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ABSTRACT
We investigate the optimization of inland transport routes
of barge container ships with the objective to maximize the
profit of a shipping company. This problem consists of de-
termining the upstream and downstream calling sequence
and the number of loaded and empty containers transported
between any two ports. We present Combinatorial as well
as Mixed Integer Linear Programming (MILP) formulation
for this problem. We propose to combine these two ap-
proaches with an aim to generate efficient heuristic to solve
considered problem. The proposed mixed-formulation Lo-
cal Search (MIX-LS) represents good basis for implemen-
tation of LS-based meta-heuristic methods and we pre-
sented Multi-start Local Search (MLS) within this frame-
work. To compare the proposed approach with the state-of-
the-art Mixed Integer Programming (MIP) based heuristics
we run all methods within a predefined time limit. It ap-
pears that pure local search is comparable with the MIP-
based heuristic methods, while MLS outperforms all meth-
ods regarding both criteria: solution quality and running
time.
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1 Introduction

The routing of container ships is a common problem in sea
and inland waterway transport [1, 2, 9, 14, 17, 18, 20]. The
problem consists of finding the route for a given container
ship in such a way as to maximize the given objective. The
optimality may be defined with respect to various criteria
(total number of transported containers, fulfilment of cus-
tomer demands, shipping company profit, etc.). Obtaining
an optimal solution is a key factor for successful transport
business. Unfortunately, like in many other practical cases,
the complexity of real life problems exceeds the capacity
of the present computation resources.

Many articles studied the planning, routing and
scheduling of container ships in sea and inland waterway
transport. In [13] the authors modelled and investigated

the operational performances of container schedules under
three management policies: the non-collaborative policy
(without sharing any resource with external carriers), the
slot-sharing policy (a pre-fixed percentage of vessels ca-
pacities is to be exchanged between the carriers) and the
total sharing policy (total demand sharing and flexible ves-
sel resource sharing between partner carriers). Network
flow techniques were employed to construct a model for
short-term ship scheduling and container shipment from
the carrier’s perspective in [21]. The authors of [5] pro-
posed a novel mixed integer linear programming mathe-
matical model for the liner shipping network design prob-
lem in a competitive environment. It addresses the com-
petition between a newcomer liner service provider and an
existing dominating operator, both operating on hub-and-
spoke networks.

In addition, the relation between barge network de-
sign, transport market and the performance of intermodal
barge transport was studied in [8]. A conceptual model for
barge network design which describes the design variables
for barge networks and their relation to the performance
indicators of intermodal barge transport from a shippers’
and operators’ perspective was presented. Similarly, [9]
investigated whether a hub-and-spoke service could be a
fruitful tool to improve the performance of the container-
on-barge transport and hence to gain market share. In ad-
dition, future requirements and opportunities of barge ter-
minals to further improve the competitiveness of container
barge transport were explored in [10]. In [16] similarities
and dissimilarities between the spatial and the functional
development of the container river service networks of the
Yangtze River and the Rhine River were discussed.

The problem considered in this paper consists of find-
ing the route for a given barge container ship in such a way
as to maximize the profit of the shipping company. An ex-
ample of inland waterway is presented in Fig. 1. The de-
manded container traffic between each pair of ports (i, j),
i, j = 1, 2, ..., n, i �= j is specified. The solution of
this problem defines upstream and downstream calling se-
quence and number of loaded and empty containers trans-
ported between any two ports while achieving maximum
profit of the shipping company. The first port (a sea port,
located at a river mouth) and the last port (the furthest port
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Figure 1. An example of inland waterway

upstream) are always included in a solution, while the re-
maining n− 2 ports in either direction (upstream or down-
stream) may or may not appear in the optimal solution.

As it is not realistic to suppose that capacity of barge
container ship ensures the satisfaction of all customer de-
mands, container traffic between ports has a highly signifi-
cant role. More precisely, the objective is to determine the
number of containers (both loaded and empty) to be un-
loaded and loaded at each port while achieving maximum
profit of the shipping company. Having the number and
sequence of calling ports determined, the container traf-
fic between calling ports still has to be defined. This part
of solution is not straightforward. On the contrary, deter-
mining optimal container traffic between calling ports is
probably an NP-hard problem itself since the number of
possible combinations depend on the capacity of the barge
container ship and the input matrix representing the cos-
tumer requests for loaded container traffic between each
two ports.

This variant of the problem has not been treated sig-
nificantly in the recent literature. For the first time, this
problem has been studied in [14]. Lingo programming lan-
guage [19] has been used to determine optimal solutions for
small instances of the given problem. Optimal solutions in
[14] have been obtained for up to 10 possibly calling ports.
By optimizing Mixed Integer Linear Programming (MILP)
formulation, switching to CPLEX ([7]) and more power-
ful computer under Linux, the authors of [15] were able to
optimally solve instances with up to 20 ports, but required
CPU time exceeded 29h. Moreover, they adopted some of
the well-known Mixed Integer Programming (MIP) based
heuristics (Local Branching, LB [4], Variable Neighbor-
hood Branching, VNB [6] and Variable Neighborhood De-
composition Search for 0-1 MIP, VNDS [12]) and devel-
oped Large Scale VNDS, LS-VNDS in order to obtain
good quality suboptimal solution within a reasonable run-
ning time. As it has been shown in [15], the main problem
with exact and MIP-based solution methods is not the so-
lution time but the lack of memory.

In this paper we discuss alternative way for solv-
ing this problem. We propose to combine combinatorial
and MILP formulation within a meta-heuristic framework
to overcome both memory and CPU time problems when
dealing with real-life problem instances. By fixing some
of the variables determined easily from the combinatorial
formulation, we are able to reduce the size for the part of
problem treated by MILP approach. Our experiments show
that even pure local search is able to obtain good quality
solutions within negligible execution time. Moreover, the
simplest meta-heuristic based on this local search, Multi-
start Local Search (MLS), managed to outperform the best
among the MIP-based heuristics with respect to both solu-
tion quality and running time.

The rest of this paper is organized as follows. In the
next section we describe the considered problem. Intuitive
description as well as the combinatorial and mathematical
programming formulation is given and the problem com-
plexity is discussed. In Section 3, we describe the im-
plementation of combinatorially guided local search based
heuristic approach to be applied to a given problem. The
experimental evaluation of MLS heuristic is described in
Section 4. Concluding remarks are given in Section 5.

2 Problem Formulation

In this section we recall Mixed Integer Linear Program-
ming (MILP) formulation proposed in [15] and describe
combinatorial formulation for the problem considered in
this paper. The problem is characterized by the following
input data (measurement units are given in square brackets
when applied):

• n: number of ports on the inland waterway, including
the sea port;

• v1 and v2: upstream and downstream barge container
ship speed, respectively, [km/h];

• scf and scl: specific fuel and lubricant consumption,
respectively [t/kWh];

• fp and lp: fuel and lubricant price, respectively
[US$/t];

• Pout: engine output (propulsion) [kW];

• dcc: daily time charter cost of barge container ship
[US$/day];

• C: carrying capacity of the barge container ship in
Twenty feet Equivalent Units [TEU];

• maxtt and mintt: maximum and minimum
turnaround time on a route [days];

• tl: total locking time at all locks between ports 1 and
n [h];

• tb: total time of border crossings at all borders be-
tween ports 1 and n [h];



• zrij : weekly expected number of loaded contain-
ers available to be transported between ports i and j
[TEU];

• rij : freight rate per container from port i to port j
[US$/TEU];

• l: distance between ending ports 1 and n [km];

• ufci and lfci: unloading and loading cost, respec-
tively per loaded container at port i [US$/TEU];

• ueci and leci: unloading and loading cost, respec-
tively per empty container at port i [US$/TEU];

• peci: entry cost per call at port i [$];

• ufti and lfti: average unloading and loading time,
respectively, per loaded container at port i [h/TEU];

• ueti and leti: average unloading and loading time,
respectively, per empty container at port i [h/TEU];

• pati and pdti: standby time for arrival and departure,
respectively, at port i [h];

• sci: storage cost at port i [US$/TEU];

• lci: short-term leasing cost at port i [$/TEU];

Optimization of transport routes of barge container
ships addressed here has certain intrinsic features and as-
sumptions that make the design of transport routes and cor-
responding models particularly difficult: the barge ship-
ping company wants to hire a ship or a tow for a period
of one or several years in order to establish container ser-
vice on a certain inland waterway; the ship follow the
same route during a pre-specified planning time horizon;
the trade route is characterized by one sea or hub port lo-
cated at a river mouth and several intermediate calling river
ports; the model assumes a weekly known cargo demand
for all port pairs (origin–destination); the barge container
ship route corresponds to a feeder container service; the
starting and ending point on the route should be the same,
i.e. in this case it is the sea port where transshipment of
containers from barge to sea container ships and vice versa
takes place; the barge container ship travels upstream from
the starting sea port to the final port located on inland wa-
terway, where from the ship sails in the downstream di-
rection to the same sea port ending the route; maximum
allowed route time, including sailing time and service time
in ports, has to be set in accordance with the schedule of
the mainline sea container ship calling at the transshipment
port; it is not necessary for the barge container ship to visit
all ports on the inland waterway; in some cases, calling at
a particular port or loading all containers available at that
port may not be profitable; the ship doesn’t have to visit
the same ports in upstream and downstream directions; all
the container traffic emanating from a port may not be se-
lected for transport even if that port is included in the route;
container service is organized as liner and accordingly liner

terms are valid; this imposes that the barge shipping com-
pany has to deal with transshipment costs, port dues and
empty container repositioning costs, in addition to the cost
of container transport; the demand for empty containers at
a port is the difference between the total traffic originating
from the port and the total loaded container traffic arriving
at the port for the specified time period; empty container
transport [3, 11] does not occur additional costs as it is per-
formed using the excess capacity of barge company ships
(this transport actually incurs some costs, but its value is
negligible in comparison with empty container handling,
storage and leasing costs); if a sufficient container quantity
is not available at a port, the shortage is made up by leas-
ing containers with the assumption that there are enough
containers to be leased (for details see [20]).

The objective when designing the transport route of
a barge container ship is to maximize shipping company
profit, i.e. the difference between the revenue arising from
the service of loaded containers (R) and the transport costs
which are costs related to shipping (TC) and empty con-
tainer related costs (EC). Therefore, the objective function
has the form (see [20]):

Y = R − TC − EC. (1)

To specify the exact calculation of the shipping com-
pany profit we need detailed description of problem in
hand. In the following subsection we present two possible
formulation of our routing problem: MILP and combinato-
rial.

2.1 MILP Formulation

Decision variables of the model are [15]:
– binary variables xij defined for each pair of ports as fol-
lows:

xij =
{

1, if i and j are directly connected in the route,
0, otherwise;

– zij and wij , integers representing the number of loaded
and empty containers, respectively, transported from port i
to port j [TEU].

The model formulation is as follows

max Y (2)

s.t.

zij � zrij

j∑
q=i+1

xiq,

i = 1, 2, . . . , n−1; j = i+1, . . . , n (3)

zij � zrij

i−1∑
q=j

xiq,

i = 2, . . . , n; j = 1, . . . , i − 1 (4)



zij � zrij

j−1∑
q=i

xqj ,

i=1, 2, . . . , n−1; j = i+1, . . . , n (5)

zij � zrij

i∑
q=j+1

xqj ,

i = 2, . . . , n; j = 1, . . . , i − 1 (6)

i∑
q=1

n∑
s=j

(zqs+wqs) � C+M(1−xij) ,

i=1, 2, . . . , n−1; j = i+1, . . . , n (7)

n∑
q=i

j∑
s=1

(zqs+wqs) � C+M (1−xij) ,

i=2, . . . , n; j =1, . . . , i−1 (8)
n∑

j=2

x1j = 1 (9)

n∑
i=2

xi1 = 1 (10)

q−1∑
i=1

xiq −
n∑

j=q+1

xqj = 0, q = 2, . . . , n − 1 (11)

n∑
i=q+1

xiq −
q−1∑
j=1

xqj = 0, q = 2, . . . , n − 1 (12)

mintt � ttot

24
� maxtt (13)

where M represents large enough constant.
Constraints (3) - (6) model the departure ((3) - (4))

and arrival ((5) - (6)) of ship to and from each port on the
route, respectively, in both upstream and downstream di-
rection. Capacity constraints (7) and (8), guarantee that
the total number of loaded and empty containers on-board
does not exceed the ship carrying capacity at any voyage
segment. Constraints (9) - (12) are network constraints en-
suring that the ship visits the end ports making a connected
trip. The barge container ship is left with a choice of calling
or not calling at any port.

Round trip time of the barge container ship, denoted
by ttot [h], can be calculated as the sum of total voyage
time, handling time of full and empty containers in ports
and time of entering and leaving ports (14).

ttot = tv +
n∑

i=1

n∑
j=1

(zij (lfti + uftj) (14)

+wij (leti + uetj) + xij (pdti + patj))

where tv = l/v1 + l/v2 + tb + tl is calculated based on the
input data. Constraint (13) prevents round trip ending and
calling at port 1 long before or after arrival of the sea ship
in this port.

According to the equation (1) and given input data,
the profit value Y is calculated as follows:

Y =
n∑

i=1

n∑
j=1

zijrij (15)

−
(

dcc · maxtt + Pout (l/v1 + l/v2) (fp · scf + lp · scl)

+
n∑

i=1

n∑
j=1

xij · pecj +
n∑

i=1

n∑
j=1

zij (ufci + lfcj)

⎞
⎠

−
⎛
⎝ n∑

i=1

(sci · sWi + lci · lWi) +
n∑

i=1

n∑
j=1

wij (ueci + leej)

⎞
⎠

The number of containers to be stored (leased) at each
port i, sWi (lWi) can be defined by using the expressions
(16) - (23), [20].

Si − M gi � 0 (16)

Di − Pi + Si � 0 (17)

Di − Pi + Si − M(1 − gi) � 0 (18)

Qi − M hi � 0 (19)

Pi − Di + Qi � 0 (20)

Pi − Di + Qi − M(1 − hi) � 0 (21)

lWi = Qi −
n∑

j=1

wji (22)

sWi = Si −
n∑

j=1

wij (23)

where:

Qi: the number of demanded containers
at each port i [TEU];

Si: the number of excess containers
at each port i [TEU];

Pi: the number of containers destined
for port i [TEU];

Di: the number of containers departing
from port i [TEU];

gi, hi: auxiliary binary variables.

As it was elaborated in [15], to find optimal solution
of our routing problem we have to determine (n2 − n) +
2n = n2+n binary variables, 2(n2−n)+2n+4n = 2n2+
4n integer variables and two real (floating point) values.

2.2 Combinatorial Formulation

Combinatorial formulation of our problem is developed
with an aim to minimize the number of variables that have
to be determined during the solution process. In order to
calculate the profit Y given by (1) we need to specify up-
stream and downstream sequence of calling ports and num-
ber of containers (both loaded and empty) transported be-
tween any two ports of call. Then, following equations



(14) and (15) but using only non-zero elements of the solu-
tion sequence, we can calculate the round-trip time and the
profit.

Let us denote by X a (2n−1)–dimensional vector with
each element defined as follows:

X[i] =

⎧⎨
⎩

1, if port i is included into an (upstream)
calling sequence;

0, otherwise,
(24)

for 0 � i � n, and

X[i] =

⎧⎨
⎩

1, if port 2n−i is included into a (downstream)
calling sequence;

0, otherwise,

for n < i � 2n − 1.

Since the first (sea port) and the last port are always
included into calling sequences, we obviously have X[1] =
1, X[n] = 1 and X[2n − 1] = 1.

In order to determine the number of loaded (zij ) and
empty (wij) containers to be transferred between each two
ports i and j included into the calling sequence it is obvious
that the following relations fold:

X[i] = 0 or X[j] = 0 ⇒ zij = 0, 0 � i, j � n,

X[i] = 0 or X[j] = 0 ⇒ wij = 0, 0 � i, j � n.

Therefore, the values for zij and wij need to be deter-
mined only for non-zero elements of vector X .

This solution representation is very compact, contains
only 2n − 1 binary elements to represent both (upstream
and downstream) parts of the transport route, 2(n2 − n)
integers and two floating point variables. It also follows the
mathematical model of the problem and allows simplifying
the calculation of all relevant problem parameters.

On the other hand, this representation does not
uniquely determine all components of the problem solu-
tion. The calculation of zij and wij is an optimization
task itself. To solve this problem we can use constructive
heuristic based on the a priori knowledge about the prob-
lem. Namely, it is obvious that the revenue would be larger
if we give the priority to the loaded containers transferred
between ports at larger distance. On the other hand, no
heuristic can guarantee that the optimum container distribu-
tion could be reached. To overcome this problem one could
improve heuristic distribution of containers by a (low-level)
local search but still the quality of the obtained distribution
remains questionable.

In this work we propose an alternative approach: to
use the optimal solver for determination of the container
distribution (i.e. to combine heuristic search with optimal
solution method). The proposed combined method is de-
scribed in the next section.

3 Combinatorial Formulation Guided Local
Search

MILP formulation was used by the commercial CPLEX
MIP solver and MIP heuristics in [15]. However, with the
increase in the problem size, all these methods failed to ob-
tain near optimum solution. On the other hand, combina-
torial approach faces the NP difficulty on two levels and is
hard to be implemented efficiently. Therefore, we propose
to combine these two approaches with an aim to generate
efficient heuristic to solve considered problem. Combina-
torial formulation is used for the implementation of local
search procedure based on changes within upstream and/or
downstream calling sequences. MILP formulation is then
invoked for solving subproblem connected to determina-
tion of corresponding number of loaded and empty con-
tainers transported between any two ports.

Since the solution is represented by a binary array
whose elements are indicating if the port is included into
calling sequence and in which direction it is included, the
natural ways to define transformations describing neigh-
borhoods is to use Hamming distance between solutions.
In our local search procedure, we generate all neighbors
at distance 1 from a given solution. If we exclude a port
from the calling sequence defined by vector X , then vec-
tor X ′, corresponding to the newly obtained calling se-
quence, must satisfy the condition d(X,X ′) = 1, where
d denotes the Hamming distance. In other words, vec-
tors X and X ′ must be different at exactly one component.
The case when a new port is included into a calling se-
quence is analogous. Therefore, the neighborhood size in
both cases is O(n), since each solution has 2n − 4 neigh-
bors at Hamming distance 1 (recall that |X| = 2n − 1 and
X[0] = X[n] = X[2n − 1] = 1).

Our local search procedure performs a systematic
search in the given neighborhood of the current solution
Xmin, in order to find solutions better then Xmin with re-
spect to the objective function value f(X). Pseudo-code of
this procedure is given below.

1. Initialization. Choose initial solution X (randomly or
by applying some constructive heuristic).
Set Xmin = X and fmin = f(X).

2. Repeat
IMPROVEMENT = 0;
∀X ′ ∈ N (Xmin)

if (f(X ′) < fmin) then
Xmin = X ′;
fmin = f(X ′);
IMPROVEMENT = 1;

endif
until IMPROVEMENT == 0;

After vector X ′ is generated, the values for all n2 −n
variables xij in the corresponding mixed integer program-
ming formulation are computed and fixed in order to reduce



size of the subproblem given to the CPLEX. The CPLEX
MIP solver is then used to compute the corresponding ob-
jective function value f(X ′) by solving the supplied re-
duced MIP problem, obtained by fixing the values of bi-
nary variables xij . The same mechanism is used to obtain
the initial objective function value f(X).

The obtained reduction in the problem size is signifi-
cant since CPLEX requires less then a second to complete
the solution. Moreover, in most of the cases it obtains opti-
mal container distribution for a given calling sequence of
ports. Rarely, infeasible solutions are produced, mainly
because constraint (13) is violated. In these cases, some
negligible time is spent for evaluating infeasible neighbors.

The proposed mixed-formulation local search repre-
sents good basis for the implementation of local search
based meta-heuristic methods and we presented Multi-start
local Search (MLS) within this framework. MLS con-
sists of iterations containing three steps: initial solution
generation, LS improvement and global best solution up-
date. At the beginning of each iteration random initial so-
lution is generated. It is then improved by a proposed mix-
formulation local search and the obtained local minimum
is compared with the current best solution. If the better so-
lution is obtained, global best is updated and new iteration
can start. The process continues until the specified stoping
criterion (here, allowed running time) is satisfied.

4 Experimental Evaluation

To be able to evaluate obtained results, we selected the
same set of test examples as it was used in [15] and the
same computational environment.

Test examples were generated randomly, in such a
way that the number of ports n was varied from 10 to 25
with increment 5. Moreover, for each value of n, 5 in-
stances were produced with different ship characteristics
(carrying capacities, daily charter costs, downstream and
upstream speeds, engine outputs, fuel and lubricant con-
sumptions).

For the experimental evaluation of our heuristic we
used Intel Core 2 Duo CPU E6750 on 2.66GHz with
RAM=8Gb under Linux Slackware 12, Kernel: 2.6.21.5.
CPLEX 11.2 ([7]) MIP solver running on the same machine
is used for exact solving and as generic MIP solver in all
heuristics used for comparison of the obtained results. The
applied heuristic methods are all coded in C++ program-
ming language for Linux operating system and compiled
with gcc (version 4.1.2) and the option -o2.

As a starting point for the local search procedure, we
selected the solution that includes all ports in both upstream
and downstream sequences whenever it was possible. The
guide for such a selection was the fact that increase in profit
is to be expected if more ports are visited. Sometimes, this
solution may be infeasible since the constraint connected to
the travel time is violated. In these few cases we selected
initial solution by random extraction of a single port from
the calling sequence.

The comparison results between the proposed LS,
MLS, denoted as MIX-LS and MIX-MLS respectively, and
previously used methods (Local Branching, LB [4], Vari-
able Neighborhood Branching, VNB [6], Variable Neigh-
borhood Decomposition Search for 0-1 MIP, VNDS [12]
and Large Scale VNDS, LS-VNDS [15]) are reported in
Tables 1 and 2. Table 1 contains the objective function
value (profit to be maximized) obtained by all compared
methods within a given CPU time limit (60, 900, 1800 and
3600 seconds for 10, 15, 20 and 25 ports, respectively).
It is important to note that MIX-LS is deterministic pro-
cedure with very small duration (execution time is defined
by the time needed to generate and evaluate all neighbors
of a given solution). Therefore, the specified time limit is
not of any importance for the MIX-LS, it is used only for
MIX-MLS to assure its fair comparison with other heuristic
methods.

As can be seen from the results presented in Tables 1
and 2, MIX-LS in the neighborhood of a selected initial
solution produces solutions of a very good quality within
negligible running time. On the other hand, MIX-MLS per-
forms best on average with respect to all examples and all
compared methods: it offers the best solution quality within
significantly smaller execution time with respect to previ-
ously best performing method.

Since, MLS is stochastic search procedure which may
produce different results for different restarts we executed
our MIX-MLS 10 times for each of the examples and report
the average results in Table 3.

As can be seen from Table 3, the MIX-MLS shows
very stable performance: it generates the same solution
within each restart for 6 out of 15 examples. For the rest of
the instances the difference between the best and the worse
solution is less than 5% with the best solution occurring
usually more then once, in most of the cases more then in
half of the repetitions.

5 Conclusion

We addressed the barge container ship routing problem as a
problem of maximizing the shipping company profit while
picking up and delivering containers along the inland wa-
terway with empty container repositioning. We present
MILP and combinatorial formulation of this problem and
proposed heuristic solution method based on the combi-
nation of these two formulations. Combinatorial formu-
lation is used for the implementation of local search proce-
dure based on changes within upstream and/or downstream
calling sequences. MILP formulation has then invoked for
solving subproblem connected to determination of corre-
sponding number of loaded and empty containers trans-
ported between any two ports. By fixing ports within up-
stream and/or downstream calling sequences we manage to
significantly reduce original problem and it becomes easy
to solve by commercial CPLEX MIP solver. The proposed
local search procedure represents good basis for imple-
mentation of LS-based meta-heuristic methods. The pre-



Table 1. Objective values for all methods compared.

Instance Profit (US$)
CPLEX LB VNB VNDS LS-VNDS MIX-LS MIX-MLS

port10 1 22339.01 22339.00 22339.00 22339.00 22338.99 20334.20 21997.46
port10 2 24738.23 24738.00 24738.23 24737.92 24737.92 24737.92 24737.92
port10 3 23294.74 23294.74 23294.74 23035.97 23294.77 21980.21 23294.77
port10 4 20686.27 20686.00 20686.27 20686.26 20686.26 19278.41 20686.26
port10 5 25315.00 25315.00 25315.00 25315.00 25315.32 24202.57 25315.32
port15 1 12268.96 12268.96 12268.54 11452.19 12268.54 12268.54 12268.54
port15 2 25340.00 25340.00 25340.00 25340.00 25341.50 25341.50 25341.50
port15 3 13798.22 12999.34 13798.64 13798.64 13798.64 13798.64 13798.64
port15 4 22372.58 22372.58 22372.58 22303.90 22177.23 22209.93 22371.79
port15 5 15799.96 15800.00 15800.00 15800.00 15800.29 15800.29 15800.29
port20 1 18296.19 16653.70 19586.02 17731.09 18836.88 19345.05 19660.80
port20 2 32789.55 32250.44 33204.26 31844.83 31527.199 31808.71 33082.17
port20 3 19626.28 19539.69 21043.05 19396.66 18587.34 20981.38 20944.86
port20 4 26996.03 25928.76 27962.31 25244.94 24172.01 24068.21 27962.31
port20 5 23781.17 23904.21 24235.86 23872.98 21446.66 23909.61 24123.82
port25 1 20539.88 21619.18 17708.32 19011.24 19137.09 17767.17 21239.57
port25 2 32422.19 33528.22 33342.05 29875.93 31525.01 33121.82 33304.32
port25 3 20008.23 17651.27 23019.65 20450.20 19820.19 21231.14 22265.91
port25 4 27364.50 28388.23 25334.19 25549.91 23802.52 26578.02 28265.95
port25 5 22897.03 22303.71 24621.21 23367.28 19897.99 23789.25 25179.13

Average: 22533.70 22346.05 22800.50 22057.70 21725.62 22127.63 23082.07

Table 2. Computational times for all methods compared.

Instance Running times (s)
CPLEX LB VNB VNDS LS-VNDS MIX-LS MIX-MLS

port10 1 21.30 11.20 41.32 15.91 8.06 1.49 18.73
port10 2 0.99 0.10 3.77 0.25 0.22 1.04 1.23
port10 3 19.79 5.90 39.04 38.95 10.30 1.58 21.87
port10 4 3.03 1.00 7.30 5.54 3.46 1.60 21.62
port10 5 8.83 3.40 32.93 8.15 0.78 0.90 19.29
port15 1 900.00 81.90 16.73 52.67 347.27 0.98 14.00
port15 2 212.76 172.70 27.50 181.75 52.82 0.55 10.63
port15 3 873.43 261.50 7.36 189.27 114.60 0.96 14.77
port15 4 900.00 171.30 54.61 581.97 72.05 5.88 38.69
port15 5 426.72 87.50 3.25 114.09 94.92 0.47 9.04
port20 1 1800.00 358.10 1832.86 438.86 583.96 88.90 1144.46
port20 2 1800.00 521.70 1450.61 246.74 12.70 100.02 801.84
port20 3 1800.00 894.30 1822.16 635.93 340.19 193.22 927.17
port20 4 1800.00 529.90 1571.32 274.28 31.10 15.84 162.40
port20 5 1800.00 1067.00 1858.44 1624.39 16.69 46.45 603.63
port25 1 3600.00 1789.10 3838.32 1575.40 1514.16 33.62 1163.50
port25 2 3600.00 1787.00 3645.61 83.09 153.86 320.00 243.10
port25 3 3600.00 1426.65 3670.78 1600.20 351.11 209.83 1386.54
port25 4 3600.00 812.24 3586.98 1318.52 37.91 82.58 763.37
port25 5 3600.00 358.10 3877.59 1189.42 14.10 264.81 2260.30
Average: 1518.34 517.03 1369.42 508.77 188.01 68.54 481.31

sented numerical experiments show that even the simplest
meta-heuristic such as Multi-start Local Search (MLS) out-
performs state-of-the-art heuristics for 0-1 MIP problems:
Local branching (LB), Variable neighborhood branching
(VNB) and Variable neighborhood decomposition search
for 0-1 MIP problems (VNDS and LS-VNDS) with respect
to both solution quality and running time.
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