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ABSTRACT 
This paper presents two exact combinatorial algorithms for solving the Discrete Berth 
Allocation Problem (DBAP) with fixed handling times of vessels classified by disc | stat | 
fix | Σ(w1 wait + w2 speed + w3 tard + w4 pos). We address the issues of DBAP according 
to the well known Park and Kim model. To the best of our knowledge these are the first 
combinatorial exact algorithms for solving DBAP. Computer results prove the dominance 
of the proposed algorithms over the classical MIP based exact solvers. 
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1. INTROUCTION 
 
Berth Allocation Problem (BAP) is the problem of allocating berths for a set of vessels in 
that have to be served within time horizon in a container port. Vessels are represented by 
the set of data regarding expected time of arrival, size, projected time of handling, 
preferred berth in the port, penalties, etc. Port is presented by the structure of the berths. 
Beside that there is also a given objective function. The problem is to allocated berth and 
time for each vessel in the set, such that given objective function is minimized. BAP was 
proven to be hard NP problem by Lim (1998). 

Berth Allocation Problem, according to Meisel (2009) can by classified by four 
attributes: 

1. Spatial – concerns the berth layout; 
2. Temporal – describing temporal constrains on the vessels services; 
3. Handling time – determining how vessels handling time are considered and   
4. Performance measure – determines elements of objective function. 

The above mentioned attributes determine the type of BAP. In this work we will consider 
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Discrete Berth Allocation Problem (DBAP), which assumes that quay is partitioned into 
discrete berths. DBAP has a disc value of Spatial attribute. Temporal attribute can have 
values: stat, dyn and due, which further diversify DBAP. Static case, denoted stat, assumes 
all vessels are in the port when the berth assignment is done or vessels have expected 
arrival time, but the vessels can be speeded up at a certain cost. Dynamic case, denoted by 
dyn, allows vessel to arrive during the container operations at the port. Finally due dates 
restrict the least allowed departure times of the vessels. 

Because of the various values of the attributes there are a lot of different formulations 
of DBAP and therefore a lot of ways of solving DBAP. Smaller part of them are dedicated 
to the exact solving of the problem, bigger part are using some heuristic or meta heuristic 
method to get solutions of DBAP.  

Imai et al. (2001) first solved static variant of DBAP having vessel handling time 
dependent on the assigned berth. A Lagrangean relaxation based heuristic is used to solve 
the problem. Similar approach with stronger Lagrangean relaxation, due to different 
formulation was applied by Monaco and Samara (2007) for dynamic version of DBAP.  

Cordeau et al. (2005) model DBAP as Multi-Depot Vehicle Routing Problem with 
Time Windows and applied Tabu Search meta heuristic for finding solution of the 
problem. Similar approach was adopted in solving DBAP by Mauri et al. (2008). Set 
partition approach was used in solving DBAP by Cristensen and Holst (2008). Hansen et 
al. (2008) used Variable Neighborhood Search in solving DBAP. Genetic Algorithms 
where applied in solving different by several variants of DBAP by: Imai et al. (2008), Han 
et al. (2006) end Zhou et al. (2006). 

In the literature exact methods for solving BAP are rare. Vacca et al. (2011) proposed 
exact algorithm for solving the Tactical Berth Allocation Problem (TBAP) defined by 
Giallombardo et al. (2010). Exact branch-and-price algorithm produce optimal integer 
solutions of TBAP.   

We propose to approach this problem from combinatorial point of view. Two 
algorithms for exact solving DBAP are developed. The first one named Core 
Sedimentation Algorithm (CSA) and the second one named Sedimentation Algorithm with 
Estimation & Rearrange Heuristic (SA+ERH). Second algorithm in the preprocessing 
phase use Estimation & Rearrange Heuristic to reduce the search space for CSA. To the 
best of our knowledge these are the first combinatorial exact algorithms for solving DBAP. 
Computer results prove the dominance of the proposed algorithms over the classical MIP 
based exact solvers. 

The rest of this paper is organized as follows: Section 2. contains brief description of 
the considered problem. The proposed algorithms are presented in Section 3. Preliminary 
computational results are given in Section 4., while Section 5. concludes the paper. 
 
 
2. BERTH ALLOCATION PROBLEM DESCRIPTION 
 
Proposed algorithm solves desecrate case of BAP (DBAP). Formulation of the problem is 
a sub model of the Park and Kim (2003) model. We use only part of that model relevant 
for the berth allocation. It is generally assumed that vessel can occupy only one berth, 
since in this paper we will consider discrete case of BAP.   
  
 
2.1 INPUT VARIABLES 
 
Our model, as well as algorithm, is using input data listed bellow:  
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T: Total number of time periods in the planning horizon.  
m : The number of berths in the port. 
l : The number of vessels in the planning horizon. 
vessel:   Sequence of data relevant for vessels with following structure: 

vessel  = { (ETAk, ak, bk, dk, sk, c1k, c2k, c3k, c4k) | k = 1,...,l }. 

Elements of vessel 9-tuple represents following data for each vessel: 
 
ETAk: Expected time of arrival of vesselk; 
ak: The processing time of vesselk; 
bk: The length of vesselk; 
dk: The due time for the departure of vesselk; 
sk: The least-cost berthing location of the reference point of  vesselk; 
C1k: The penalty cost of vesselk if the vessel could not dock at its preferred berth; 
C2k: The penalty cost of vesselk per unit time of earlier arrival before ETAk; 
C3k: The penalty cost of vesselk per unit time of late arrival after ETAk; 
C4k: The penalty cost of vesselk per unit time delay behind the due time dk. 

 

As previously mentioned we will consider only desecrate BAP, so the value for the 

variable bk will be 1 for all vessels. 

 

 

2.2 DECISION VARIABLES AND DOMAINS 
 
Park and Kim formulation of BAP uses decision variables. Although combinatorial 
algorithm do not use them, we will list them: 
 

Atk: The arrival time of vesselk to the berth, };,...,1{ TAtk   

Dtk: The departing time of vesselk to the berth, };,...,1{ TDtk   
Xitk: If the berth i at the time t is allocated to vesselk value is 1, otherwise 0;  

 }.1,0{itkX  
 
 
2.3 CONSTRAINS 
 
Every solution of BAP must obey two constrains.  

Constrain 1. Each berth at time t can be assigned to only one vessel: 
 

  



l

k
itkXTtmi

1

.1},...,1{},...,1{  

 
Constrain 2. Berth is allocated for the vessel only between its arrival and departure: 

 
("t œ {1,...,T})("i œ {1,...,m})("k œ {1,...,l}) (Atk ≤ t ≤ Dtk ï Xitk =1) ¤  

   (t < Atk ¤ Dtk < t ï Xitk =0). 
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2.4 OBJECTIVE FUNCTION 
 
Let us first introduce auxiliary variable Zk: 
 

Zk = ∑t=1,...,T ∑i=1,...,m If[Xitk = 1, |i-sk|, 0]. 
 

Objective function for the minimisation of the port penalty cost can be formulated as 
follows: 
 

VesselsCost = ∑k=1,...,l {C1kZk + C2k(ETAk - Atk)
+ + C2k(Atk - ETAk)

+ + C4k(Dtk – dk)
+} 

 
From the previous description of the model of BAP we are considering it is clear that 

it can be classified as: 
 

disc | stat | fix | Σ(w1 wait + w2 speed + w3 tard + w4 pos).  
 
The described formulation of the problem is used with CPLEX 11.2 commercial MIP 
solver for comparison with CSA and SA+ERH proposed here. 
 

Figure 1. Solved BAP for the 20 vessels in the port with 5 berths and 26 units time horizon 
 
 
3. SEDIMENTATION ALGORITHM 
 
We introduce the Sedimentation Algorithm for exact solving of discrete BAP which 
belongs in the class of combinatorial algorithms. It use backtracking mechanism along 
with a couple of look-a-head techniques for solving discrete BAP developed by authors. 
 
 
3.1  CORE SEDIMENTATION ALGORITHM  
 
Container port we can be viewed as two dimensional space where horizontal axis 
represents time and vertical axis enumerate the berths. If we imagine position of the vessel 
in that berth and time plane as the rectangle, we define two positions are conflicting if they 
have non empty interior intersection. 

CSA is designed to find single optimal solution of DBAP. It can be easily modified to 
find all of them if more than one exists. As previously mention it search sequentially from 
vessel to vessel best position for them in order to fine optimal solution. Search through the 
space of solution is done using backtracking mechanism. 

Backtracking mechanism in the algorithm can make ether step forward (λ = 1) or step 
backward (λ = –1). Step forward it makes when it successfully find position for a vessel. 
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Step backward is made when some of the look-a-head techniques finds that position of a 
vessel is not good, or when algorithm determine the position of the last vessel and then  
has to go back to check if there are some more solutions of the problem. 

During the work of the algorithm solutions for BAP are generated and algorithm 
records minimal penalty cost for current best solution in minCost variable and the position 
of the vessels in the α sequence. Whenever new solution is generated its penalty cost is 
compared with minCost and if it is lower we set new minCost and α sequence according to 
the new current best solution. When search through the space of solution is over in α 
sequence we will have positions of the vessels and in minCost penalty cost of the one of 
optimal solutions. Current best solutions play important part in the work of algorithm, 
because using them we can apply some of the look-a-head techniques. 

By position of the vessel we will assume a pair (b,t). The first element of the pair b 
denotes the lowermost berth assigned to a vessel. The second element of the pair t denotes 
the time unit in which berth b was assigned to a vessel. We denote by ξk function of penalty 
cost of assigning a vesselk at the berth b in time unit t. 

Let us now explain in detail how Core Sedimentation Algorithm works. Variables αk, 
k=1,...,l hold position of the vesselk in current best solution of the problem. Initially 
αk=(0,0) for k=1,...,l. Variables Pk, k=1,...,l denotes feasible sub domain of functions ξk, 
k=1,...,l. Initially Pk =Dom[ξk], for k=1,...,l. The value of Pk, k=1,...,l changes during the 
execution of backtracking mechanisms. Variable minCost records of the smallest penalty 
cost or the best current solution. Initially minCost is set to +¶. Variable λ determine the 
type of current step of the backtracking mechanism. If it is set to 1 a step forward is to be 
made and if it is set to –1 step backward. Initial value for λ is 1. Counter k denotes the 
vessel that we are considering and initially its value is set to 1. Beside mentioned variables 
algorithm uses auxiliary variables: i (as a counter), ε and Qi, i=1,...,l. 

CSA also uses procedures and functions. Function Dom[f] computes domain of the 
function f, function Min[f] returns minimal value of the function f on its domain. Function 
MinD[f] determines the argument x corresponding to the minimal value of the function f. 
Procedure ReportSolution[α] examines whether the sequence in the argument represents 
new current best solution for BAP. In that case the value of variable minCost is updated. 
Function MinVesselsCost[k] is calculated in the following way: 
 

 MinVesselsCost[k] = ∑i=1,...,k ξi[αi] + ∑i=k+1,...,l If[Pi ∫ «,  Min[ξi|Pi], +¶]. 
 
Argument of the function is k and represents the number of vessels for which algorithm has 
determined positions. Vessels with indices larger than k are still without the position. First 
sum calculates penalty cost for the vessels which have positions. Second sum is calculated 
for the vessels still without position. For each vesseli, i=k+1,...,l we sum minimal possible 
cost of the vesseli, on sub domain Pk i.e. Min[ξk|Pk] if Pi ∫ «, otherwise we sum +¶. 
Therefore MinVesselsCost[k], will have a finite value if there are available positions for all 
vessels and infinite if at least one vesseli, k+1 ≤ i ≤ l have no available positions. 

Function ConflictingPositions[Pi, k, p] returns all the positions in the Pi conflicting  
with the position p of the vesselk. The inspiration for the name of the algorithm comes from 
the way we select position for a vessel. Selection of the least-cost position, which is the 
minimum of the function ξk on sub domain Pk, resembles the natural phenomena of 
sedimentation of particles in fluids. 

The pseudo code of Core Sedimentation Algorithm is this: 
  
[  1]   CoreSedimentAlgorithm[m,T,l,vessel] 
[  2] for k=1 to l do αk = (0,0); 
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[  3] for k=1 to l do Pk = Dom[ξk]; 
[  4]  minCost = +¶; 
[  5] λ = 1; 
[  6] k = 1; 
[  7] while 0 < k do 
[  8]           if  λ = –1 then 
[  9]                Pk = Dom[ξk]; 
[10]                Pk = Pk \ »i=1,...,k-1 ConflictingPositions[Pk, i, αi]; 
[11]   k--; 
[12]                λ = 1; 
[13]          else 
[14]                if Pk = « then 
[15]                    λ = –1; 
[16]                else 
[17]                    αk = MinP[ξk|Pk]; 
[18]                    Pk = Pk \ {αk}; 
[19]                    if k = l then 
[20]                        ReportSolution[α]; 
[21]                               λ = –1; 
[22]                    else 
[23]                        if MinVesselsCost[k] < minCost then 
[24]                            for i=k+1 to l do Qi = Pi ; 
[25]                            for i=k+1 to l do Pi = Pi  \ ConflictingPositions[Pi, k, αk]; 
[26]               ε = minCost – MinVesselsCost[k]; 
[27]                            if 0 < ε then 
[28]                                if minCost < +¶ then 
[29]                                    for i=k+1 to l do Pi = { p œ Pi | ξi[p] < Min[ξk|Pk] + ε}; 
[30]                                endif; 
[31]                                k++; 
[32]                            else 
[33]                               for i=k+1 to l do Pi = Qi ; 
[34]                            endif; 
[35]                               else 
[36]                            λ = –1; 
[37]                        endif; 
[38]                    endif; 
[39]                endif; 
[40]           endif; 
[41] endwhile; 
[42] return[α]; 
[43]   end. 
 

Lines: [1]–[6] initialise variables of the algorithm. Backtracking mechanism is coded 
in lines: [7]–[41]. Counter k, representing vessel index, is at the beginning set to 1, during 
the work of the algorithm it will rise up to the maximum number of vessels i.e. l. On the 
end, after all possible positions for all vessels have been considered, the value of k will be 
0, defining condition to exit backtracking. 

Backtracking can take ether step forward or step backward. Step backward is 
performed if λ = –1, lines: [9]–[12], in which algorithm first sets Pk to be the Dom[ξk] and 
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then removes all positions conflicting with the previous vessels. Counter k is decreased by 
1 and finally λ set for the backtracking step forward i.e. λ = –1. 

Step forward, lines [14]–[40], begins with examining if Pk = «. If it is fulfilled then 
algorithm has examined all possible positions for the vessel k, therefore backtracking step 
backward is needed i.e. λ = –1, line [15]. If the condition is not fulfilled, then there are still 
some positions for vessel k to be examined, lines [17]–[39]. Then, minimal penalty cost i.e. 
αk = MinP[ξk|Pk] is considered as the next position for the vessel k. If the last vessel has 
been reached i.e. k = l, then ReportSolution[α] is called and backtracking mechanism will 
be set for the next backward step, lines [20]–[21]. There is no need to examine other 
positions of the last vessel, because all of them lead to the higher value of objective 
function. 

If k ∫ l then we can apply first look-a-head technique. Function MinVesselsCost[k] 
will return value of penalty cost for the vessels with indices less than or equal to k plus 
minimal possible penalty cost for the vessels from k+1 to l. If this value is equal to or 
higher then minCost, than position αk can not improve current best solution. Moreover, any 
position p œ  Pk \ {αk}, which is still to be considered, will have a cost equal to or higher 
than αk. Conseqently following ineqality holds: 
 

MinVesselsCost[k] =  
       = ∑i=1,...,k ξi[αi] + ∑i=k+1,...,l If[Pi ∫ «,  Min[ξi|Pi], +¶] 
         = ∑i=1,...,k-1 ξi[αi] + ξk[αk]+ ∑i=k+1,...,l If[Pi ∫ «,  Min[ξi|Pi], +¶] 
       ≤ ∑i=1,...,k-1 ξi[αi] + ξk[p]+ ∑i=k+1,...,l If[Pi ∫ «,  Min[ξi|Pi], +¶], for p œ  Pk \ {αk}. 

 
Previous inequality means that none of the remaining positions for the vessel k can 

lead to the improvement of the current best solution. Therefore if the test in line [23] fails, 
backtracking step backward, line [36] is performed. Otherwise, CSA can proceed finding 
better solution. 

In that case algorithm puts the Pi, i=k+1,...,l sub domains in auxiliary variables Qi, 
i=k+1,...,l, line [24]. Then all the conflicting positions in Pi, i=k+1,...,l with position αk of 
the vesselk are removed, line [26]. Some of the Pi, i=k+1,...,l sub domains may be changed 
by the deletion of the conflicting positions, so we can apply second look-a-head technique 
by testing again MinVesselsCost[k] < minCost. If the test fails then algorithm can move 
only to the another position of vessel k, but can not perform backtracking step backward as 
it was the case with the first look-a-head technique. In the first look-a-head no deletion was 
done in the Pi, i=k+1,...,l sub domains, so all the conclusions about relationship of 
MinVesselsCost[k] and minCost where general. That is not the case with the second look-
a-head, because some positions in Pi, i=k+1,...,l sub domains may be deleted, which means 
that in this case conclusions about relationship of MinVesselsCost[k] and minCost are valid 
only for the vessel k and position αk. The above mention second look-a-head technique is 
coded in lines [26] and [27]. In [27] ε is calculated as ε = minCost – MinVesselsCost[k].  
Note that there is possibility to get indeterminable expression ¶ – ¶. In that case we 
assume that ε = 0. The comparison MinVesselsCost[k] < minCost is equivalent to 0 < ε. If 0 
< ε fails algorithm restores Pi, i=k+1,...,l sub domains sequences from auxiliary variables 
Qi, i=k+1,...,l, line [33], and keep the value of the vessel index k unchanged. 

If 0 < ε is true, then CSA can proceed finding better solution by applying third look-a-
head technique. This technique can be applied only if there is at least one solution of  
DBAP i.e. ε < +¶,  If that is the case then also 0 < ε < +¶ holds.  

 
Proposition 1. If 0 < ε < +¶ and positions for the first k vessels are the same, then 

following holds: 
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MinVesselsCost[l] < MinVesselsCost[k]  ó  ("i œ {k+1,...,l}) ξi|P'i[αi] <  Min[ξk|Pk] + ε, 

 
where Pi', i=k+1,...,l represent sub domains in the algorithm at the moment when the 
position of the last vessel vessell has been found.  
 

Proof. The (ì) direction of the equivalence is trivial, the (ï) other is not. Let us 
prove it by reductio ad absurdum. Suppose that MinVesselsCost[l] < MinVesselsCost[k] 
holds and that ($iœ{k+1,...,l}) ξi|P'i[αi] ¥ Min[ξk|Pk] + ε. For convenience let us suppose 
that there is a s œ {k+1,...,l}, such that  ξs|P's[αs] ¥ Min[ξs|Ps] + ε. As we have previously 
seen 0 < ε, which means that  MinVesselsCost[k] < minCost. Also from the construction of 
the algorithm we can easily conclude that ("i œ {k+1,...,l})  P'i Œ Pi, from which we easily 
derive that ("i œ {k+1,...,l}) Min[ξi|Pi] ≤ Min[ξi|P'i]. Then the following sequence of 
equalities and inequalities holds: 
 
MinVesselsCost[k] > 
 > MinVesselsCost[l]  
 = ∑i=1,...,k ξi[αi] + ∑i=k+1,...,l ξi|P'i[αi]  
 = ∑i=1,...,k ξi[αi] + ∑i=k+1,...,s-1 ξi|P'i[αi] + ξs|P's[αs] + ∑i=s+1,...,l ξi|P'i[αi] 
 ¥ ∑i=1,...,k ξi[αi] + ∑i=k+1,...,s-1 Min[ξi|P'i] + Min[ξs|Ps] + ε + ∑i=s+1,...,l Min[ξi|P'i] 
 ¥ ∑i=1,...,k ξi[αi] + ∑i=k+1,...,s-1 Min[ξi|Pi] + Min[ξs|Ps] + ε + ∑i=s+1,...,l Min[ξi|Pi] 
 = ∑i=1,...,k  ξi[αi] + ∑i=k+1,...,l Min[ξi|Pi] + ε 
 = MinVesselsCost[k] + ε 
 = MinVesselsCost[k] + minCost – MinVesselsCost[k] = minCost. 
 
If we connect the beginning and the end of the above formula we get MinVesselsCost[k] > 
minCost. And that is the contradiction with the assumption that 0 < ε i.e. 
MinVesselsCost[k] < minCost. Which concludes the proof for the equivalence. QED. 
 

Consequence 1. If we have vesselk such that MinVesselsCost[k] < minCost, then 
better solution with lover penalty cost than minCost exist if and only if penalty costs for 
the remaining vessels: vesselj, j=k+1,...,l are lower than Min[ξi|Pi] + ε, i=k+1,...,l, 
respectively.  

 
The Consequence 1. justify the third look-a-head technique in lines [28]–[30]. 
Regardless the third look-a-head technique was applied or not CSA conclude 

backtracking step forward by increasing counter k by one, line [31], and keeping the value 
λ = 1. Thus a backtracking step forward for the next vessel is to be performed. 
  
 
3.3  SEDIMENTATION ALGORITHM  WITH ESTIMATION & REARRANGE 
HEURISTIC  
 
CSA efficiency heavily depends on the order of the vessels. The best ordering for the 
algorithm is when we sort vessels in the descending order of their penalty costs in optimal 
solution. The problem is that we can not know this order in advance. Instead, we can allow 
CSA to run on the couple of different orderings for a limited time. Then we order vessels 
according to their penalty cost in the best obtain solution. Finally, we start CSA from the  
new ordering until it stops. This simple heuristic, leads to the significant improvement of 
the efficiency of CSA. We name this heuristic Estimation & Rearrange Heuristic (ERH). 
Algorithm we get when ERH is applied, and than CSA we name Sedimentation Algorithm 
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with Estimation & Rearrange Heuristic (SA+ERH).   
Let us now describe SA+ERH in more detail. By straight forward modification of the 

described CSA we can make it start from any predefined ordering of the vessels ω. 
Variable ω is a permutation of set of vessels indices {1, 2,..., l}. Instead of accessing k-th 
vessel in the algorithm we access vessel ω(k). CSA modified this way we call as a 
CoreSedimentAlgorithmΩ[m,T,l,vesselk,ω] function. Same as the described algorithm 
function CoreSedimentAlgorithm[m,T,l,vesselk], this new function also return sequence α 
containing the positions of the vessels in optimal solution of DBAP. Because of the several 
executions of the function, variables minCost and α are treated as the global ones. 

We assume to have a function RunForLimitedTime[function,time] which causes 
function stopping after time seconds of execution. It returns a pair (result, finished), where 
result represents the result of the function and finished is true if the function was completed 
during the time seconds of execution, otherwise it is false. Moreover we assume the 
availability of the function RandomPermutation[ω] which returns a random permutation of 
the sequence ω. Variable CSArestarts determines number of estimations and variable EstT 
determines time duration in seconds of the one estimation. Both of them are treated as the 
global ones. 

SA+ERH can be represented by the following pseudocode: 
 
[  1]   EstimationRearrangeHeuristic[m,T,l,vessel] 
[  2] minCost = +¶; 
[  3] for k=1 to l do αk = (0,0); 
[  4] ω = {1, 2, … , l}; 
[  5] for i=1 to CSArestarts do 
[  6]        (α,completed) = 
[  7]              RunForLimitedTime[CoreSedimentAlgorithmΩ[m,T,l,vesselk,ω],EstT]; 
[  8]        if completed then return[α]; 
[  9]        ω = RandomPermutation[ω]; 
[10] endfor; 
[11] if minCost < +¶ then 
[12]     for i=1 to l–1 do 
[13]           for j=i+1 to l do 
[14]                if  ξω[i][αω[i]] < ξω[j][αω[j]] then 
[15]                     k = ω[i]; 
[16]                     ω[i] = ω[j]; 
[17]                     ω[j] = k; 
[18]   endif; 
[19]           endfor; 
[20]     endfor; 
[21] else 
[22]     ω = {1, 2, … , l}; 
[23] endif; 
[24] α = CoreSedimentAlgorithmΩ[m,T,l,vesselk,ω]; 
[25] return[α]; 
[26]   end. 
 

Lines: [1]–[4] initialize variables in the algorithm. In the lines [5]–[10] algorithm 
makes estimations. If CSA reaches for some feasible solution it will be saved in global 
variable α. Values of the variable minCost will also be changed accordingly. If estimations 
found at least one feasible solution the value of minCost will be less than +¶, line [11]. 
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Then we can sort vessels, by rearranging ω, according to their penalty costs in the minimal 
solution α, lines [12]–[20]. Otherwise we use the most simple ω, line [22]. Finally, the 
algorithm runs CSA from ω ordering of the vessels and, after the end of execution, returns 
optimal solution of DBAP. 
 
 
4. COMPUTATIONAL RESULTS 
 
In this section we give the computational results of the CSA and SA+ERH. Moreover, we 
select one example and compare running times of both Sedimentation algorithms with 
CPLEX commercial solver. 
 
 
4.1 COMPARISON BETWEEN CORE SEDIMENTATION AND SEDIMENTATION 
WITH ESTIMATION & REARRANGE HEURISTIC ALGORITHMS 
 
CSA and SA+ERH have been coded in Wolfram Mathematica v8.0 programing language. 
Wolfram Mathematica v8.0 interprets instructions and, although it is very convenient for 
algorithm design, it can not be considerd as a fast in the terms of execution. The test were 
conducted on computer with Intel Core i7 CPU Q720 @ 1.60GHz processor with 6 GB of 
RAM, running on Microsoft Windows 7 64-bit operating system type. 

We made two classes of test instances. In the first one time horizon is one week and in 
the second one time horizon is two weeks. Time horizon is divided by 3 hour time unit. 
Thus, one week has 56 time units and two weeks are divided into 112 time units. Classes 
of test instances are the following: 
 

Class I: 3 berths, 1 week; 
Class II: 5 berths, 2 week; 

 
Similar classes of instances you can find in Giallombardo et al. (2010). The tests were 
conducted on the range of vessels, starting from 5 up to 40 with an increment of 5. Size, 
handling time distribution in time units and penalties in 1000 USD units of the vessels are 
given in Table 1. Specifications resembles on those in Meisel (2009), adjusted here to 
DBAP. 
 

Table 1. Test vessels specifications  

Size, handling times and penalties for test vessels 

Vessel type Percent in test 
population 

Handling time 
range 

C1 C2 C3 C4 

Feeder 60% 1 – 3 2 3 3 9 

Medium 30% 4 – 5 3 6 6 18 

Mega 10% 6 – 8 4 9 9 27 

 
 

Distribution of the least-cost berthing location for vessels is homogeneous. For each 
instance and number of vessels, a set of 300 test were generated randomly. We where 
recording percentage of the tests solved in a half a hour period i.e. 1800 seconds. For the 
tests solved we recorded the minimal, average and maximal problem solving time. All the 
times are expressed in seconds. 
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Table 2. Computational results for the Class I test instances 

CLASS I: 3×56 | 300 samples 

Core Sedimentation Algorithm 
Sedimentation Algorithm with  

Estimation & Rearrange Heuristic 
l 

Number  
of vessels 

t ≤ ½h min aver max ½h < t t ≤ ½h min aver max ½h < t 

5 100.0% 0.11 0.15 0.25 0.00% 100.0% 0.11 0.15 0.28 0.0%

10 100.0% 0.22 6.15 571.48 0.0% 100.0% 0.23 0.44 3.68 0.0%

15 83.3% 0.38 83.99 1584.32 16.7% 100.0% 0.37 2.07 80.93 0.0%

20 –  – – – – 97.7% 0.58 43.11 1791.13 2.3%

 
Table 2. shows computational result for the Class I test instances. It is evident from this 
table that in the trivial case of 5 vessels both algorithms show equal performance. In the 
case of 10 and more vessels SA+ERH outperforms CSA. In the case of 10 vessels it is 
almost 13 times faster and for 15 vessels it is 37.51 times faster.  
 

Table 3. Computational results for the Class II test instances 

CLASS II: 5×112 | 300 samples 

Core Sedimentation Algorithm 
Sedimentation Algorithm with  

Estimation & Rearrange Heuristic 
l 

Number  
of vessels 

t ≤ ½h min aver max ½h < t t ≤ ½h min aver max ½h < t 

5 100.0% 0.39 0.47 0.66 0.0% 100.0% 0.39 0.50 0.72 0.0%

10 100.0% 0.83 0.95 1.86 0.0% 100.0% 0.83 1.03 1.48 0.0%

15 99.3% 1.30 7.35 620.07 0.7% 100.0% 1.33 1.69 5.84 0.0%

20 93.7% 63.23 63.23 1731.7 633.3% 100.0% 1.83 2.82 7.22 0.0%

25   100.0% 2.40 5.10 21.95 0.0%

30   99.3% 3.00 8.40 29.03 0.7%

35   97.0% 3.57 33.15 1699.13 3.0%

40   95.7% 5.26 40.17 1735.26 4.3%

 
Table 3. shows computational result for the Class II test instances. It is evident from this 
table that in the trivial cases of 5 and 10 vessels both algorithms show equal performance. 
In the case of 15 and more vessels SA+ERH outperforms CSA. In the case of 15 vessels it 
is 4.35 times faster, for 20 vessels it is 22.42 times faster. Times of CSA execution for 
cases of vessels number bigger than 20 are not presented in the Table 2. because of a long 
time needed for solving 300 examples. However, note than on the average SA+ERH time 
for solving the examples with 40 vessels is lower than the average time of the CSA for 20 
vessels.   
 
 
4.2 COMPARISON BETWEEN SEDIMENTATION ALGORITHM AND CPLEX 
 
For this comparison we select one representative example to compare with CPLEX 
commercial solver. The version of CPLEX 11.2 running on Intel Core 2 DUO CPU E6750 
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on 2.66GHz, operated by Linux Slackware 12, Kernel: 2.6.21.5 on the computer with 8 GB 
of RAM was used for comparison. The first example is from Class I and the second is from 
Class III. Input data for the Example are given in Table 4. 
 

Table 4. Input data for Example 

EXAMPLE: 5×112 | CLASS II k 
Vessel 

number ETAk ak bk dk sk C1k C2k C3k C4k 

1 102 2 1 105 1 2 3 3 9 

2 14 2 1 17 2 2 3 3 9 

3 72 3 1 76 3 2 3 3 9 

4 76 3 1 80 4 2 3 3 9 

5 61 1 1 63 5 2 3 3 9 

6 7 3 1 10 1 2 3 3 9 

7 29 2 1 31 2 2 3 3 9 

8 81 1 1 83 3 2 3 3 9 

9 30 1 1 32 4 2 3 3 9 

10 21 1 1 22 5 2 3 3 9 

11 76 1 1 78 1 2 3 3 9 

12 61 1 1 62 2 2 3 3 9 

13 30 3 1 33 3 2 3 3 9 

14 65 2 1 67 4 2 3 3 9 

15 84 1 1 85 5 2 3 3 9 

16 79 2 1 82 1 2 3 3 9 

17 45 3 1 48 2 2 3 3 9 

18 35 2 1 37 3 2 3 3 9 

19 16 5 1 22 4 3 6 6 18 

20 30 4 1 34 5 3 6 6 18 

21 15 4 1 19 1 3 6 6 18 

22 47 4 1 52 2 3 6 6 18 

23 34 5 1 39 3 3 6 6 18 

24 28 4 1 33 4 3 6 6 18 

25 2 5 1 8 5 3 6 6 18 

26 14 4 1 19 1 3 6 6 18 

27 32 4 1 37 2 3 6 6 18 

28 103 7 1 110 3 4 9 9 27 

29 67 6 1 73 4 4 9 9 27 

30 11 6 1 18 5 4 9 9 27 

 
Out of above Example we solved cases with 20, 25 and 30 vessels by CPLEX, CSA and 
SA+ERH. In the last two columns we give ratio between CSA and CS+ERH solving times 
to CPLEX and solving time. 
 

Table 7. Results for Example I 

EXAMPLE solving times: 3×56 | CLASS III k 
Vessel 

number Optimum CPLEX CSA SA+ERH ×CSA ×SA+ERH 



 

THE IAME 2012 CONFERENCE, 6 – 8 SEPTEMBER, 2012, TAIPEI, TAIWAN 13 

20 0 200.552 2.215 2.200 90.54 91.16

25 12 10840.700 27.300 5.148 397.09 2105.81

30 27 21803.600 9.391  2321.75

 
Table 7. shows computational results for Example. Both CSA and SA+ERH outperforms 
CPLEX in a very persuasive way. For the case of l=25 vessels CSA is 397 times faster and 
SA+ERH is 2105 times faster. This proves straight of both dedicated combinatorial 
algorithm over a general MIP solver such as CPLEX. Relatively slow solving time of CSA 
in the case of l=30 is caused by the fact that vessels with indices from 26 to 30 are very big 
(mega type) with high penalty costs. Putting this type of vessel at the end of processed 
vessels significantly slows down CSA performance. Because of ERH this situation is 
avoided in SA+ERH.  
 
 
5. CONCLUSION 
 
We considered the discrete minimal cost Berth Allocation Problem (DBAP) with the static 
arrival of vessels and fixed vessels time handling. Performed computational experiments 
fully justify the design and further development of the Sedimentation Algorithm for exact 
solving of DBAP. When it is combined with even simple heuristics like Estimation & 
Rearrange Heuristic it can be used for instances with large number of vessels, as stand 
alone method for solving of DBAP, or as a part some more complex heuristic or meta-
heuristic approach for solving DBAP. Results also indicate that this method can certainly 
be used for solving real-life medium sized problems of BAP. 

Difference between minimal and maximal solving times for the large number of 
vessels in test instances indicates that Sedimentation Algorithm is worth of further 
development. We find specially worth investigating possibility of partial solving of DBAP 
for the conflicting vessels and combining it with other vessels to get optimal solution of 
the entire problem. Moreover, the expansion of the algorithm on hybrid and continuous 
BAP, as well as adding crane assignment to Sedimentation Algorithm are natural 
extensions for the further development of the described algorithms. 
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