

THE IAME 2012 CONFERENCE, 6 – 8 SEPTEMBER, 2012, TAIPEI, TAIWAN 1

Paper Code: Indicate your paper code

A EXACT COMBINATORIAL ALGORITHM FOR BERTH
MINIMUM COST ALLOCATION PROBLEM IN

CONTAINER PORT

Stevan Kordića1, Branislav Dragovićb, Tatjana Davidovićc and Nataša Kovačd

a Maritime Faculty, University of Montenegro, Kotor, Montenegro. Email:
stevan.kordic@gmail.com

b Maritime Faculty, University of Montenegro, Kotor, Montenegro. Email: branod@ac.me

c Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade, Serbia. Email:
tanjad@turing.mi.sanu.ac.rs

b Maritime Faculty, University of Montenegro, Kotor, Montenegro. Email: knatasa@ac.me

ABSTRACT
This paper presents two exact combinatorial algorithms for solving the Discrete Berth
Allocation Problem (DBAP) with fixed handling times of vessels classified by disc | stat |
fix | Σ(w1 wait + w2 speed + w3 tard + w4 pos). We address the issues of DBAP according
to the well known Park and Kim model. To the best of our knowledge these are the first
combinatorial exact algorithms for solving DBAP. Computer results prove the dominance
of the proposed algorithms over the classical MIP based exact solvers.

Key Words: Container port, BAP, Combinatorial algorithm, Optimal solution

1. INTROUCTION

Berth Allocation Problem (BAP) is the problem of allocating berths for a set of vessels in
that have to be served within time horizon in a container port. Vessels are represented by
the set of data regarding expected time of arrival, size, projected time of handling,
preferred berth in the port, penalties, etc. Port is presented by the structure of the berths.
Beside that there is also a given objective function. The problem is to allocated berth and
time for each vessel in the set, such that given objective function is minimized. BAP was
proven to be hard NP problem by Lim (1998).

Berth Allocation Problem, according to Meisel (2009) can by classified by four
attributes:

1. Spatial – concerns the berth layout;
2. Temporal – describing temporal constrains on the vessels services;
3. Handling time – determining how vessels handling time are considered and
4. Performance measure – determines elements of objective function.

The above mentioned attributes determine the type of BAP. In this work we will consider

1 Corresponding Author’s Address: Stevan Kordić, University of Montenegro.
Address: Dobrota 36, 85330 Kotor, Montenegro. Email: stevan.kordic@gmail.com

THE IAME 2012 CONFERENCE, 6 – 8 SEPTEMBER, 2012, TAIPEI, TAIWAN 2

Discrete Berth Allocation Problem (DBAP), which assumes that quay is partitioned into
discrete berths. DBAP has a disc value of Spatial attribute. Temporal attribute can have
values: stat, dyn and due, which further diversify DBAP. Static case, denoted stat, assumes
all vessels are in the port when the berth assignment is done or vessels have expected
arrival time, but the vessels can be speeded up at a certain cost. Dynamic case, denoted by
dyn, allows vessel to arrive during the container operations at the port. Finally due dates
restrict the least allowed departure times of the vessels.

Because of the various values of the attributes there are a lot of different formulations
of DBAP and therefore a lot of ways of solving DBAP. Smaller part of them are dedicated
to the exact solving of the problem, bigger part are using some heuristic or meta heuristic
method to get solutions of DBAP.

Imai et al. (2001) first solved static variant of DBAP having vessel handling time
dependent on the assigned berth. A Lagrangean relaxation based heuristic is used to solve
the problem. Similar approach with stronger Lagrangean relaxation, due to different
formulation was applied by Monaco and Samara (2007) for dynamic version of DBAP.

Cordeau et al. (2005) model DBAP as Multi-Depot Vehicle Routing Problem with
Time Windows and applied Tabu Search meta heuristic for finding solution of the
problem. Similar approach was adopted in solving DBAP by Mauri et al. (2008). Set
partition approach was used in solving DBAP by Cristensen and Holst (2008). Hansen et
al. (2008) used Variable Neighborhood Search in solving DBAP. Genetic Algorithms
where applied in solving different by several variants of DBAP by: Imai et al. (2008), Han
et al. (2006) end Zhou et al. (2006).

In the literature exact methods for solving BAP are rare. Vacca et al. (2011) proposed
exact algorithm for solving the Tactical Berth Allocation Problem (TBAP) defined by
Giallombardo et al. (2010). Exact branch-and-price algorithm produce optimal integer
solutions of TBAP.

We propose to approach this problem from combinatorial point of view. Two
algorithms for exact solving DBAP are developed. The first one named Core
Sedimentation Algorithm (CSA) and the second one named Sedimentation Algorithm with
Estimation & Rearrange Heuristic (SA+ERH). Second algorithm in the preprocessing
phase use Estimation & Rearrange Heuristic to reduce the search space for CSA. To the
best of our knowledge these are the first combinatorial exact algorithms for solving DBAP.
Computer results prove the dominance of the proposed algorithms over the classical MIP
based exact solvers.

The rest of this paper is organized as follows: Section 2. contains brief description of
the considered problem. The proposed algorithms are presented in Section 3. Preliminary
computational results are given in Section 4., while Section 5. concludes the paper.

2. BERTH ALLOCATION PROBLEM DESCRIPTION

Proposed algorithm solves desecrate case of BAP (DBAP). Formulation of the problem is
a sub model of the Park and Kim (2003) model. We use only part of that model relevant
for the berth allocation. It is generally assumed that vessel can occupy only one berth,
since in this paper we will consider discrete case of BAP.

2.1 INPUT VARIABLES

Our model, as well as algorithm, is using input data listed bellow:

THE IAME 2012 CONFERENCE, 6 – 8 SEPTEMBER, 2012, TAIPEI, TAIWAN 3

T: Total number of time periods in the planning horizon.
m : The number of berths in the port.
l : The number of vessels in the planning horizon.
vessel: Sequence of data relevant for vessels with following structure:

vessel = { (ETAk, ak, bk, dk, sk, c1k, c2k, c3k, c4k) | k = 1,...,l }.

Elements of vessel 9-tuple represents following data for each vessel:

ETAk: Expected time of arrival of vesselk;
ak: The processing time of vesselk;
bk: The length of vesselk;
dk: The due time for the departure of vesselk;
sk: The least-cost berthing location of the reference point of vesselk;
C1k: The penalty cost of vesselk if the vessel could not dock at its preferred berth;
C2k: The penalty cost of vesselk per unit time of earlier arrival before ETAk;
C3k: The penalty cost of vesselk per unit time of late arrival after ETAk;
C4k: The penalty cost of vesselk per unit time delay behind the due time dk.

As previously mentioned we will consider only desecrate BAP, so the value for the

variable bk will be 1 for all vessels.

2.2 DECISION VARIABLES AND DOMAINS

Park and Kim formulation of BAP uses decision variables. Although combinatorial
algorithm do not use them, we will list them:

Atk: The arrival time of vesselk to the berth, };,...,1{ TAtk

Dtk: The departing time of vesselk to the berth, };,...,1{ TDtk
Xitk: If the berth i at the time t is allocated to vesselk value is 1, otherwise 0;

 }.1,0{itkX

2.3 CONSTRAINS

Every solution of BAP must obey two constrains.

Constrain 1. Each berth at time t can be assigned to only one vessel:

l

k
itkXTtmi

1

.1},...,1{},...,1{

Constrain 2. Berth is allocated for the vessel only between its arrival and departure:

("t œ {1,...,T})("i œ {1,...,m})("k œ {1,...,l}) (Atk ≤ t ≤ Dtk ï Xitk =1) ¤

 (t < Atk ¤ Dtk < t ï Xitk =0).

THE IAME 2012 CONFERENCE, 6 – 8 SEPTEMBER, 2012, TAIPEI, TAIWAN 4

2.4 OBJECTIVE FUNCTION

Let us first introduce auxiliary variable Zk:

Zk = ∑t=1,...,T ∑i=1,...,m If[Xitk = 1, |i-sk|, 0].

Objective function for the minimisation of the port penalty cost can be formulated as
follows:

VesselsCost = ∑k=1,...,l {C1kZk + C2k(ETAk - Atk)
+ + C2k(Atk - ETAk)

+ + C4k(Dtk – dk)
+}

From the previous description of the model of BAP we are considering it is clear that

it can be classified as:

disc | stat | fix | Σ(w1 wait + w2 speed + w3 tard + w4 pos).

The described formulation of the problem is used with CPLEX 11.2 commercial MIP
solver for comparison with CSA and SA+ERH proposed here.

Figure 1. Solved BAP for the 20 vessels in the port with 5 berths and 26 units time horizon

3. SEDIMENTATION ALGORITHM

We introduce the Sedimentation Algorithm for exact solving of discrete BAP which
belongs in the class of combinatorial algorithms. It use backtracking mechanism along
with a couple of look-a-head techniques for solving discrete BAP developed by authors.

3.1 CORE SEDIMENTATION ALGORITHM

Container port we can be viewed as two dimensional space where horizontal axis
represents time and vertical axis enumerate the berths. If we imagine position of the vessel
in that berth and time plane as the rectangle, we define two positions are conflicting if they
have non empty interior intersection.

CSA is designed to find single optimal solution of DBAP. It can be easily modified to
find all of them if more than one exists. As previously mention it search sequentially from
vessel to vessel best position for them in order to fine optimal solution. Search through the
space of solution is done using backtracking mechanism.

Backtracking mechanism in the algorithm can make ether step forward (λ = 1) or step
backward (λ = –1). Step forward it makes when it successfully find position for a vessel.

THE IAME 2012 CONFERENCE, 6 – 8 SEPTEMBER, 2012, TAIPEI, TAIWAN 5

Step backward is made when some of the look-a-head techniques finds that position of a
vessel is not good, or when algorithm determine the position of the last vessel and then
has to go back to check if there are some more solutions of the problem.

During the work of the algorithm solutions for BAP are generated and algorithm
records minimal penalty cost for current best solution in minCost variable and the position
of the vessels in the α sequence. Whenever new solution is generated its penalty cost is
compared with minCost and if it is lower we set new minCost and α sequence according to
the new current best solution. When search through the space of solution is over in α
sequence we will have positions of the vessels and in minCost penalty cost of the one of
optimal solutions. Current best solutions play important part in the work of algorithm,
because using them we can apply some of the look-a-head techniques.

By position of the vessel we will assume a pair (b,t). The first element of the pair b
denotes the lowermost berth assigned to a vessel. The second element of the pair t denotes
the time unit in which berth b was assigned to a vessel. We denote by ξk function of penalty
cost of assigning a vesselk at the berth b in time unit t.

Let us now explain in detail how Core Sedimentation Algorithm works. Variables αk,
k=1,...,l hold position of the vesselk in current best solution of the problem. Initially
αk=(0,0) for k=1,...,l. Variables Pk, k=1,...,l denotes feasible sub domain of functions ξk,
k=1,...,l. Initially Pk =Dom[ξk], for k=1,...,l. The value of Pk, k=1,...,l changes during the
execution of backtracking mechanisms. Variable minCost records of the smallest penalty
cost or the best current solution. Initially minCost is set to +¶. Variable λ determine the
type of current step of the backtracking mechanism. If it is set to 1 a step forward is to be
made and if it is set to –1 step backward. Initial value for λ is 1. Counter k denotes the
vessel that we are considering and initially its value is set to 1. Beside mentioned variables
algorithm uses auxiliary variables: i (as a counter), ε and Qi, i=1,...,l.

CSA also uses procedures and functions. Function Dom[f] computes domain of the
function f, function Min[f] returns minimal value of the function f on its domain. Function
MinD[f] determines the argument x corresponding to the minimal value of the function f.
Procedure ReportSolution[α] examines whether the sequence in the argument represents
new current best solution for BAP. In that case the value of variable minCost is updated.
Function MinVesselsCost[k] is calculated in the following way:

 MinVesselsCost[k] = ∑i=1,...,k ξi[αi] + ∑i=k+1,...,l If[Pi ∫ «, Min[ξi|Pi], +¶].

Argument of the function is k and represents the number of vessels for which algorithm has
determined positions. Vessels with indices larger than k are still without the position. First
sum calculates penalty cost for the vessels which have positions. Second sum is calculated
for the vessels still without position. For each vesseli, i=k+1,...,l we sum minimal possible
cost of the vesseli, on sub domain Pk i.e. Min[ξk|Pk] if Pi ∫ «, otherwise we sum +¶.
Therefore MinVesselsCost[k], will have a finite value if there are available positions for all
vessels and infinite if at least one vesseli, k+1 ≤ i ≤ l have no available positions.

Function ConflictingPositions[Pi, k, p] returns all the positions in the Pi conflicting
with the position p of the vesselk. The inspiration for the name of the algorithm comes from
the way we select position for a vessel. Selection of the least-cost position, which is the
minimum of the function ξk on sub domain Pk, resembles the natural phenomena of
sedimentation of particles in fluids.

The pseudo code of Core Sedimentation Algorithm is this:

[1] CoreSedimentAlgorithm[m,T,l,vessel]
[2] for k=1 to l do αk = (0,0);

THE IAME 2012 CONFERENCE, 6 – 8 SEPTEMBER, 2012, TAIPEI, TAIWAN 6

[3] for k=1 to l do Pk = Dom[ξk];
[4] minCost = +¶;
[5] λ = 1;
[6] k = 1;
[7] while 0 < k do
[8] if λ = –1 then
[9] Pk = Dom[ξk];
[10] Pk = Pk \ »i=1,...,k-1 ConflictingPositions[Pk, i, αi];
[11] k--;
[12] λ = 1;
[13] else
[14] if Pk = « then
[15] λ = –1;
[16] else
[17] αk = MinP[ξk|Pk];
[18] Pk = Pk \ {αk};
[19] if k = l then
[20] ReportSolution[α];
[21] λ = –1;
[22] else
[23] if MinVesselsCost[k] < minCost then
[24] for i=k+1 to l do Qi = Pi ;
[25] for i=k+1 to l do Pi = Pi \ ConflictingPositions[Pi, k, αk];
[26] ε = minCost – MinVesselsCost[k];
[27] if 0 < ε then
[28] if minCost < +¶ then
[29] for i=k+1 to l do Pi = { p œ Pi | ξi[p] < Min[ξk|Pk] + ε};
[30] endif;
[31] k++;
[32] else
[33] for i=k+1 to l do Pi = Qi ;
[34] endif;
[35] else
[36] λ = –1;
[37] endif;
[38] endif;
[39] endif;
[40] endif;
[41] endwhile;
[42] return[α];
[43] end.

Lines: [1]–[6] initialise variables of the algorithm. Backtracking mechanism is coded
in lines: [7]–[41]. Counter k, representing vessel index, is at the beginning set to 1, during
the work of the algorithm it will rise up to the maximum number of vessels i.e. l. On the
end, after all possible positions for all vessels have been considered, the value of k will be
0, defining condition to exit backtracking.

Backtracking can take ether step forward or step backward. Step backward is
performed if λ = –1, lines: [9]–[12], in which algorithm first sets Pk to be the Dom[ξk] and

THE IAME 2012 CONFERENCE, 6 – 8 SEPTEMBER, 2012, TAIPEI, TAIWAN 7

then removes all positions conflicting with the previous vessels. Counter k is decreased by
1 and finally λ set for the backtracking step forward i.e. λ = –1.

Step forward, lines [14]–[40], begins with examining if Pk = «. If it is fulfilled then
algorithm has examined all possible positions for the vessel k, therefore backtracking step
backward is needed i.e. λ = –1, line [15]. If the condition is not fulfilled, then there are still
some positions for vessel k to be examined, lines [17]–[39]. Then, minimal penalty cost i.e.
αk = MinP[ξk|Pk] is considered as the next position for the vessel k. If the last vessel has
been reached i.e. k = l, then ReportSolution[α] is called and backtracking mechanism will
be set for the next backward step, lines [20]–[21]. There is no need to examine other
positions of the last vessel, because all of them lead to the higher value of objective
function.

If k ∫ l then we can apply first look-a-head technique. Function MinVesselsCost[k]
will return value of penalty cost for the vessels with indices less than or equal to k plus
minimal possible penalty cost for the vessels from k+1 to l. If this value is equal to or
higher then minCost, than position αk can not improve current best solution. Moreover, any
position p œ Pk \ {αk}, which is still to be considered, will have a cost equal to or higher
than αk. Conseqently following ineqality holds:

MinVesselsCost[k] =
 = ∑i=1,...,k ξi[αi] + ∑i=k+1,...,l If[Pi ∫ «, Min[ξi|Pi], +¶]
 = ∑i=1,...,k-1 ξi[αi] + ξk[αk]+ ∑i=k+1,...,l If[Pi ∫ «, Min[ξi|Pi], +¶]
 ≤ ∑i=1,...,k-1 ξi[αi] + ξk[p]+ ∑i=k+1,...,l If[Pi ∫ «, Min[ξi|Pi], +¶], for p œ Pk \ {αk}.

Previous inequality means that none of the remaining positions for the vessel k can

lead to the improvement of the current best solution. Therefore if the test in line [23] fails,
backtracking step backward, line [36] is performed. Otherwise, CSA can proceed finding
better solution.

In that case algorithm puts the Pi, i=k+1,...,l sub domains in auxiliary variables Qi,
i=k+1,...,l, line [24]. Then all the conflicting positions in Pi, i=k+1,...,l with position αk of
the vesselk are removed, line [26]. Some of the Pi, i=k+1,...,l sub domains may be changed
by the deletion of the conflicting positions, so we can apply second look-a-head technique
by testing again MinVesselsCost[k] < minCost. If the test fails then algorithm can move
only to the another position of vessel k, but can not perform backtracking step backward as
it was the case with the first look-a-head technique. In the first look-a-head no deletion was
done in the Pi, i=k+1,...,l sub domains, so all the conclusions about relationship of
MinVesselsCost[k] and minCost where general. That is not the case with the second look-
a-head, because some positions in Pi, i=k+1,...,l sub domains may be deleted, which means
that in this case conclusions about relationship of MinVesselsCost[k] and minCost are valid
only for the vessel k and position αk. The above mention second look-a-head technique is
coded in lines [26] and [27]. In [27] ε is calculated as ε = minCost – MinVesselsCost[k].
Note that there is possibility to get indeterminable expression ¶ – ¶. In that case we
assume that ε = 0. The comparison MinVesselsCost[k] < minCost is equivalent to 0 < ε. If 0
< ε fails algorithm restores Pi, i=k+1,...,l sub domains sequences from auxiliary variables
Qi, i=k+1,...,l, line [33], and keep the value of the vessel index k unchanged.

If 0 < ε is true, then CSA can proceed finding better solution by applying third look-a-
head technique. This technique can be applied only if there is at least one solution of
DBAP i.e. ε < +¶, If that is the case then also 0 < ε < +¶ holds.

Proposition 1. If 0 < ε < +¶ and positions for the first k vessels are the same, then

following holds:

THE IAME 2012 CONFERENCE, 6 – 8 SEPTEMBER, 2012, TAIPEI, TAIWAN 8

MinVesselsCost[l] < MinVesselsCost[k] ó ("i œ {k+1,...,l}) ξi|P'i[αi] < Min[ξk|Pk] + ε,

where Pi', i=k+1,...,l represent sub domains in the algorithm at the moment when the
position of the last vessel vessell has been found.

Proof. The (ì) direction of the equivalence is trivial, the (ï) other is not. Let us
prove it by reductio ad absurdum. Suppose that MinVesselsCost[l] < MinVesselsCost[k]
holds and that ($iœ{k+1,...,l}) ξi|P'i[αi] ¥ Min[ξk|Pk] + ε. For convenience let us suppose
that there is a s œ {k+1,...,l}, such that ξs|P's[αs] ¥ Min[ξs|Ps] + ε. As we have previously
seen 0 < ε, which means that MinVesselsCost[k] < minCost. Also from the construction of
the algorithm we can easily conclude that ("i œ {k+1,...,l}) P'i Œ Pi, from which we easily
derive that ("i œ {k+1,...,l}) Min[ξi|Pi] ≤ Min[ξi|P'i]. Then the following sequence of
equalities and inequalities holds:

MinVesselsCost[k] >
 > MinVesselsCost[l]
 = ∑i=1,...,k ξi[αi] + ∑i=k+1,...,l ξi|P'i[αi]
 = ∑i=1,...,k ξi[αi] + ∑i=k+1,...,s-1 ξi|P'i[αi] + ξs|P's[αs] + ∑i=s+1,...,l ξi|P'i[αi]
 ¥ ∑i=1,...,k ξi[αi] + ∑i=k+1,...,s-1 Min[ξi|P'i] + Min[ξs|Ps] + ε + ∑i=s+1,...,l Min[ξi|P'i]
 ¥ ∑i=1,...,k ξi[αi] + ∑i=k+1,...,s-1 Min[ξi|Pi] + Min[ξs|Ps] + ε + ∑i=s+1,...,l Min[ξi|Pi]
 = ∑i=1,...,k ξi[αi] + ∑i=k+1,...,l Min[ξi|Pi] + ε
 = MinVesselsCost[k] + ε
 = MinVesselsCost[k] + minCost – MinVesselsCost[k] = minCost.

If we connect the beginning and the end of the above formula we get MinVesselsCost[k] >
minCost. And that is the contradiction with the assumption that 0 < ε i.e.
MinVesselsCost[k] < minCost. Which concludes the proof for the equivalence. QED.

Consequence 1. If we have vesselk such that MinVesselsCost[k] < minCost, then
better solution with lover penalty cost than minCost exist if and only if penalty costs for
the remaining vessels: vesselj, j=k+1,...,l are lower than Min[ξi|Pi] + ε, i=k+1,...,l,
respectively.

The Consequence 1. justify the third look-a-head technique in lines [28]–[30].
Regardless the third look-a-head technique was applied or not CSA conclude

backtracking step forward by increasing counter k by one, line [31], and keeping the value
λ = 1. Thus a backtracking step forward for the next vessel is to be performed.

3.3 SEDIMENTATION ALGORITHM WITH ESTIMATION & REARRANGE
HEURISTIC

CSA efficiency heavily depends on the order of the vessels. The best ordering for the
algorithm is when we sort vessels in the descending order of their penalty costs in optimal
solution. The problem is that we can not know this order in advance. Instead, we can allow
CSA to run on the couple of different orderings for a limited time. Then we order vessels
according to their penalty cost in the best obtain solution. Finally, we start CSA from the
new ordering until it stops. This simple heuristic, leads to the significant improvement of
the efficiency of CSA. We name this heuristic Estimation & Rearrange Heuristic (ERH).
Algorithm we get when ERH is applied, and than CSA we name Sedimentation Algorithm

THE IAME 2012 CONFERENCE, 6 – 8 SEPTEMBER, 2012, TAIPEI, TAIWAN 9

with Estimation & Rearrange Heuristic (SA+ERH).
Let us now describe SA+ERH in more detail. By straight forward modification of the

described CSA we can make it start from any predefined ordering of the vessels ω.
Variable ω is a permutation of set of vessels indices {1, 2,..., l}. Instead of accessing k-th
vessel in the algorithm we access vessel ω(k). CSA modified this way we call as a
CoreSedimentAlgorithmΩ[m,T,l,vesselk,ω] function. Same as the described algorithm
function CoreSedimentAlgorithm[m,T,l,vesselk], this new function also return sequence α
containing the positions of the vessels in optimal solution of DBAP. Because of the several
executions of the function, variables minCost and α are treated as the global ones.

We assume to have a function RunForLimitedTime[function,time] which causes
function stopping after time seconds of execution. It returns a pair (result, finished), where
result represents the result of the function and finished is true if the function was completed
during the time seconds of execution, otherwise it is false. Moreover we assume the
availability of the function RandomPermutation[ω] which returns a random permutation of
the sequence ω. Variable CSArestarts determines number of estimations and variable EstT
determines time duration in seconds of the one estimation. Both of them are treated as the
global ones.

SA+ERH can be represented by the following pseudocode:

[1] EstimationRearrangeHeuristic[m,T,l,vessel]
[2] minCost = +¶;
[3] for k=1 to l do αk = (0,0);
[4] ω = {1, 2, … , l};
[5] for i=1 to CSArestarts do
[6] (α,completed) =
[7] RunForLimitedTime[CoreSedimentAlgorithmΩ[m,T,l,vesselk,ω],EstT];
[8] if completed then return[α];
[9] ω = RandomPermutation[ω];
[10] endfor;
[11] if minCost < +¶ then
[12] for i=1 to l–1 do
[13] for j=i+1 to l do
[14] if ξω[i][αω[i]] < ξω[j][αω[j]] then
[15] k = ω[i];
[16] ω[i] = ω[j];
[17] ω[j] = k;
[18] endif;
[19] endfor;
[20] endfor;
[21] else
[22] ω = {1, 2, … , l};
[23] endif;
[24] α = CoreSedimentAlgorithmΩ[m,T,l,vesselk,ω];
[25] return[α];
[26] end.

Lines: [1]–[4] initialize variables in the algorithm. In the lines [5]–[10] algorithm
makes estimations. If CSA reaches for some feasible solution it will be saved in global
variable α. Values of the variable minCost will also be changed accordingly. If estimations
found at least one feasible solution the value of minCost will be less than +¶, line [11].

THE IAME 2012 CONFERENCE, 6 – 8 SEPTEMBER, 2012, TAIPEI, TAIWAN 10

Then we can sort vessels, by rearranging ω, according to their penalty costs in the minimal
solution α, lines [12]–[20]. Otherwise we use the most simple ω, line [22]. Finally, the
algorithm runs CSA from ω ordering of the vessels and, after the end of execution, returns
optimal solution of DBAP.

4. COMPUTATIONAL RESULTS

In this section we give the computational results of the CSA and SA+ERH. Moreover, we
select one example and compare running times of both Sedimentation algorithms with
CPLEX commercial solver.

4.1 COMPARISON BETWEEN CORE SEDIMENTATION AND SEDIMENTATION
WITH ESTIMATION & REARRANGE HEURISTIC ALGORITHMS

CSA and SA+ERH have been coded in Wolfram Mathematica v8.0 programing language.
Wolfram Mathematica v8.0 interprets instructions and, although it is very convenient for
algorithm design, it can not be considerd as a fast in the terms of execution. The test were
conducted on computer with Intel Core i7 CPU Q720 @ 1.60GHz processor with 6 GB of
RAM, running on Microsoft Windows 7 64-bit operating system type.

We made two classes of test instances. In the first one time horizon is one week and in
the second one time horizon is two weeks. Time horizon is divided by 3 hour time unit.
Thus, one week has 56 time units and two weeks are divided into 112 time units. Classes
of test instances are the following:

Class I: 3 berths, 1 week;
Class II: 5 berths, 2 week;

Similar classes of instances you can find in Giallombardo et al. (2010). The tests were
conducted on the range of vessels, starting from 5 up to 40 with an increment of 5. Size,
handling time distribution in time units and penalties in 1000 USD units of the vessels are
given in Table 1. Specifications resembles on those in Meisel (2009), adjusted here to
DBAP.

Table 1. Test vessels specifications

Size, handling times and penalties for test vessels

Vessel type Percent in test
population

Handling time
range

C1 C2 C3 C4

Feeder 60% 1 – 3 2 3 3 9

Medium 30% 4 – 5 3 6 6 18

Mega 10% 6 – 8 4 9 9 27

Distribution of the least-cost berthing location for vessels is homogeneous. For each
instance and number of vessels, a set of 300 test were generated randomly. We where
recording percentage of the tests solved in a half a hour period i.e. 1800 seconds. For the
tests solved we recorded the minimal, average and maximal problem solving time. All the
times are expressed in seconds.

THE IAME 2012 CONFERENCE, 6 – 8 SEPTEMBER, 2012, TAIPEI, TAIWAN 11

Table 2. Computational results for the Class I test instances

CLASS I: 3×56 | 300 samples

Core Sedimentation Algorithm
Sedimentation Algorithm with

Estimation & Rearrange Heuristic
l

Number
of vessels

t ≤ ½h min aver max ½h < t t ≤ ½h min aver max ½h < t

5 100.0% 0.11 0.15 0.25 0.00% 100.0% 0.11 0.15 0.28 0.0%

10 100.0% 0.22 6.15 571.48 0.0% 100.0% 0.23 0.44 3.68 0.0%

15 83.3% 0.38 83.99 1584.32 16.7% 100.0% 0.37 2.07 80.93 0.0%

20 – – – – – 97.7% 0.58 43.11 1791.13 2.3%

Table 2. shows computational result for the Class I test instances. It is evident from this
table that in the trivial case of 5 vessels both algorithms show equal performance. In the
case of 10 and more vessels SA+ERH outperforms CSA. In the case of 10 vessels it is
almost 13 times faster and for 15 vessels it is 37.51 times faster.

Table 3. Computational results for the Class II test instances

CLASS II: 5×112 | 300 samples

Core Sedimentation Algorithm
Sedimentation Algorithm with

Estimation & Rearrange Heuristic
l

Number
of vessels

t ≤ ½h min aver max ½h < t t ≤ ½h min aver max ½h < t

5 100.0% 0.39 0.47 0.66 0.0% 100.0% 0.39 0.50 0.72 0.0%

10 100.0% 0.83 0.95 1.86 0.0% 100.0% 0.83 1.03 1.48 0.0%

15 99.3% 1.30 7.35 620.07 0.7% 100.0% 1.33 1.69 5.84 0.0%

20 93.7% 63.23 63.23 1731.7 633.3% 100.0% 1.83 2.82 7.22 0.0%

25 100.0% 2.40 5.10 21.95 0.0%

30 99.3% 3.00 8.40 29.03 0.7%

35 97.0% 3.57 33.15 1699.13 3.0%

40 95.7% 5.26 40.17 1735.26 4.3%

Table 3. shows computational result for the Class II test instances. It is evident from this
table that in the trivial cases of 5 and 10 vessels both algorithms show equal performance.
In the case of 15 and more vessels SA+ERH outperforms CSA. In the case of 15 vessels it
is 4.35 times faster, for 20 vessels it is 22.42 times faster. Times of CSA execution for
cases of vessels number bigger than 20 are not presented in the Table 2. because of a long
time needed for solving 300 examples. However, note than on the average SA+ERH time
for solving the examples with 40 vessels is lower than the average time of the CSA for 20
vessels.

4.2 COMPARISON BETWEEN SEDIMENTATION ALGORITHM AND CPLEX

For this comparison we select one representative example to compare with CPLEX
commercial solver. The version of CPLEX 11.2 running on Intel Core 2 DUO CPU E6750

THE IAME 2012 CONFERENCE, 6 – 8 SEPTEMBER, 2012, TAIPEI, TAIWAN 12

on 2.66GHz, operated by Linux Slackware 12, Kernel: 2.6.21.5 on the computer with 8 GB
of RAM was used for comparison. The first example is from Class I and the second is from
Class III. Input data for the Example are given in Table 4.

Table 4. Input data for Example

EXAMPLE: 5×112 | CLASS II k
Vessel

number ETAk ak bk dk sk C1k C2k C3k C4k

1 102 2 1 105 1 2 3 3 9

2 14 2 1 17 2 2 3 3 9

3 72 3 1 76 3 2 3 3 9

4 76 3 1 80 4 2 3 3 9

5 61 1 1 63 5 2 3 3 9

6 7 3 1 10 1 2 3 3 9

7 29 2 1 31 2 2 3 3 9

8 81 1 1 83 3 2 3 3 9

9 30 1 1 32 4 2 3 3 9

10 21 1 1 22 5 2 3 3 9

11 76 1 1 78 1 2 3 3 9

12 61 1 1 62 2 2 3 3 9

13 30 3 1 33 3 2 3 3 9

14 65 2 1 67 4 2 3 3 9

15 84 1 1 85 5 2 3 3 9

16 79 2 1 82 1 2 3 3 9

17 45 3 1 48 2 2 3 3 9

18 35 2 1 37 3 2 3 3 9

19 16 5 1 22 4 3 6 6 18

20 30 4 1 34 5 3 6 6 18

21 15 4 1 19 1 3 6 6 18

22 47 4 1 52 2 3 6 6 18

23 34 5 1 39 3 3 6 6 18

24 28 4 1 33 4 3 6 6 18

25 2 5 1 8 5 3 6 6 18

26 14 4 1 19 1 3 6 6 18

27 32 4 1 37 2 3 6 6 18

28 103 7 1 110 3 4 9 9 27

29 67 6 1 73 4 4 9 9 27

30 11 6 1 18 5 4 9 9 27

Out of above Example we solved cases with 20, 25 and 30 vessels by CPLEX, CSA and
SA+ERH. In the last two columns we give ratio between CSA and CS+ERH solving times
to CPLEX and solving time.

Table 7. Results for Example I

EXAMPLE solving times: 3×56 | CLASS III k
Vessel

number Optimum CPLEX CSA SA+ERH ×CSA ×SA+ERH

THE IAME 2012 CONFERENCE, 6 – 8 SEPTEMBER, 2012, TAIPEI, TAIWAN 13

20 0 200.552 2.215 2.200 90.54 91.16

25 12 10840.700 27.300 5.148 397.09 2105.81

30 27 21803.600 9.391 2321.75

Table 7. shows computational results for Example. Both CSA and SA+ERH outperforms
CPLEX in a very persuasive way. For the case of l=25 vessels CSA is 397 times faster and
SA+ERH is 2105 times faster. This proves straight of both dedicated combinatorial
algorithm over a general MIP solver such as CPLEX. Relatively slow solving time of CSA
in the case of l=30 is caused by the fact that vessels with indices from 26 to 30 are very big
(mega type) with high penalty costs. Putting this type of vessel at the end of processed
vessels significantly slows down CSA performance. Because of ERH this situation is
avoided in SA+ERH.

5. CONCLUSION

We considered the discrete minimal cost Berth Allocation Problem (DBAP) with the static
arrival of vessels and fixed vessels time handling. Performed computational experiments
fully justify the design and further development of the Sedimentation Algorithm for exact
solving of DBAP. When it is combined with even simple heuristics like Estimation &
Rearrange Heuristic it can be used for instances with large number of vessels, as stand
alone method for solving of DBAP, or as a part some more complex heuristic or meta-
heuristic approach for solving DBAP. Results also indicate that this method can certainly
be used for solving real-life medium sized problems of BAP.

Difference between minimal and maximal solving times for the large number of
vessels in test instances indicates that Sedimentation Algorithm is worth of further
development. We find specially worth investigating possibility of partial solving of DBAP
for the conflicting vessels and combining it with other vessels to get optimal solution of
the entire problem. Moreover, the expansion of the algorithm on hybrid and continuous
BAP, as well as adding crane assignment to Sedimentation Algorithm are natural
extensions for the further development of the described algorithms.

REFERENCES

Christensen, C.G, Holst, C.T., 2008. Berth allocation in container terminals. Master's

thesis, Department of Informatics and Mathematical Modelling, Technical University
of Denmark.

Cordeau, J.F., Laporte, G., Legato, P., Moccia, L, 2005. Models and tabu search heuristics
for the bearth-allocation problem. Transportation Science, 39(4), 526-538.

Giallombardo, G., Moccia L., Salani, M., Vacca, I., 2010. Modeling and solving the
tactical berth allocation problem. Transportation Research Part B, 44(3), 400-415.

Han, M., Li, P., Sun, J., 2006. The algorithm for berth scheduling problem by the hybrid
optimization strategy GASA. Proceedings of the 9th International Conference of
Control, Automation, Robotics and Vision (ICARCV '06), IEEE Computer Society,
Washington, 1-4.

Hansen, P., Oğuz, C., Mladenović, N., 2008. Variable neighborhood search for minimum
cost berth allocation. European Journal of Operational Research, 191(3), 636-649.

Vacca, I., Salani, M., Bierlaire M., 2011. An exact algorithm for integrated planning of

THE IAME 2012 CONFERENCE, 6 – 8 SEPTEMBER, 2012, TAIPEI, TAIWAN 14

berth allocation and quay crane assignment, Report TRANSP-OR 110323.
Imai, A., Nishimura, E., Papadimitriou, S., 2001. The dynamic berth allocation problem for

container port. Transportation Research Part B, 35(4), 401-417.
Imai, A., Nishimura, E., Papadimitriou, S., 2008. Berthing ships at a multi-user container

terminalwith a limited quay capacity. Transportation Research Part E, 44(1), 136-
151.

Lim, A., 1998. The berthing planning problem. Operational Research Letters, 22(2), 105-
110.

Maisel, F., Seaside Operations Planning in Container Terminals, Physica Verlag, Berlin et
al., 2009.

Mauri, G.R., Oliveira A.C.M., Lorena, A.N., 2008. A hybrid column generation approach
for the berth allocation problem. EvoCOP 2008, Lecture Notes in Computer Science,
volume 4972, 110-122.

Monaco, F.M., Samara, M., 2007. The berth allocation problem: a strong formulation
solved by a lagrangian approach. Transportation Science, 41(2), 256-280.

Park, Y.M., Kim, K.H., 2003. A scheduling method for the berth and quay cranes. OR
Spectrum, 25(1), 1-23.

Zhou, P., Kang, H., Lin, L., 2006. A dynamic berth allocation model based on stochastic
consideration. Proceedings of the 6th World Congress on Intelligent Control and
Automation (WCICA), IEEE Computer Society, Washington DC, vol 2, 7297-7301.

