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Abstract: In this paper, we consider an integrated model that addresses three key operations in container
terminals: the berth allocation problem (BAP), the quay crane assignment problem (QCAP), and the quay
crane scheduling problem (QCSP). A Mixed-Integer Linear Programming (MILP) formulation is developed and
utilized with the Gurobi exact solver to obtain (near) optimal solutions for small-sized, randomly generated
instances.
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1. INTRODUCTION

Optimization problems in the field of container terminal (CT) operations have been gaining increasing attention
in recent scientific literature [4, 5]. The quality of service provided by ports, the satisfaction of shipping
companies as service users, and the economic viability and efficient utilization of port resources all hinge on the
effective integration of seaside operations at container terminals. These operations encompass a wide range
of activities and optimization challenges, most notably the berth allocation problem (BAP), the quay crane
assignment problem (QCAP), and the quay crane scheduling problem (QCSP). Both BAP and QCSP are known
to be NP-hard [7, 9]. In the literature, the integrated problem that combines BAP, QCAP, and QCSP is referred
to as BACASP.

The study in [6] investigates BACASP with disaggregated quay crane (QC) tasks and various operational
policies, demonstrating significant reductions in service times through the proposed models based on real-world
data from a container terminal in Abu Dhabi. In [1], the authors address a variant with heterogeneous QCs by
formulating a Mixed Integer Programming (MIP) model enhanced with valid inequalities and implementing a
Branch-and-Cut method, supplemented by a rolling horizon heuristic, for experimental validation on real data.
An initial Integer Programming (IP) formulation for BACAP is developed in [3] and extended to BACASP by
adding necessary and sufficient conditions along with a cutting plane algorithm to iteratively refine and solve
the problem. In [11], time-variant QC assignment and scheduling are considered, where the authors propose a
bi-level MIP and a decomposition-based cutting plane algorithm. The authors in [10] introduce a MIP model for
time-variant QC assignments aimed at minimizing vessel tardiness and berthing costs, using CPLEX for small
instances and a Genetic Algorithm (GA) for larger ones. The study described in [2] addresses QC movement
time in a MIP model, complementing it with a modified GA for large instances. In [8], the authors present an IP
model targeting the minimization of total vessel waiting and processing times, incorporating water depth and
tide conditions, and employing Random Topology Particle Swarm Optimization (RTPSO) for large instances.
Collectively, these studies highlight the complex, integrated nature of BACASP and the diverse methodological
approaches—ranging from exact methods to heuristics and metaheuristics—employed to tackle its inherent
computational challenges and practical constraints.

In the relevant literature, BAP, QCAP and QCSP are usually considered separately or successively, one
after the other. If the authors choose to integrate some of these problems, they usually combine two of
them, due to the complexity of the underlying models. There are relatively few works that model and solve
combinations of all three problems [5]. Our main aims are to contribute towards a comprehensive approach that
involves the integration of all three problems and to simplify the model representation. We propose the deep
integration of BAP, QCAP, and QCSP in the form of Dynamic Minimum Cost Hybrid Berth Allocation and
Quay Crane Assignment and Specific Scheduling Problem (DMCHBACASSP). This problem is classified as
hybr|dyn|QCAP(speci f ic),QCSP|∑(w1 pos+w2 speed+w3 wait+w4 tard+w5 res), according to the notation
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from [4]. Our QCSP involves bay, prmp|pos,move|cross,save|compl,move components as they are described
in [5].

In Section 2, we present the MILP model for the DMCHBACASSP problem. Specifically, Subsection 2.1
offers a detailed description of the problem, including the assumptions and constraints. Subsection 2.2 outlines
the input parameters of the problem instance. The MILP model itself is introduced in Subsection 2.3. Section 3
provides experimental results on small, randomly generated instances. The conclusion is presented in Section 4.

2. PROBLEM FORMULATION

In this section, we provide a description of the considered DMCHBACASSP, explain all input parameters, and
provide the proposed Mixed Integer Linear Programming (MILP) model.

2.1. Description of the problem

Port can be modeled by a rectangle whose length is defined by the time horizon considered when planning
operations on vessels and width equal to the length of the quay. DMCHBACASSP involves packing of small
rectangles (representing vessels) into the large rectangle (port) while satisfying a number of constraints related
to positioning of vessels and QCs, as well as the assignment and scheduling of QCs to vessels.

DMCHBACASSP is a variant of integrated optimization problems in port, namely BAP, QCAP and QCSP.
It assumes the allocation of berth(s) and a berthing time to each vessel, and the assignment and scheduling of
the appropriate number of QCs for vessel’s processing, with an aim to minimize the selected objective function.
More precisely, to each vessel, the following data need to be determined: (i) a reference point, defined by the
lowest time index (denoting the beginning of its processing) and the lowest berth index (while the complete
subset of assigned berths is determined by the vessel’s size); (ii) Indices of QCs and their operating positions in
each time interval the vessel is processed. The objective function includes the costs of positioning, waiting, and
tardiness of completion for all vessels, the costs of positioning QCs and the costs associated with movements of
QCs. The following assumptions are made in modeling this problem:
Time:

1. The planning horizon is divided into equal time units corresponding to minimum integer time interval
required to control the movement of QCs.

2. Vessels may be processed only within the planning horizon.

Berths:
1. Berth may be assigned to only one vessel at a time, between its arrival and departure times.
2. Each berth is divided into an equal number of berth segments.
3. At most one QC can be positioned on each berth segment.

Vessels:
1. A vessel may be moored at any available berth, on its arbitrary berth segment.
2. Once moored, vessels may not change their position during processing.
3. Processing of the vessel begins immediately after its mooring and cannot be interrupted until all load-

ing/unloading operations have been completed.
4. The processing time of the vessel depends on the number of assigned QCs. This number may vary during

the processing of a vessel, however, must always be between the prespecified minimum and maximum
number of QCs for each vessel.

5. The vessel is divided into bays (lanes of equal width) that correspond to the berth segments. Therefore,
the width of bays and the width of berth segment has to be equal.

QCs:
1. QCs are initially positioned on their home berth segments.
2. All QCs have identical characteristics.
3. The total number of QCs assigned to the vessel can vary from one time interval to another, i.e., QC

assignment is subject to the variable-in-time scenario.
4. A QC can only be assigned to one bay of the vessel at a time.
5. QCs can move along berths in two directions, but their paths cannot intersect.
6. QCs can move from one bay of the vessel to another bay of the same vessel.
7. QCs can be reallocated from one vessel to another.
8. The time for reallocation of a QC is not negligible and it increases both the vessel processing time and its

processing cost.
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2.2. Input parameters of a problem instance

The proposed MILP model is based on discretization on both location and time dimensions. The division of
port into equidistant net is performed in preprocessing phase and depends on positions and lengths of vessel
bays of all vessels considered by the problem instance. Preprocessing procedure is not presented here due to the
lack of space. Here, we assume that all geometric parameters are expressed in number of location units indexed
by the numbers 1,2, . . . ,L. Several locations units constitute a single berth in such a way that L locations units
correspond to B berths. Similarly, we subdivide the considered time interval into small time segments that are
called time units. We assume that considered time horizon is represented by T time units, with the corresponding
time points denoted by 0,1 . . . ,T . Each problem instance considers V vessels and C quay cranes. The dimension
of the problem instance is described by L, T , B, V and C.

In the most of previous related studies, vessels are located to predefined berth location along the port. Here,
we relax this assumption by allowing vessels to be berthed at any location. However, our model can be easily
extended with the set of constraints to ensure berthing vessels only to berth locations. To be comparable and
compatible with previous studies, we retain the term of berth as there are still some operation limitations of
cranes on vessels that are not berthed to its preferred berths. We divide an entire port (together with predefined
berth locations) into small segments (location units) to track position and movement of QCs along vessel’s
berthing positions. By taking into account precise vessel geometry (Figure 2) we are able to ensure that QCs
operate at exact bay locations of berthed vessels. Moreover, movement time of crane from one location to
another is also taken into account. In other words, we track the movement of cranes in the port during the entire
timeline. If crane is supposed to operate at particular location in particular time, it has to move to that location if
it previously was at the different location. The time of movement is not neglected by the model.

For clarity, we introduce the notation [N] = {1,2,3, . . . ,N} to represent a set of integers from 1 to N. If
we consider also zero as a member of the set, the used notation is [N]0. This notation is used throughout the
model to denote various sets, such as the set of vessels [V ], the set of QCs [C], and the set of time points [T ]. In
the remainder of this section, we provide the description of input parameters that should be specified for each
considered DMCHBACASSP instance.

Port. We assume that the port (identified by the line of fixed width) is divided to L segments by L+ 1
location points denoted by 0,1 . . .L. As we already mentioned, the length of the segment is called location unit.
The port is described by set of berth locations Lb = (lb, lb), where lb < lb, lb, lb ∈ [L]0 represent start and end
locations of the berth b ∈ [B], where B is the number of berths (Figure 1).

Figure 1 Port representation

Figure 2 Vessel parameters

Vessel. There are several parameters defining a vessel (Figure 2). The length of the vessel v ∈ [V ] is
denoted by λv ∈ N. The left end of the vessel is considered as a reference point. If vessel v is moored to some
location l ∈ [L], then location l ∈ [L] represents its reference point. Each vessel v ∈ [V ] has βv ∈ N bays that are
considered as touch point between vessels and QCs. Sometimes, we say that βv, ∈ [V ] is a number of jobs that
need to be completed on vessel v by QCs, i.e., we identify bays with jobs that need to be completed on vessel v
at these bays. To ensure operable assignment of QCs to vessel’s bays, we introduce parameter δv

j ∈ N which
represents the number of location units between reference point of vessel v and the middle of the entrance of
bay j. The safe berthing of vessel v is ensured by introduction of the clearance parameter κv. The left most
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(reference point) and right most ends of the vessel v have to be at distance of at least κv location units from any
other vessel v′ that is moored during the stay of vessel v in the port.

A QC c, c ∈ [C], is assigned to vessel v ∈ [V ] if c is located at l +δv
j in time t ′, for some j ∈ [βv] and l ∈ [L],

once v is berthed at l in time t ′. It is required that at least θmin
v ∈ N0, and at most θmax

v ∈ N0, cranes are assigned
to vessel v. Parameter γv

j ∈ N represents the number of time units required to complete the job j on vessel v.
Each vessel v ∈ [V ] has preferred berth b∗v . If the vessel v is not located to the preferred berth, additional

penalties πb
v ∈ R+, v ∈ [V ] are imposed. The total value can be determined for each vessel v and for each of

its possible reference points different from its preferred berth during the preprocessing phase. If vessel v is
located at some particular location l ∈ [L−λv]0 (Figure 3), the value of the corresponding penalty is calculated
as follows:

π
b
vl = π

b
v

(
(lb∗v

− l)++(l +λv − lb∗v )
+
)
. (1)

In Eq. (1), (a−b)+ is defined as (a−b)+ =

{
a−b , if a > b ,
0 , otherwise.

Figure 3 Penalty paid if vessel is not moored to its preferred berth

If vessel v is not moored to its preferred berth location, then the processing time of job j is extended by some
parameters ρv

j ∈ R+, v ∈ [V ], j ∈ [βv], multiplied by the distance between the bay location and the preferred
berth. The distance between bay j of vessel v and the preferred berth is denoted by σv

jl and calculated as follows:

σ
v
jl = (lb∗v

− l −δ
v
j)
++(l +δ

v
j − lb∗v )

+. (2)

Now, we can calculate the extended number of time units required to complete job j if vessel is moored at
location l, as follows:

γ
v
jl = γ

v
j(1+σ

v
jlρ

v
j). (3)

From previous calculations, it is obvious that time required to complete jobs increases if the distance from
preferred berth increases. The rate of increase is given by the parameter ρv

j.
Our model also imposes several standard timing constraints. For each vessel v the earliest arrival time is

specified by parameter εv ∈ [T ]0, while the latest departure time is defined by ωv ∈ [T ]0. The expected arrival
time of vessel v ∈ [V ] is denoted by µv ∈ [T ]0, while the schedule due time for departure is τv ∈ [T ]0.

If vessel v is moored before its expected arrival time µv, then earliness penalty πe
v ∈ R+ is paid for each

time unit t ∈ [T ]0 between its actual arrival time and expected arrival time. As the total amount of this penalty
depends on the arrival time of the vessel, we calculate earliness penalties for each particular time unit as follows:

π
e
vt = π

e
v(µv − t)+. (4)

Similarly, we introduce tardiness penalty πt
v ∈ R+, v ∈ [V ] that is paid for each time unit t ∈ [T ]0 between µv

and its arrival time paid if vessel v is moored after its expected arrival time. If vessel v departs from the port
after its scheduled due time, then lateness penalty πd

v ∈ R+, v ∈ [V ] is paid for each time unit t ∈ [T ]0 between
τv and vessel’s v departure time. By the following equations, we explain the calculation of tardiness and lateness
penalties for each time unit:

π
t
vt = π

t
v(t −µv)

+, (5)
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π
d
vt = π

d
v (t − τv)

+, (6)

Crane. The initial position of crane c ∈ [C] is given by parameter l0
c ∈ [L]0. The cost of crane operation

per time unit is defined by the value of parameter αc ∈ R+, c ∈ [C], while the movement cost per location unit
is specified by φc ∈ R+. If the crane c ∈ [C] is assigned to vessel v ∈ [V ], then cost ξcv is paid. The distance
between any two cranes c′,c′′ ∈ [C] have to be at least ψ ∈ N0 location units (Figure 2). This distance constraint
ensures the safe operation of cranes.

2.3. MILP model

Having all costs and penalties defined, we are ready to formulate MILP model for the considered problem.
However, due to the lack of space space, objective function, constraints, and definitions of model variables are
given in a separate file (supplementary material) that can be found at http://www.mi.sanu.ac.rs/~tanjad/
SYMOPIS2024-BACASSP-Model.pdf.

3. EXPERIMENTAL EVALUATION

We implemented model using Gurobi as the gurobipy Python package with academic licence. The desktop
computer with 11th Gen Intel(R) Core(TM) i7-11700 @ 2.50GHz processor with 8 cores, 32 GB RAM, and
Windows 10 Professional Edition Operating System is used for computational experiments. As the hybrid model
we propose is not considered previously in the literature, we conducted experiments on small set of randomly
generated instances. We limited Gurobi solver to 6 CPU cores, 8 GB of RAM, and 2 hours running time. In
Table 1: we present results of computational experiments.

T L V C B maxv∈[V ] βv #Var #Constr Objective Value Gap (%) Time (s)
120 12 2 3 2 4 16388 50894 -35652.167 0.46 7200
120 12 2 3 2 4 16388 50894 -35661.667 0.52 7200
200 18 2 3 3 4 42910 150814 -59625.500 0.59 7200
120 18 2 3 3 4 25790 90494 -35613.500 0.95 7200
200 18 2 4 3 4 54934 201006 - - 7200
200 18 2 5 3 4 67159 255401 - - 7200

Table 1: Computational results on small instances

Only for 4 out of 6 instances feasible solutions are provided within time limit of two hours. The solution gap
is below 1%. Number of constraints and variables suggest that model is difficult to solve to optimality even for a
small instances with respect to number of time points, location points, vessels, cranes and berths. In Figure 4 we
present the obtained feasible solution of first instance in Table 1:. Vessel 1 moored at expected arrival time 12
and departed before due time 108. Vessel 2 is moored at time unit 37, which is 13 units after its expected arrival
time. In this case, tardiness penalty is paid. There are no other penalties, as vessel 2 departed before due date.
Only crane 2 moved from location 5 to location 3 to complete job on vessel 2. This movement is obviously
necessary as there are 4 jobs on vessel 2 and only 3 QCs available.

Crane 1

Crane 2

Crane 3

Vessel 1
Vessel 2

Figure 4 Example with 2 vessels, 3 cranes and 4 berths

4. CONCLUSION

We have presented a comprehensive Mixed-Integer Linear Programming (MILP) model for the integrated
berth allocation, quay crane assignment, and quay crane scheduling problems in container terminals. Our
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model captures the complexities of port operations by considering the precise geometry of vessels, the dynamic
assignment and movement of quay cranes, and the associated costs and penalties for non-preferred berths, early
or late arrivals, and extended crane operations.

The model’s comprehensive nature sets it apart from other models in the literature, as it integrates all
critical aspects of berth and crane activities into a single framework. This integration provides a more realistic
representation of port operations but also introduces significant computational challenges. The complexity of
the model and the size of the instances require substantial solution times, making it difficult to obtain optimal or
even first-feasible solutions within reasonable time frames.

Our computational results, conducted on a small set of generated instances using the Gurobi solver, indicate
that the model’s complexity leads to unsatisfactory performance. Specifically, only for a few instances near-
optimal solutions could be obtained within the given time limit, while Gurobi failed to provide even the
first feasible solution for the larger instances. This outcome was expected due to the model’s depth and the
inherent difficulties in solving such complex optimization problems. These results highlight the necessity for
more sophisticated methods to find optimal, suboptimal, or near-optimal solutions efficiently. Heuristic and
metaheuristic algorithms, such as Variable Neighborhood Search, Bee Colony Optimization, and other advanced
techniques, could provide promising alternatives to exact methods. These approaches can offer significant
improvements in solution times and quality, making them suitable for practical applications in large-scale and
dynamic port environments. While our MILP model provides a comprehensive and detailed representation
of integrated berth and crane operations, additional investigation is needed to develop and apply heuristic or
metaheuristic methods to achieve practical and efficient solutions. This study sets the stage for such future work,
aiming to enhance the operational efficiency and service quality of container terminals.
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