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Abstract: The static minimum cost berth allocation problem (MCHBAP) is considered with an aim to minimize the total 
costs consisting of costs of positioning, speeding up or waiting, and tardiness of completion for all vessels. In addition, 
it is assumed that each berth is equipped with a crane, and therefore, the crane scheduling problem can be avoided. 
MCHBAP can be presented as the Mixed Integer Linear Program (MILP), and here we compare computational results 
obtained by CPLEX commercial solver  for two different problem formulations, i.e., two different models. The first 
model  already exists in the literature; it has a large number of  0-1 variables and a large number of constraints. The 
second model, proposed here, is  much simpler since it offers a different approach: under the assumption that  each 
berth is equipped with a crane,  we can formulate this problem as two-dimensional bin–packing problem. It appears 
that the second model outperforms the first one by far: when using the second model CPLEX is able to find optimal 
solutions for all test instances very quickly, while with the first model given time limits are exceeded for medium size 
instances and the obtained solutions are far from the optimal ones. 
Keywords: Container Vessel, Berthing, Mixed Integer Formulation, Two-Dimensional Bin-Packing. 
 
1. INTRODUCTION 

A container terminal (CT) in a sea port can be described 
as open system of container flow with sea-side interface. 
This interface is quayside with loading and unloading of 
vessels. After arrival at the port, a container vessel is 
assigned to a berth equipped with quay cranes to load and 
unload containers. Various types of container vessels have 
to be served at the quayside. In order to compete in this 
environment, a CT should be organized efficiently. One 
issue of seaside operations planning is the assignment of 
quay space and service time to vessels that have to be 
unloaded and loaded at a CT [1], [9].  This problem is 
commonly referred to as the berth allocation problem 
(BAP).  

BAPs can be classified as discrete or continuous, as well 
as static or dynamic [1]. In the discrete case, the quay is 
partitioned into a number of sections, called berths, and 
each berth can serve one vessel at a time. Moreover, time 
could also be partitioned into discrete units allowing using 
integer arithmetic for calculation of the objective function 
value. In the continuous case a calling vessel can be 
placed at any position, with the restriction to avoid 
overlapping with other vessels and time is also considered 
continuous. In a static BAP it is assumed that all vessels 
arrive to the container terminal in advance, namely before 
any berth becomes available. If the vessels can arrive at 
any time during the planning horizon (although we still 
have a priori knowledge of their arrivals), then we deal 
with dynamic BAP. 

In recent years, an ever increasing number of papers on 
CTs considering BAP have appeared. In most of them 
crane resources were either ignored (assuming that each 
berth is equipped by a crane) [5], [9], [12], [15] or treated 
separately within the second stage of problem solving 
[11]. Moreover, different authors considered different 
objectives to be minimized within the solution of BAP. In 
some of the papers the total of waiting and handling times 
were minimized [1], [9], while in the others the 
minimization of total costs for waiting and handling as 
well as earliness or tardiness of completion was 
considered as the objective [6].  

We consider the static minimum cost BAP (MCHBAP) in 
the case when crane resources are ignored (as said in the 
abstract, we assume that each berth is equipped with a 
crane). The  first Mixed Integer Programming (MIP) 
formulation of this problem can be found in [3]. The new 
model (proposed here), which proved to be way more 
suitable, offers an alternative approach. Namely, we can 
consider this problem a special case of two-dimensional 
bin-packing problem [13], [14] (that is, we are given a 
single bin).   This way the formulation of the problem 
becomes much simpler – it has less variables and less 
constraints (the objective function stays the same). We 
compared these two models using CPLEX commercial 
solver [7], [8].    

The rest of this paper is organized as follows. MCHBAP 
is described and formulated as integer linear program 
(using our new model) in section 2. Section 3 contains 
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experimental evaluation using CPLEX 11.2 optimization 
software [7], [8]. In this section we present evaluation 
results for both models on two sets of test examples. 
Section  4 concludes the paper.  

2. MINIMUM COST HYBRID BERTH 
ALLOCATION PROBLEM 

MCHBAP represents one of the major CT operations 
planning problem [1], [9]. It consists of assigning a 
berthing position and a berthing time to every vessel 
incoming to be served within a given planning horizon 
with and aim to minimize some objective. In this paper 
the minimization of berthing cost as well as the costs of 
positioning, speeding up or waiting, and tardiness of 
completion for all vessels is considered. The main 
assumption is that the number of cranes is equal to the 
number of berths and, therefore, crane  scheduling 
problem can be avoided. 
 
Typically, the decisions are made with respect to the 
different arrival times, lengths, and handling times of 
vessels. The handling (operation) times are usually 
assumed to be fixed and known in advance. As shown in 
Fig. 1, a solution to BAP can be depicted in a space-time-
diagram. Both coordinates are assumed to be discrete 
(space is modeled by the berth indices while the time 
horizon is partitioned into segments in such a way that 
berthing time of each vessel is represented by an integer). 
The height of each of the rectangles corresponds to the 
length of a vessel (expressed by the number of berths) and 
the width corresponds to the needed handling time. The 
lower-left vertex of a rectangle gives the berthing position 
and berthing time of a vessel and it is referred to as the 
reference point of a vessel (marked by the index of vessel 
in Fig. 1). A berth plan is feasible if the rectangles do not 
overlap and all the vessels fit into the given space-time 
frame (see Fig. 1). 
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Fig. 1: An example of BAP solution Source: Kordić, S. ,  
PhD Thesis, 2016.  
 
The input parameters of MCHBAP are: The total number 
of vessels (l); The total number of different berthing 
positions (m); The total number of time segments (T); The 
expected time of arrival (ETAk) of vessel k. ETA is a kind 
of agreement between carriers and the terminal operator 
regarding the arrival time of vessels. Berthing earlier than 
the promised berthing time causes the corresponding 
vessel to speed up, which in turn causes the extra 

consumption of fuel, while berthing later than the 
promised berthing time may incur complaints from 
carriers; The total operation time (ak) of vessel k if only 
one crane operates on it during the berthing; The length 
(bk) of vessel k expressed as the number of berths. 
Assuming that each berth is equipped with a crane, the 
time required to unload and load all the cargo for vessel k, 
denoted by Hk, equals  kk ba / ; The due time for the 

departure (dk) of vessel k; The least-cost berthing location 
of the reference point (sk) of vessel k; The container 
handling cost (c1k) per unit distance of vessel k from the 
least-cost berthing location; The penalty cost (c2k) of 
vessel k per unit time of arrival before ETAk; The penalty 
cost (c3k) of vessel k per unit time of arrival after ETAk; 
The penalty cost (c4k) of vessel k per unit time of delay 
beyond the due time dk. 
 
The goal is to minimize the total penalty cost which 
includes: the penalty induced by missing the least-cost 
(preferred) berthing location of the reference point; the 
penalties induced by the actual berthing earlier or later 
than the expected time of arrival and the penalty cost by 
the delay of the departure after the promised due time. 
The last three terms have impacts on the objective 
function provided that they are positive. More precisely, 
the objective function can be expressed in the following 
form:  
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Although containing some non-linearities (expressed by 
absolute values, positive components, conditional expres-
sions), MCHBAP can be formulated as Mixed Integer 
Linear Program (MILP). Therefore, it is possible to apply 
optimization software (in our case, CPLEX 11.2, [7], [8]). 
 
In order to develop MILP for this problem, let us 
introduce the following decision variables: 
 

 integer variables:  
• Atk, the Berthing position of vessel k on 

time axis (taking values 1, 2,…, T).  
• Dtk, The completion (departure) time of 

vessel k (taking values 1, 2,…, T). 
• Pk, the Berthing position of vessel k on 

berth axis (taking values 1, 2,…, m). 
 

 binary variables: 
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Moreover, let us perform some preprocessing. First, it is 
obvious that we can calculate array  kkk baH /  in 

advance. In addition, we can introduce matrices E1kj, E2kj, 
D1kj, Zbki, and Fijk defined as follows: 
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and  
Fijk = Zbki + E1kj + E2kj + D1kj. 
 
In this way we extracted most of the problem non-
linearities into preprocessing phase.  
 
Based on the formulation of the Two-Dimensional Bin-
Packing Problem given by Pisinger and Sigurd in [13], 
[14] and our preprocessing scheme, MCHBAP can be 
formulated as follows:  
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The objective function, given by equation (1), aims to 
minimize the weighted sum of the berthing cost 
components (the cost depending on the distance from the 
berthing location of a vessel to the preferred location, the 
penalty cost incurred by berthing earlier or later than the 
expected time of arrival (ETA), and the penalty cost 
incurred by the delay of the departure beyond the desired 
due time). Constraints (2) ensure that each vessel has 
exactly one reference point. Constraints (3), (4) and (5)  
define, respectively, the values of variables determining 
berthing time, total operation time and berthing position 
of each vessel.  Constraints (6), (7) and (8) prevent 
overlapping of vessels. Constraints (9) and (10)  ensure 
that all vessels fit in the given time-space frame.  

3. EXPERIMENTAL EVALUATION 

In this section we present computational results for both 
the old model as given in [3] and the new one as 
presented in the previous section. Results are obtained by 
CPLEX 11.2 optimization software [7], [8] on two sets of 
test instances: the first set contains small size artificially 
generated problems, while the second set is the set of real 
life instances as proposed in [2].  

CPLEX is executed on Intel Core 2 Duo CPU E6750 on 
2.66GHz with RAM=8Gb under Linux Slackware 12, 
Kernel: 2.6.21.5. 
 
The Table 1 contains results for the examples from the 
first set. CPLEX solved these instances to optimality  for 
both old and new model, but the new model required 
much  less CPU time.  
 
Table 1 Computational results - artificial test problems: 
m=8,T=15 
 

CPU Time  
l 

OPT. 
COST OLD 

MODEL 
NEW 

MODEL 
6 380 0.06 0.01 

7 665 20.53 0.05 
8 745 18.91 0.09 
9 780 20.88 0.10 

10 1070 35.19 1.56 
11 1325 644.98 10.51 
12 1375 129.76 39.93 
13 1415 379.64 82.24 

14 1485 635.40 123.87 
15 1570 1788.80 392.62 

 
Table 2 contains results for the examples from the second 
set. When using the old model, CPLEX CPU time 
required to solve these instances to optimality was too 
long, and therefore time limits were imposed in [3] as it is 
indicated in the fourth column of Table 2. In the first 
column of Table 2, the number of vessels is presented. 
The next two columns contain the solutions obtained by 
the old model within a given time limit. In the second 
column total cost is presented, while the third column 
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contains the CPU time required to obtain that cost value.  
When using the new model, however, we obtained 
optimal solutions for all instances, execution times stayed 
very small.    
 
Table 2 Computational results – real life test problems: 
m=12,T=54 
 

OLD MODEL NEW MODEL   
l COST CPU Time Time 

limit 
(sec.) 

OPT. 
COST 

CPU 
Time 

21 24562 3698.41 3600 4779 1.31 
22 16334 7434.44 7200 4983 2.02 
23 96549 7404.73 7200 5193 3.59 
24 6594 7429.48 7200 5643 3.14 
25 13262 18709.60 18500 5953 5.47 
26 26614 18716.10 18500 6298 12.97 
27 26679 18638.50 21600 6478 15.22 
28 8418 44530.70 43200 6980 91.21 

 

It is obvious from the presented tables that the new model 
outperformed  by far the old one, and therefore, it makes 
it possible to solve to the optimality much larger 
examples of MCHBAP. The MCHBAP can also be 
considered as the cutting problem, however, the guillotine 
cuts [4] cannot be applied. This may be the subject of 
further research on modelling MCHBAP.  

5. CONCLUSION 

We considered The Minimum Cost Hybrid Berth 
Allocation Problem (MCHBAP) with an aim to minimize 
the total costs for waiting and handling as well as 
speeding up or tardiness of completion for all vessels.  
The problem is formulated as a mix-integer linear 
program based on two models: the model given in [3]  
and the model presented in this paper, in which we 
consider this problem as a special case of two-
dimensional bin-packing problem. For both models we 
performed experimental evaluation using CPLEX 11.2 
commercial software, and the results suggest that our 
variation of the two-dimensional bin-packing problem is 
more suitable for solving MCHBAP. As the future work, 
we plan to examine the limits of the new model and to 
develop hybrid methods based on this model and 
(meta)heuristics that would be able to address large size 
real life problem instances. 
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