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Abstract: We consider a non-preemptive version of the scheduling problem with multiple identical machines,
deadlines, release times, and task weights. The main goal is to select a subset of tasks to be scheduled for
execution in such a way to maximize the total sum of weights of all scheduled tasks. For this purpose, we devise
two different mathematical formulations and test them on a set of randomly generated instances using the GNU
Linear Programming Kit as a solver.
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1. INTRODUCTION

The task scheduling problem is a widely known problem in the field of discrete mathematical optimization.
It was first introduced by Graham [5] in 1966. Over the course of years, many different variations have been
proposed, considering different aspects and applications of the problem. Some of the variations are described in
a survey [6]. In general, these variations can be classified according to several criteria [8]: task data (such as
task length, release time, deadline, etc.), task characteristics (such as precedence relations, preemption, etc.),
machine environment (single or multiple machines, homogeneity of machines, etc.), and optimality criteria.
Scheduling problems generally belong to the class of NP-hard problems, but in specific variants they can be
NP-complete [16]. More details about scheduling problem can be found in books [3, 14].

In this paper, we address the problem of scheduling a set of tasks over several identical machines. This
problem can be specified with Graham’s notation [6] as (P|r j,d j|∑wjXj), where Xj is a binary variable which
takes the value of 1 if task j is scheduled, or 0 otherwise. Each task has its length, which determines how many
time slots a task will take to complete. A non-preemptive version of a problem is considered, meaning that the
tasks cannot be interrupted before they are completed. Additional constraints are imposed on tasks, such as
release times and deadlines. The release time of a task prevents its execution until the specified number of time
units has passed, while deadlines assure that no task finishes its execution after a specified time unit. Together,
release times and deadlines can be used to implicitly enforce some form of precedence relation among tasks.
Unlike many other similar variants of the problem, which allow missing the deadline with some penalty, the
considered version of the problem strictly forbids this situation. In our version, tasks that cannot be scheduled in
such a way that both deadline and release time constraints are met, are not going to be scheduled at all. This
adds additional complexity to the problem because we need to determine a proper subset of tasks that are going
to be executed, so as to fulfill all the constraints and maximize the total sum of weight of these tasks.

Similar variants of this problem have already been investigated. In paper [18], a single-machine problem
with release times, deadlines, setup times, and rejection has been described. Missing a deadline was allowed
with a certain penalty, and the authors proposed a dynamic programming method for finding the solution. In
paper [4], an approximation algorithm was proposed for scheduling tasks with deadlines and release times on
a minimal number of machines. The authors of paper [17] considered scheduling with deadlines and release
times, precedence, and exclusion relation on a single machine. A weighted version of the scheduling problem
with release times and deadlines on a single machine was considered in [15] in the case of unit tasks (i.e., when
the lengths of all tasks are the same). The authors proposed a greedy algorithm for efficiently finding a good
solution.

The scheduling problems have many practical applications, from the use in multiprocessor systems, schedul-
ing talks at conferences, production processes in the industry, assigning resources in a cloud environment, etc.
The application that we are primarily interested in is the use of a scheduler as a part of Proof-of-Useful-Work
(PoUW) in blockchain systems. In recent years, many concerns were raised about a huge amount of energy
being spent on mining new blocks. The main problem is that most of that energy is used for calculating hash
values, which is not in any way useful by itself. Because of that, Proof-of-Useful-Work [2] is suggested for
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overcoming this issue, by allowing new blocks to be mined by doing something "useful". Many recent papers
addressed PoUW, including [1, 9, 10, 11].

As an application of our models, we consider PoUW that allows users to submit their own tasks to be solved,
specifying the price they are willing to pay, together with deadlines and release times. In that case, miners need
to choose which tasks they are going to solve and in which order, with the goal of maximizing their reward
(profit, expressed as a sum of task prices). Selecting these tasks intuitively may lead to a suboptimal reward, and
our model can help miners to make more proper selection. Especially, if miner explores multiple machines, it
can decide to use additional software, which can determine the best possible subset of tasks (and their order) to
be executed and maximize the profit. As we always need to be able to add new blocks into a blockchain, and
miners do not want to lose any potential profit by letting their machines be idle, there should not be any empty
timeslots between two tasks. To fill all of the potential empty timeslots, some dummy tasks (with zero weights)
are added to the pool of tasks. More precisely, if there are no user-submitted tasks to be scheduled, miners can
solve a classical Proof-of-Work (PoW) hash-based puzzle. A dummy task defined this way has a release time of
0, and a large enough deadline so that it could never be missed. Even though dummy tasks have a weight of 0
(they do not explicitly bring any reward to a miner), a miner can still benefit from solving them if his block gets
accepted into a blockchain, in the same way as in the classical PoW.

Another potential usage of our models can be found in blockchain systems that use some forms of centraliza-
tion. Even though blockchain is intrinsically a decentralized system, some authors investigated the possibility
of introducing some level of centralized control, in order to reduce the energy wasted by preventing multiple
miners from solving the same problem. In [7], the authors proposed a system in which a set of transactions for
each block is determined by a manager, as well as a set of allowed nonce values for each miner (in contrast
to classical PoW in which miners can choose transactions and nonce for themselves). This approach ensures
that each miner examines only his portion of the search space, thus preventing unnecessary calculations. We
further expand on this idea by suggesting that a manager can also assign the user-submitted task to miners. In
addition, miners can be organized into groups in such a way that the miners from the same group solve different
tasks from the assigned subset, which simulates scheduler with multiple machines. Admittedly, these groups
would not be identical, but it would not be overly demanding to modify our model to work with heterogeneous
machines. In this situation, the manager would solve our scheduling problem, and assign the appropriate subset
of tasks to each of the mining groups.

The main contribution of this paper are two new mathematical formulations that we propose for the
considered scheduling problem in the form of MILP. The experimental evaluation is carried out on a set of
randomly generated instances. These instances vary in the number of available machines and the number of
tasks that need to be scheduled. We tested the proposed models within GNU Linear Programming Kit GLPK
solver 1. As it turns out, the problem is highly complex because of the fact that we need to find the optimal
subset of tasks to be executed. Under a time limit, GLPK solver is unable to prove the optimality for most of
the instances, while in the case of very large instances finding even the first feasible solution proved to be a
challenge for GLPK.

This paper is organized as follows. The introduction and the review of the relevant literature are presented
in Section 1. In Section 2, we formulate the problem as the Mixed-Integer Linear Program. In Section 3, the
experimental evaluation is presented, performed on a set of test instances using GLPK solver. Concluding
remarks are given in Section 4, together with the ideas for further research.

2. PROBLEM DESCRIPTION

We can formulate the problem in the following way. Let us assume that we have n tasks that we want to schedule,
as well as K identical machines on which we can execute the tasks. Each task is characterized by a deadline,
release time, task length, and task weight. A non-preemptive version of the problem is considered. The deadlines
cannot be exceeded, but a task can be omitted from the schedule without penalty. Empty time slots, in which
no task is scheduled, are not permitted. This is justified by the intended application in PoUW. The goal is to
maximize the total sum of all the scheduled tasks, with respect to constraints imposed by deadlines and release
times. To unify the problem description, we include two dummy tasks. The task with index 0 is considered to
be the starting task, in the sense that every machine has to start with this task. Similarly, a task with index n+1
is the ending task, so the execution on every machine has to end with this task. Naturally, both of these tasks
have the 0 weight, or in other words, they do not contribute to the value of the objective function. For simplicity,
we will denote with N the total number of tasks, the real ones plus starting and ending tasks (N = n+2).

1 https://www.gnu.org/software/glpk/
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Let us introduce the necessary notation:
N - The number of tasks,
K - The number of available machines,
li - The length of task i,
di - The deadline of task i,
ri - The release time task i,
wi - The weight of task i,
α - The parameter that plays the role of a large enough constant, however, it is enough to set it to the
maximal deadline: maxi{di}.

We have two different sets of decision variables, binary variables x and real variables t defined as:

xi, j,k =

{
1, if the task j is executed immediately after task i on a machine k,
0, otherwise;

ti, j,k = the starting time of the task j on a machine k, corresponding to xi, j,k.

The proposed MILP for the considered problem can be defined as follows:

max
N

∑
i=0

N+1

∑
j=1

K

∑
k=1

wj · xi, j,k (1)

s.t.

N

∑
i=0

K

∑
k=1

xi, j,k ≤ 1, 1 ≤ j ≤ N, i �= j (2)

xi,i,k = 0, 1 ≤ i ≤ N, 1 ≤ k ≤ K (3)

N

∑
i=0

xi, j,k =
N+1

∑
i=1

x j,i,k, 1 ≤ j ≤ N, i �= j 1 ≤ k ≤ K (4)

N+1

∑
j=1

x0, j,k ≤ 1, 1 ≤ k ≤ K (5)

t0, j,k = 0, 1 ≤ j ≤ (N +1), 1 ≤ k ≤ K (6)

ti, j,k ≤ xi, j,k ·α, 0 ≤ i ≤ N, 1 ≤ j ≤ (N +1), 1 ≤ k ≤ K (7)

N+1

∑
i=1

t j,i,k −
N

∑
i=0

ti, j,k = l j ·
N

∑
i=0

xi, j,k, 1 ≤ j ≤ N, 1 ≤ k ≤ K (8)

ti, j,k + l j ≤ d j, 0 ≤ i ≤ N, 1 ≤ j ≤ (N +1), 1 ≤ k ≤ K (9)

ti, j,k ≥ r j · xi, j,k, 0 ≤ i ≤ N, 1 ≤ j ≤ (N +1), 1 ≤ k ≤ K (10)

xi, j,k ∈ {0,1}, 0 ≤ i ≤ N, 1 ≤ j ≤ (N +1), 1 ≤ k ≤ K (11)
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ti, j,k ≥ 0, 0 ≤ i ≤ N, 1 ≤ j ≤ (N +1), 1 ≤ k ≤ K (12)

The objective function (1) represents the total weight of all the scheduled tasks. Constraints (2) and (3)
ensure that no task is executed more than once. Constraints (4) ensure that every scheduled task, except for the
first and the last, must have a preceding and subsequent task. This way, we can form an ordered list of tasks for
each of the machines. Every machine has at most one start task, as suggested by constraints (5). Of course, there
could be some machines without any scheduled tasks. As the list of tasks for each machine always starts with
the dummy task 0, we initialize its starting time to zero (constraints (6)). Constraints (7) ensure that if task j is
not scheduled after task i, the corresponding starting time is set to zero. Constraints (8) establish the rule that
after executing a task j, the starting time is increased exactly for the length of that task. The set of constraints
(9) impose that all of the deadlines for the scheduled tasks must be met, while constraints (10) are related to the
release times of the scheduled tasks. Finally, constraints (11) and (12) determine the type of decision variables.

The proposed model (which we call MODEL I) has N2K binary and N2K real variables. A closer inspection
reveals that not all of those variables are strictly necessary. Specifically, we do not necessarily need information
about the previous task for variables that contain starting times, so we can try to reformulate the model in order
to reduce the number of real variables to N ·K. Consequently, we are changing this set of decision variables to
be:

t j,k = the starting time of the task j on a machine k.

The new formulation can be written as:

max
N

∑
i=0

N+1

∑
j=1

K

∑
k=1

p j · xi, j,k (13)

s.t.
(2) - (5), (11),

t0,k = 0; 1 ≤ k ≤ K (14)

ti,k + li − t j,k ≤ α · (1− xi, j,k), 1 ≤ i ≤ N, 1 ≤ j ≤ N, 1 ≤ k ≤ K (15)

t j,k + l j ≤ d j; 1 ≤ j ≤ N, 1 ≤ k ≤ K (16)

t j,k ≥ r j ·
N−1

∑
i=0

xi, j,k; 1 ≤ j ≤ N, 1 ≤ k ≤ K (17)

t j,k ≥ 0, 0 ≤ j ≤ (N +1), 1 ≤ k ≤ K (18)

This model, referred to as MODEL II, shares constraints (2), (4), (3), (5), and (11) with the previous model.
Constraints (14) set the starting time of the first task to 0 for every machine. Constraints (15) serve the same
purpose as constraints (8) from MODEL 1. The set of constraints (16) guarantee that all of the deadlines for the
scheduled tasks will be met, while constraints (17) are related to the release times of the scheduled tasks. The
type of decision variables related to release times is given by constraints (18).

3. EXPERIMENTAL EVALUATION

For the purpose of testing our models, we randomly generated a set of ten instances, with a different number
of tasks and available machines. The number of machines is ranging from 2 to 4, while the number of
tasks takes values between 10 and 45. The instances can be downloaded from http://www.mi.sanu.ac.rs/
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~luka/resources/scheduling/instances.zip. All the experiments were performed on an Intel i7-10750H
processor with 32GB of RAM memory, under a Linux operating system. GLPK v4.65 [12] is used as an exact
solution method. For practical reasons, the runtime of GLPK for each instance was set to 30 minutes (1800
seconds).

We present the results obtained by using our two models within GLPK on all ten instances in Table 1 . The
first three columns contain some details about test instances, i.e., the name, the number of machines K and the
number of tasks N. In the fourth and fifth columns, we display the results obtained using MODEL I, consisting
of the objective value provided by GLPK (together with the corresponding percentage gap in parentheses), and
the CPU time in seconds that GLPK required to obtain the reported solution. Similarly, the last two columns
show the results provided by MODEL II.

Table 1: GLPK results for tested instances

MODEL I MODEL II
Example Num. of machines Num. of tasks Obj. value (% gap) CPU time (s) Obj. value (% gap) CPU time (s)
Ex1 2 10 27 (0%) 3.64 27(0%) 2.98

Ex2 2 15 23 (69%) 1800 34 (14.7%) 1800

Ex3 2 15 33.0 (21.2%) 1800 33 (21.2%) 1800

Ex4 3 15 35 (8.6%) 1800 37 (2.7%) 1800

Ex5 2 20 30 (56.7%) 1800 N/A 1800

Ex6 3 20 42 (21.4%) 1800 N/A 1800

Ex7 3 20 44.0 (11.4%) 1800 N/A 1800

Ex8 4 20 59.0 (0%) 1.18 59.0 (0%) 12.56

Ex9 4 40 N/A 1800 N/A 1800

Ex10 4 45 N/A 1800 N/A 1800

As we can see from this table, GLPK was not able to provide the optimal solution for most of the instances
within the given runtime limit, even though most of the tested instances are small in size. It may happen that by
increasing this limit it would be possible to obtain the optimal solution, however, it cannot be guaranteed, and
moreover, that could lead to the limited usefulness of the model since these types of problems often need to be
solved quickly and on a regular basis. In the case of the two largest instances (Ex9 and Ex10), GLPK was not
even able to find the first feasible solution. We can also notice that the instance Ex8 was solved to optimality in
a short amount of time, despite having more tasks and machines than previous instances. This is because all of
the tasks in this test instance can be scheduled on one of the available machines, without the need to omit some
of the tasks. This observation indicates that the most complex part of this problem is finding a subset of tasks
that are going to be scheduled. MODEL II has shown some promises for the first 4 instances, finding better
or equal solutions than MODEL I. Despite that, MODEL II requires much more time to find a first feasible
solution, and even was not able to find one at all in five out of ten instances. The main conclusion of this study
is that this problem is too complex for being solved exactly, so we need to consider a metaheuristic approach to
this problem, which we did in our subsequent paper [13].

4. CONCLUSION

In this paper, we presented two new mathematical formulations for the non-preemptive version of the scheduling
problem with multiple identical machines, in which each task is characterized with length, weight, deadline, and
release time. The goal is to maximize the total sum of weights of all the scheduled tasks, with the possibility to
omit any number of tasks from the schedule. Therefore, the considered problem consists of finding the most
suitable subset of tasks to be executed, assigning those tasks to the appropriate machine and determining the
order in which selected tasks are going to be executed.

The experimental evaluation of these models was performed using GLPK solver, on a set of ten randomly
generated instances. The obtained results suggest that the problem is too complex to be solved to optimality in a
reasonable amount of time by an exact method. Consequently, applying metaheuristic methods seems to be a
more promising approach. We applied one of such methods to this problem and presented the results in a paper
[13].
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