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Abstract: We consider a non-preemptive scheduling problem with deadlines and release times, where each task
is associated also a nonnegative weight, representing price to be rewarded when task is scheduled for execution.
The problem consists of finding a subset of tasks that are going to be scheduled and ordering them in such a
way to maximize the price (sum of weights) of all scheduled tasks. Since the problem is NP-hard, we propose a
metaheuristic approach, using the General Variable Neighborhood Search (GVNS). This approach is tested on
a set of randomly generated instances, and the results obtained this way suggest that GVNS is able to find a
high-quality solutions in a short amount of time.
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1. INTRODUCTION

The scheduling problem and its variations are among the most frequently investigated problems in the field of
combinatorial optimization. Its basic variants were formulated by Graham [2] in 1966 and remained relevant till
today. The variations are usually classified according to some properties of the problem [6]: task data (such as
task length, release time, deadline, etc.), task characteristics (such as precedence relations, preemption, etc.),
machine environment (single or multiple machines, homogeneity of machines, etc.), and optimality criteria.

Here we consider a non-preemptive scheduling problem with multiple identical machines, where each of
the tasks is characterized by a deadline, release time, weight, and length. This variant of scheduling problem
can have many practical applications, and we are primarily interested in is the use of the developed scheduling
algorithm as a part of Proof-of-Useful-Work (PoUW) in blockchain systems [6]. A review of the relevant
literature is presented in the first part of our research [7].

In [7], we proposed two MILP formulations for the aforementioned problem, and used them within the
GLPK solver. Since the solver was unable to give us satisfactory solutions within a limited amount of time,
we naturally switch to metaheuristics. The main contribution of this paper is the development of the GVNS
algorithm, which already proved itself successful for dealing with other scheduling problems [3, 5, 9, 10]. A set
of five neighborhood structures is identified, all five are used in the shaking step, while only two of them are
used in the local search step. We also present a greedy procedure for finding a high-quality initial solution. This
approach is tested on a set of randomly generated instances, differing in the number of tasks and machines.

This paper is organized as follows. In Section 2 we briefly describe the considered problem. Section 3 is
devoted to the implementation of the proposed GVNS, description of neighborhood structures, and generation
of the initial solution. In Section 4 we present the results of the experimental analysis of comparing the results
obtained by GVNS and GLPK using MILP formulations. Finally, concluding remarks are presented in Section 5.

2. PROBLEM DESCRIPTION

The problem can be stated as follows. We are given a set of tasks to be scheduled on a set of identical machines.
Tasks are defined by their lengths, weights, deadlines and release times. We consider a non-preemptive version
of the problem in which tasks cannot be interrupted before they are completely finished. Deadline constraints
prevent a task to complete after a certain time unit, while the release time specifies how many time units have to
pass before the task can begin its execution. In our version, empty time slots in which a machine is idle are not
permitted. If a task can’t be assigned to any of the machines without violating some constraints, it is not going
to be scheduled. This is different from the much more common versions of this problem, which allow (with
a certain penalty) to schedule tasks missing their deadlines. We can fill all the potential empty timeslots with
some dummy unit tasks with zero weights. The reasoning behind this is explained in more detail in our paper
[7]. The objective is to maximize the total sum of weights for scheduled tasks, taking into account constraints
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imposed by deadlines and release times. More formal description of our problem, together with a mathematical
formulation can be found in [7].

3. GVNS IMPLEMENTATION

Variable neighborhood search (VNS) is a metaheuristic method proposed by Mladenović and Hansen [8]. In
its basic variant, it employs a systematic change of neighborhoods, together with an intensified search within
a single neighborhood. VNS consists of three main steps: shaking, local search, and neighborhood change.
Shaking step perturbs the incumbent solution, to prevent being stuck in a local optimum. This is done by
randomly choosing a neighbor from the current neighborhood. The perturbed solution is then improved by some
local search method. If the the obtained local optimum is better than the incumbent solution, it becomes the
new incumbent solution, and the search continues from the first neighborhood, otherwise, the search moves
to the next neighborhood. There are various versions of VNS [4]. Here, we explore the General Variable
Neighborhood Search (GVNS), which uses Variable Neighborhood Descent (VND) as its local search procedure.
In this section, we present in detail some important parts of this method.

3.1. Solution representation

A solution is represented as an array of (K+1) double-linked lists, where K is the number of available machines.
In each list, we store indices of tasks that should be executed on the corresponding machine, in the order in
which they should be executed. The (K +1)-th list stores unscheduled tasks, that is, tasks that do not contribute
to the value of the objective function. Therefore, constraints do not apply to the tasks in this list. The structure
used for representing a solution can be seen in Figure 1.

Figure 1 Representation of a solution

3.2. Determination of the initial solution

The initial solution is constructed in a greedy way. First, we sort tasks according to their deadlines in ascending
order. Then, we iterate through all of the tasks trying to assign them to one of the machines. If a task cannot be
assigned to a machine without violating some of the constraints, we try to assign it to the next machine. In order
to balance the load over all of the machines, for each task, we choose a different machine as a starting point, in a
round-robin manner. If a task cannot be assigned to any of the machines, we assign it to the dummy machine.
The pseudo-code for this approach can be seen in Algorithm 1. A solution generated this way is always feasible.

3.3. Neighborhood structures

Properly chosen neighborhood structures can greatly influence the overall performance of GVNS. We consider
five different neighborhood structures, classified into two categories: active and inactive. Active neighborhoods
work only with tasks that are already scheduled, moving them to different time slots. On the other hand, inactive
neighborhoods work with unscheduled tasks, trying to insert them into the schedule.

1. Swap_active(k) ( N1(r,s) ) - This neighborhood selects a pair of blocks consisting of r and s consecutive
tasks assigned to the same machine, and exchanges their places if possible;
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Algorithm 1 Solution initialization

1: procedure INITSOLUTION(number of tasks N, number of machines K, tasks)
2: solution← emptySolution()
3: tasks← sortTasksByDeadlinesAscending(tasks)
4: i← 0
5: for task ∈ tasks do
6: inserted← f alse
7: j← i
8: while j < i+K do
9: m← j mod K

10: if task doesn′t violate constraints f or machine m then
11: solution[m].add(task)
12: inserted← true
13: break
14: end if
15: j← j+1
16: end while
17: if not inserted then
18: solution[K].add(task)
19: end if
20: i← (i+1) mod K
21: end for
22: return solution
23: end procedure

2. Exchange_active(k) ( N2(r,s) ) - This neighborhood selects a pair of blocks consisting of r and s
consecutive tasks assigned to two different machines, and exchanges their places if possible;

3. Relocate_active(k) ( N3(r) ) - This neighborhood moves a block of r consecutive tasks from one machine
to the other if possible;

4. Exchange_inactive(k) ( N4(r,s) ) - This neighborhood selects a pair of blocks consisting of r and s
consecutive tasks assigned to two different machines, one of which is the dummy machine, and exchanges
their places if possible;

5. Relocate_inactive(k) ( N5(r) ) - This neighborhood moves a block of r consecutive tasks from the dummy
machine to some other machine if possible.

Considering the fact that active neighborhoods cannot contribute to the value of the objective function, they
are used only during the shaking step. The logic behind this is that even though they cannot provide a better
solution, changing the ordering of the tasks may potentially open a time slot for an unscheduled task.

3.4. Shaking

The shaking step of our procedure consists of finding a neighbor at the distance l from the current solution x. It
is done by repeating l times the following steps: randomly chose one of the neighborhood structures and select
a random neighbor of the incumbent solution. The pseudo-code of this procedure is presented in Algorithm 2.

3.5. Variable Neighborhood Descent

VND procedure explores neighborhoods N4(1,1) and N5(1), using the First Improvement principle. The
ordering of neighborhoods was determined experimentally. At the beginning, the procedure searches for an
improvement in the neighborhood N4(1,1). This continues as long as an improvement can be found. In case that
procedure cannot find any improvement in the neighborhood N4(1,1), it moves to the next neighborhood - N5(1).
If the improvement is obtained in N5(1), the search continues from N4(1,1), otherwise, the VND procedure
ends. The pseudo-code of this procedure is given in Algorithm 3.

3.6. The structure of the proposed GVNS

Our GVNS can be presented by the pseudo-code given in Algorithm 4. After the instance is read, the first
feasible solution is constructed using the described greedy procedure. GVNS then iterates its steps until the
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Algorithm 2 Shaking

1: procedure SHAKING(solution x, value of neighborhood index l)
2: i← 0
3: x′ ← x
4: while i < l do
5: i← i+1
6: Randomly select a value p ∈ {0,1,2,3,4}
7: switch (p) do
8: case 0 :
9: x′ ← find a random neighbor from N1(1,1) of x′

10: case 1 :
11: x′ ← find a random neighbor from N2(1,1) of x′

12: case 2 :
13: x′ ← find a random neighbor from N3(1) of x′

14: case 3 :
15: x′ ← find a random neighbor from N4(1,1) of x′

16: case 4 :
17: x′ ← find a random neighbor from N5(1) of x′

18: end while
19: return x′
20: end procedure

Algorithm 3 Variable Neighborhood Descent

1: procedure VND(solution x)
2: imp← true
3: x′ ← x
4: while imp do
5: imp← LS(N4(1,1),x′)
6: if not imp then
7: imp← LS(N5(1),x′)
8: end if
9: end while

10: return x′
11: end procedure

stopping criterion is met, which is a time limit in our case. More precisely, the inner loop, depending on the
neighborhood index for shaking, is performed. The algorithm perturbs the solution and then tries to improve it
with VND. If the newly found solution is better than the incumbent solution, it is accepted as the new incumbent
solution and the search continues from the first neighborhood lmin. Otherwise, the neighborhood index for
shaking is increased.

4. EXPERIMENTAL EVALUATION

GVNS presented in this paper was written in the C++ programming language and executed on a laptop with an
Intel i7-10750H processor and 32GB of RAM. The obtained results are compared to results obtained by GNU
Linear Programming Kit (GLPK), executed on the same machine. For more information about the mathematical
model used by GLPK, please refer to [7].

For the purpose of testing our algorithm, we randomly generated a set of ten test instances, with the number
of machines varying between 2 and 4, and the number of tasks ranging between 10 and 45. When testing these
instances with GLPK, we limited CPU time to 1800 seconds, while the time limit imposed on GVNS was 300
seconds. In order to prove the stability of the results obtained by GVNS, for every instance we repeated the
test 30 times, with a different seed value for the random number generator. The parameters lmin and lmax were
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Algorithm 4 GVNS

1: procedure GVNS(Instance to be solved,lmin,lmax,runtime)
2: x← initSolution()
3: while Time < runtime do
4: l← lmin
5: while l < lmax do
6: x′ ← shake(x, l)
7: x′′ ← vnd(x′)
8: if f (x′′)> f (x) then
9: x← x′′

10: l← lmin
11: tmin← Time
12: else
13: l← l +1
14: end if
15: end while
16: end while
17: return Solution x, minimal time tmin
18: end procedure

determined by using the iRace1 package for the R programming language. With the budget of 200 tests, the
algorithm determined that the best possible values are lmin = 2 and lmax = 19.

The results obtained by our GVNS are shown side by side with the results from GLPK in Table 1. The first
three columns in this table describe instances, where N is the number of tasks to be scheduled, and K is the
number of available machines. The second part of Table 1 (columns 4-7) shows the results from GLPK, namely,
the objective function value (with the gap in parentheses) and the corresponding CPU time in seconds. The third
part (columns 8 and 9) shows the results obtained from GVNS. The average objective value obtained over 30
independent executions is shown together with the corresponding standard deviation in column 8, while the
average tmin (minimum CPU time) and its standard deviation are displayed in column 9. The last column in the
table represents the objective function value of the initial GVNS solution, generated by the greedy algorithm.

As we can see from Table 1, GVNS outperformed GLPK for all instances, either by finding a better solution
or by finding the same solution in a shorter time. Compared to MODEL I (MODEL II), GVNS was able to find
a better solution than GLPK in eight (six) out of ten instances, within a negligible CPU time. We can also see
that GVNS had no problem with finding a good solution even for larger instances (Ex9 and Ex10), for which
GLPK was unable to find even the first feasible solution. What we have found especially interesting is that the
greedy procedure used in GVNS for generating an initial solution usually provides a nearly optimal solution,
solely outperforming GLPK in 7(6) out of 10 cases in the case of MODEL I (MODEL II). For instance Ex3, it
was even able to find the best-known solution. Because of this, we can assume that providing the results of this
greedy procedure to GLPK as an initial solution would greatly improve its performance.

5. CONCLUSION

We proposed GVNS for the non-preemptive version of scheduling tasks to identical machines. The considered
version of the problem involves multiple machines and a set of tasks, each characterised by deadline, release
time, and weight. The main objective is to maximize the total sum of weights for the scheduled tasks, having in
mind that not all of the tasks have to be scheduled. Our GVNS uses five neighborhood structures, as well as a
new greedy procedure for generating an initial solution.

We tested GVNS on a set of randomly generated instances and compared the results to the ones obtained by
an exact solver GLPK exploring two different MILP formulation of the problem. The experimental evaluation
shows that GVNS significantly outperforms GLPK, both in terms of solution quality and the running time. Future
research should include testing the algorithm on some larger (and preferably real-life) instances, developing
other metaheuristic methods, and generating hybrids between (meta)heuristic methods and exact solvers.

1 https://cran.r-project.org/web/packages/irace/index.html
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Table 1: A comparison between GLPK and GVNS

Example K N GLPK (MODEL I) GLPK (MODEL II) GVNS Greedy
Obj. (% gap) CPU time Obj. (% gap) CPU time Av. obj. (σ) Av. CPU time (σ) Obj.

Ex1 2 10 27 (0%) 3.64 27(0%) 2.98 27 (0) 0.000072 (0.000006) 26

Ex2 2 15 23 (69%) 1800 34 (14.7%) 1800 34 (0) 0.000816 (0.000630) 24

Ex3 2 15 33.0 (21.2%) 1800 33 (21.2%) 1800 36 (0) 0.000070 (0.000000) 36
Ex4 3 15 35 (8.6%) 1800 37 (2.7%) 1800 37 (0) 0.000056 (0.000010) 32

Ex5 2 20 30 (56.7%) 1800 N/A 1800 38 (0) 0.001220 (0.000888) 34

Ex6 3 20 42 (21.4%) 1800 N/A 1800 50 (0) 0.000718 (0.000438) 47

Ex7 3 20 44.0 (11.4%) 1800 N/A 1800 49 (0) 0.000209 (0.000011) 46

Ex8 4 20 59.0 (0%) 1.18 59.0 (0%) 12.56 59 (0) 0.000210 (0.000016) 56

Ex9 4 40 N/A 1800 N/A 1800 106 (0) 0.016765 (0.010869) 97

Ex10 4 45 N/A 1800 N/A 1800 102 (0) 0.197937 (0.202902) 86
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Koviljača, Sept. 20-23, 2021 (submitted)

[8] Mladenovic, N., & Hansen, P. (1997). Variable neighborhood search. Computers & operations research,
24(11), 1097-1100.

[9] Tasgetiren, M. F., Buyukdagli, O., Pan, Q. K., & Suganthan, P. N. (2013, December). A general variable
neighborhood search algorithm for the no-idle permutation flowshop scheduling problem. In International
Conference on Swarm, Evolutionary, and Memetic Computing (pp. 24-34). Springer, Cham.

[10] Wen, Y., Xu, H., & Yang, J. (2011). A heuristic-based hybrid genetic-variable neighborhood search
algorithm for task scheduling in heterogeneous multiprocessor system. Information Sciences, 181(3),
567-581.

212


