− y j), ∀ j ∈ J (6)

∑
i∈I

∑
k∈K

y jx
j
ik + ε≤ c j/C, ∀ j ∈ J (7)

tik + ∑
j∈J

S jx
j
ik ≤ ti,k+1, ∀i ∈ I, ∀k ∈ K \{kmax} (8)

ti,kmax + ∑
j∈J

S jx
j
ikmax
≤ T, ∀i ∈ I (9)

x j
ik ∈ {0,1}, ∀i ∈ I, ∀ j ∈ J, ∀k ∈ K (10)

y j ∈ {0,1}, ∀ j ∈ J (11)
tstart ≤ tik ≤ tend , ∀i ∈ I, ∀k ∈ K (12)

The objective function (1) together with constraints (9) minimizes the moment of time when all vehicles
finish their last tours. Each vehicle in each tour serves only one location or make a virtual tour, which is ensured
by constraints (2). Constraints (3) provide that the total amount of goods transported from a location j ∈ J is not
greater than the total amount c j collected at the same location. As the last vehicle visiting a location j ∈ J may
not be full with goods, it is necessary to subtract C on the left hand side of constraints (3). The role of small
positive constant ε that is added to the left hand side of constraints (3) is to provide a strict inequality between
the quantities of goods transported from a location j ∈ J diminished by vehicle capacity C and the quantities c j.
A strict inequality prevents a vehicle to make additional unnecessary tour to location j ∈ J in the case when
c j/C is an integer.

All goods collected at an urgent location j ∈ J must be transported during the working day, which is ensured
by constraints (4). If t j ≤ t0 holds, the value of Tj is set to 0, and the constraint (4) is satisfied regardless of the
transported amount of goods. Otherwise, if t j > t0, Tj is equal to 1, meaning that location j ∈ J is urgent and it
must be emptied during the working day, which further implies that variable y j takes the value of 0. Constraint
(5) provides that the total amount of goods transported to the factory is at least D. The transported amount is
obtained by summing the amount of goods delivered to the factory from emptied locations (the first sum on the



left hand side of (5)) and the quantities of goods transported from locations that are still not emptied (the second
sum on the left hand side of (5)).

If a location j ∈ J is emptied, variable y j is equal to 0 and the constraints (6) provide that location j ∈ J is
visited at least c j/C times, which is ensured by constraints (7). In the case that location j ∈ J is not emptied,
variable y j is set to 1, and in this case, constraints (6) are obviously satisfied. The role of constraints (8) is to
provide that a vehicle can not start a new tour before finishing the previous one. More precisely, the starting
time of each tour must not be less than the starting time of the previous one, increased by the serving time for
a location visited in the previous tour. If a tour k ∈ K \{kmax} of a vehicle i ∈ I is virtual, the sum on the left
hand side of constraints (8) is equal to zero. The upper limit on the finishing time for each vehicle is set by the
constraints (9). Finally, constraints (10)-(12) indicate the type of decision variables x j

ik, y j, and tik, respectively.
In order to reformulate the proposed MIQCP model (1)-(12) to a linear program, it is necessary to transform

the product of binary variables y j and x j
ik that occurs in constraints (5) and (7). We introduce binary variables r j

ik,
i ∈ I, j ∈ J,k ∈ K to replace the product y jx

j
ik. These variables satisfy the following constraints:

r j
ik− (y j + x j

ik)/2≤ 0 ∀i ∈ I, ∀ j ∈ J, ∀k ∈ K, (13)

r j
ik− y j− x j

ik +1≥ 0 ∀i ∈ I, ∀ j ∈ J, ∀k ∈ K, (14)

r j
ik ∈ {0,1} ∀i ∈ I, ∀ j ∈ J, ∀k ∈ K. (15)

Therefore, constraint (5) is replaced by constraint (5’), while constraints (7) are replaced by constraints (7’):

∑
j∈J

(1− y j)c j +∑
i∈I

∑
j∈J

∑
k∈K

Cr j
ik ≥C, (5’)

∑
i∈I

∑
k∈K

r j
ik + ε≤ c j/C ∀ j ∈ J. (7’)

Finally, MIQCP model (1)–(12) is transformed to the MILP model (1)-(4), (5’), (6), (7’), (8)-(15).

3. General Variable Neighborhood Search for the VSP in sugar beet transportation

Variable Neighborhood Search (VNS) is a well-known metaheuristic method based on systematic change
of neighborhoods within a possibly randomised local search algorithm. Since the early work on VNS by
Mladenović and Hansen (1997), different variants of this metaheuristic have been proposed in the literature:
Basic VNS (BVNS), Reduced VNS (RVNS), Variable Neighborhood Descent (VND), General VNS (GVNS),
Skewed VNS (SVNS), Variable Neighborhood Decomposition Search (VNDS), Primal-dual VNS, Parallel
VNS, etc. An overview of VNS based methods and applications can be found in Hansen et al. (2010) or Hansen
and Mladenović (2014). In this section, we describe the GVNS implementation proposed as a solution approach
to the considered VSP.

Solution representation and objective function calculation. A solution of the problem is represented as an
integer matrix S that consists of m rows of length kmax. The i-th row of S corresponds to vehicle i ∈ I, and
contains integers sik ∈ {0,1, . . . ,n}, where sik denotes the index of a location visited by vehicle i in tour k ∈ K.
If sik is 0, it means that the k-th tour of vehicle i is virtual. For simplicity, virtual tours (if they exist) are always
placed at the end of rows in the solution matrix. Objective function of a solution is calculated as follows. For
each vehicle i ∈ I, values tik representing departure times in each tour k ∈ K are calculated based on the values
sik in the solution matrix S. As all vehicles start their first tour at the same time (i.e., at the beginning of the
working day), ti1 is set to starting time tstart . The departure time tik of a vehicle i ∈ I in a tour k ∈ {2, . . . ,kmax},
is equal to ti,k−1 increased by the time needed to serve the location visited in the tour k−1. The finishing time
for each vehicle is obtained as the departure time in its last non-virtual tour increased by the time required to
serve visited location. Finally, the objective function value T = f (S) is calculated as the maximum of finishing
times among all vehicles, i.e., T = maxi∈I t f (i), where t f (i) = tikmax +∑ j∈J S jx

j
ikmax

. Note that all tik, for k being
virtual tour, are mutually equal and represent the finishing time of the last non-virtual tour of vehicle i. In the
case that T > tend , the corresponding solution is infeasible and it is discarded.

Generating initial solution. Initial solution for GVNS is generated in a greedy way. First, urgent locations are
identified, as these locations have high priority and they must be served during the working day. If the quantity
of goods collected at urgent locations can not be transported by the given set of vehicles within the working day,
no feasible solution exists for the given data. Otherwise, the procedure continues with sorting the locations to be
served according to these two criteria: urgency and distance from the factory. The sorted list of locations is



structured as follows: at the beginning of the list are urgent locations sorted in non-decreasing order in respect
to their distances from the factory, followed by non-urgent locations that are also sorted in non-decreasing order
according to their distances from the factory. Initially, the elements of initial solution’s matrix S are set to 0.
One by one location from the sorted list is taken to fill in the first column of S (corresponding to the first tours of
vehicles), then the second column (corresponding to the second tours of vehicles), etc., until all urgent locations
are emptied and the factory needs are satisfied. Note that a vehicle may start its last tour to a non-empty location
only if this tour can be finished until the end of working day, otherwise, this location is visited by the next
vehicle. After the solution matrix S is filled in, one by one row of S is considered and locations in each row
are sorted in non-increasing order in respect to their distances from the factory. In this way, it is ensured that a
vehicle will first make longer tours and then the shorter ones. As described above, the values of corresponding
departure times tik, i ∈ I,k ∈ K are calculated based on the values sik in the sorted matrix of initial solution.

Neighborhood structures. The proposed GVNS uses four types of neighborhoods, denoted as NI , NII , NIII ,
and NIV . NI-neighbor of solution S is obtained by exchanging a tour to a non-urgent location with a tour to
a non-emptied location. Neighborhood NII consists of all solutions S′ obtained by replacing virtual tour of a
vehicle with a tour to a non-emptied location. NIII-neighbor S′ of solution S is obtained by exchanging a tour to
a non-urgent location with virtual tour in the list of tours of vehicle that has the longest working time. Finally,
neighborhood NIV is obtained when a pair of vehicles in S exchanges non-virtual tours. Note that moves in
neighborhoods NII and NIV preserve the feasibility of solutions. On the other hand, the transformation that
defines neighborhoods NI and NIII may violate feasibility, as the factory needs in the newly obtained solution
may not be satisfied. However, the next move within the same neighborhood may produce a feasible solution. It
can be proved that the above described neighborhoods are correctly defined for the considered VSP.

Algorithm 1 The proposed GVNS for VSP
procedure GVNS(Problem Data,rmax, tmax)

Generate initial solution S;
repeat

λ← 1; r← 1;
while (λ≤ 2) do

if r ≤ rmax then
S′← ShakeNI(S,r): //Shaking in NI

else
S′← ShakeNII(S): //Shaking in NII

if S′ is feasible then
S′′←V ND(S′): //Local Search-VND
if f (S′′)< f (S) then //Move or Not step

S← S′′; r← 1; λ← 1;
else r← r+1;
if r > rmax then λ← λ+1;

until SessionTime≥ tmax

GVNS implementation. The structure of the proposed GVNS is presented by Algorithm 1. GVNS starts with
generating initial solution S in a greedy way. Each GVNS iteration starts by setting λ and r to 1 and continues
with performing the three main steps Shaking, Local Search, and Move or Not within the neighborhood change
loop while λ ≤ 2. GVNS iterations are repeated until time limit tmax is reached. Shaking step is performed

Algorithm 2 VND
procedure VND(Problem Data, S′)

S′′← S′;
while (Improvement) do

S′← Sort1(S′);
λ← 1;
while (λ≤ 2) do

if λ = 1 then
Find the best neighbor S′′ ∈ NIII(S′); //Local Search in NIII

else
Find the best neighbor S′′ ∈ NIV (S′); //Local Search in NIV

if f (S′′)< f (S′) then //Move or Not step
S′← S′′; λ← 1;

else λ← λ+1;
return (S′);



within neighborhoods NI and NII . Neighborhood NI of order r, r = 1, . . . ,rmax used in this step is obtained
by repeating r times random move that defines this neighborhood. Note that only non-urgent locations in the
vehicle’s list of tours are allowed to be replaced by non-emptied locations, and therefore, all urgent locations
will remain served and the delivered quantities from each location will not exceed the prepared amounts. As
this move can change the amount of goods delivered to the factory, it may affect the feasibility of the solution.
For this reason, only feasible solution S′ produced by Shaking step in neighborhood NI is further passed to
Local Search, otherwise, this step is repeated for the same value of r. When the value of r exceeds rmax, Shaking
step continues in neighborhood NII by performing an exchange of virtual tour with a tour to the non-emptied
location, resulting in a feasible solution. Neighborhood change in Shaking step is regulated by parameter λ.

Instead of standard Local Search, the proposed GVNS uses VND (presented in Algorithm 2) that explores
neighborhoods NIII and NIV . First, solution S′ is transformed as follows: vehicles are sorted in non-increasing
order according to their finishing times, and for each vehicle, the locations are sorted in non-increasing order in
respect to their distances from the factory. Note that a permutation of tours for a vehicle in a solution does not
affect the objective function value, as finishing time of vehicle remains unchanged. Neighborhood NIII of the
solution S′ is first explored by performing a procedure that tries to replace one by one tour to the non-urgent
location of the first vehicle (the one with a longest working time) by a virtual tour. The obtained solution is
evaluated only if daily factory needs are satisfied.

Neighborhood structure NIV is explored as follows. The search starts from the first (i1 = 1) and the last
(i2 = m) vehicle in the sorted list, and tries to exchange the locations from the first tour (k1 = 1) of vehicle i1 and
the last tour (k2 = kmax) of vehicle i2 (i.e., the longest and the shortest tour of vehicles i1 and i2, respectively).
If this move leads to a decrease of the maximal finishing time among vehicles i1 and i2, the exchange of their
tours k1 and k2 is performed. In the newly obtained solution, the tours of the two considered vehicles i1 and i2
are sorted in non-increasing order according to the distances of the visited locations from the factory. Finally,
the list of vehicles is arranged in non-increasing order according to their finishing times. If the exchange of
tours k1 and k2 produces no improvement of the maximal finishing time among vehicles i1 and i2, the Local
Search continues through the sorted list of tours in vehicle i2 and tries to exchange, one by one, its tour k2,
k2 < kmax with the tour k1 of vehicle i1. These attempts are performed until an improvement is found or the first
tour of vehicle i2 is reached without an improvement. In the latter case, the search goes forward through the
sorted tours of vehicle i1 trying to exchange, one by one, tour k1, k1 ≤ kmax with the tour k2 of vehicle i2 until an
improvement is reached or k1 reaches kmax without an improvement. If no improvement is found by exchanging
tours of vehicles i1 and i2, the described steps are repeated with vehicle i1 and vehicles i2−1, i2−2, . . . , i1 +1.

If the best found solution S′′ in the Local Search step is better than S′, solution S′ is replaced with S′′ and the
search continues within the neighborhood NIII , otherwise λ is set to λ+1 (Move or Not step). The termination
criterion for our VND is completed local search in both neighborhoods without improvement. Note that the
size of neighborhoods NIII and NIV used in VND step is O(mkmax) and O(

(m
2

)
k2

max), respectively. The sorting
of tours for each vehicle according to distances from the factory requires O(mk2

max) operations, while sorting
the vehicles in respect to their finishing times is performed in O(m2) steps. Therefore, the overall worst-case
complexity of our VND is O(

(m
2

)
k2

max +mkmax +mk2
max +m2).

4. Experimental analysis

All computational experiments presented in this section were carried out on an Intel Core i7-2600 processor
on 3.40GHz with 12GB RAM memory under Linux operating system. The experiments were performed on
real-life and generated data set. Real-life instances are obtained from the considered sugar factory in Serbia.
This data set includes 40 problem instances with up to 15 locations, 40 vehicles and the maximum number of
20 tours during the working day. Generated problem instances involve up to 1000 locations, 400 vehicles, and
the maximum number of 400 tours during the working day. This data set includes 28 test examples, which are
generated following the structure of real-life instances.

Commercial CPLEX 12.6.2 MIP solver is used to solve MILP model described in section 2. on small and
medium-size instances to optimality (if possible). The time limit imposed on CPLEX run is set to 5 hours. The
proposed GVNS algorithm is evaluated on all real-life and generated instances. On each instance, GVNS is
run 30 times. The values of GVNS stopping criterion parameter tmax is set to tmax = 1 second for small-size
real-life instances, tmax = 10 seconds for medium-size real-life instances, and tmax = 100 seconds for generated
instances. Regarding the parameter rmax, eight formulas expressing rmax as a function of kmax are evaluated
through preliminary computational experiments on the subset of real-life and generated test instances. Based on
the obtained results, the value of rmax is set to rmax = kmax/2+3.

Computational results obtained on all considered instances are presented in Table 1. The left part of Table 1



Table 1: Computational results on small-size real-life instances solved to optimality by CPLEX 12.6.2

Instance CPLEX 12.6.2 GVNS Instance CPLEX 12.6.2 GVNS
Tn,m,kmax opt. sol. t(s) best t(s) gap(%) Tn,m,kmax best best t(s) gap(%)

T3,2,4 16.874 0.09 opt 0.000 0.000 T5,5,10 17.781 17.781 0.000 0.000
T3,3,3 13.727 0.13 opt 0.000 0.000 T5,10,10 17.014 17.014 0.079 0.005
T3,3,4 16.303 0.20 opt 0.000 0.000 T5,20,20 24.648 24.591 0.001 0.000
T3,3,5 17.164 0.09 opt 0.000 0.000 T8,40,10 26.291 26.201 2.075 0.065
T3,4,2 10.580 0.04 opt 0.000 0.000 T10,10,10 16.243 16.243 0.007 0.000
T3,4,3 13.727 0.17 opt 0.000 0.000 T15,20,15 26.214 25.990 0.255 0.061
T3,4,4 16.303 0.08 opt 0.000 0.000 T r

10,20,20 58.600 58.486 5.144 0.062
T3,5,2 12.294 0.17 opt 0.000 0.000 T r

10,30,15 / 49.093 0.489 0.000
T4,2,4 13.446 0.05 opt 0.000 0.000 T r

10,50,10 36.896 36.667 5.785 0.002
T4,3,2 10.580 0.04 opt 0.000 0.000 T r

15,30,25 / 63.580 7.020 0.001
T4,4,2 11.151 0.07 opt 0.000 0.000 T r

15,40,20 / 53.453 0.256 0.003
T4,4,3 14.299 0.12 opt 0.000 0.000 T r

20,30,10 / 22.214 0.007 0.000
T4,4,4 16.874 0.57 opt 0.000 0.000 T r

20,40,20 / 41.163 0.129 0.000
T4,5,7 15.287 307.93 opt 0.172 0.037 T r

25,50,15 / 36.060 1.508 0.001
T5,2,4 13.156 0.06 opt 0.000 0.000 T r

30,30,25 / 46.674 8.405 0.008
T5,3,2 10.580 0.03 opt 0.000 0.000 T r

30,60,15 / 29.493 1.840 0.006
T5,3,3 13.156 0.44 opt 0.000 0.000 T r

40,60,55 / 103.680 19.199 0.035
T5,3,4 16.589 0.36 opt 0.000 0.000 T r

45,65,70 / 109.407 16.911 0.047
T5,4,2 10.866 0.10 opt 0.000 0.000 T r

50,70,70 / 116.669 7.056 0.044
T5,4,4 17.446 0.65 opt 0.000 0.000 T r

55,65,65 / 153.287 12.581 0.012
T5,4,5 18.879 0.21 opt 0.000 0.000 T r

60,80,80 / 126.453 12.420 0.004
T5,5,2 11.437 0.22 opt 0.000 0.000 T r

70,60,60 / 171.906 28.357 0.017
T5,5,5 18.879 40.74 opt 0.000 0.000 T r

80,65,65 / 181.413 28.391 0.025
T6,2,4 13.160 0.08 opt 0.000 0.000 T r

90,80,80 / 158.011 31.732 0.016
T6,3,2 10.294 0.14 opt 0.000 0.000 T r

100,85,85 / 184.046 34.671 0.009
T6,3,3 12.870 0.48 opt 0.000 0.000 T r

120,90,90 / 216.260 38.895 0.007
T6,4,2 10.009 0.13 opt 0.000 0.000 T r

150,100,100 / 240.303 36.428 0.027
T6,5,2 10.866 0.18 opt 0.000 0.000 T r

300,120,120 / 254.463 56.403 0.031
T6,6,6 16.569 258.00 opt 0.184 0.158 T r

400,150,150 / 373.000 81.898 0.042
T6,7,6 11.479 53.00 opt 0.000 0.000 T r

500,200,200 / 370.121 95.446 0.034
T7,3,3 12.299 0.36 opt 0.000 0.000 T r

600,220,220 / 428.366 93.223 0.025
T7,5,2 10.580 0.29 opt 0.000 0.000 T r

800,300,300 / 417.210 83.698 0.009
T7,5,6 16.140 24.43 opt 0.172 0.085 T r

900,350,350 / 650.036 10.868 0.008
T8,6,5 14.246 269.84 opt 0.049 0.000 T r

1000,400,400 / 948.847 80.059 0.002
Average 13.170 28.22 opt 0.017 0.008 Average / 141.788 23.566 0.018

contains experimental results on small-size real-life instances, while results on 6 medium-size real-life and
all generated instances are presented on the right part of Table 1. Instance’s name is presented in column
Tn,m,kmax . Columns related to CPLEX contain the objective function value of the optimal solution opt. sol. and
the corresponding runtime t(s). In the case when CPLEX reached only feasible solution, the column t(s) is
omitted, as CPLEX run until time or memory limit was reached. The first column related to GVNS presents the
objective function value of the best GVNS solution, with mark opt when it coincides with opt. sol. Remaining
columns related to GVNS contain the average time avg. t(s) in which GVNS reaches best solution, the average
percentage gap avg. gap (%) of the GVNS solution with respect to opt. sol. or best, all calculated through
30 runs. The last row of Table 1, denoted with Average contains average values of the presented results. The
objective function values of the optimal or best-known solutions are bolded in columns best, as well as the best
values in the last row Average.

As it can be seen Table 1, the proposed GVNS method reached all optimal solutions on small-size instances
solved to optimality by CPLEX. On these instances, the average running time of GVNS was 0.017 seconds,
which is significantly shorter compared to the average running time of CPLEX (28.22 seconds). In addition,
GVNS was very stable, as it produced solutions with low average gap calculated in respect to known optimal
solutions (0.008%). Table 1 also shows that CPLEX solver produced feasible solutions only for 6 real-life
and two generated instances within the given time limit of 5 hours. These feasible solutions are presented in a
column best related to CPLEX. On the other hand, the proposed GVNS reached all upper bounds provided by
CPLEX and in case of five instances (T5,20,20, T8,40,10, T15,20,15, T r

10,20,20, and T r
10,50,10), the corresponding upper

bounds were improved. For medium-size real-life and generated problem instances, GVNS was also stable in
providing the best-known solutions, as its average gap was very low (0.018%). The average running time that
GVNS needed to obtain its best solutions on medium and generated instances was 23.566 seconds.



5. Conclusion

A variant of Vehicle Scheduling Problem that arises from optimizing the transport of sugar beet in Serbia is
considered. The problem is formulated as Mixed Integer Quadratically Constraint Program (MIQCP) that is
further linearized, and the obtained MILP formulation was used within the framework of CPLEX 12.6.2 MIP
solver. As optimal solutions are obtained only for small-size real-life problem instances, a General Variable
Neighborhood Search (GVNS) metaheuristic is designed to solve problem instances of larger dimensions,
Computational results on small-size real-life data set show that GVNS quickly reaches all optimal solutions
obtained by CPLEX solver. For medium-size real-life and generated test examples, GVNS either reaches or
improves upper bounds provided by CPLEX within the given time limit. Based on the presented results, it
may be concluded that proposed GVNS represents a promising solution approach to the considered VSP. As
future work, the proposed VSP model can be extended by including non-homogenous vehicles or more than one
factory. In addition, the designed GVNS may be combined with other optimization methods to improve the
obtained best solutions of the considered VSP or to solve its extensions.
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