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Rezime - U ranijim radovima razvijali smo i uporedjivali razne heuristike za rasporedjivanje zadataka u 
prisustvu komunikacija i zaključili da metoda promenljivih okolina u proseku daje najbolje rezultate za sve tipove 
slučajno generisanih grafova zadataka. Medjutim, pronašli smo klasu grafova sa poznatim optimalnim rešenjem 
za koju se heuristička raspodela dobijena metodom promenljivih okolina (iako je još uvek bolja od drugih) 
razlikuje od optimalne za više od 50%. U ovom radu opisaćemo analize koje smo izvršili sa ciljem razumevanja 
dobijenog odstupanja heurističkih rešenja od optimalnog. Kao rezultat dobili smo odstupanje samo 6%. 
 
KLJUČNE REČI:  GRAF ZADATAKA, RASPOREDJIVANJE, KOMUNIKACIONO KAŠNJENJE, METODA PROMENLJIVIH OKOLINA. 
 
Abstract - In our previous papers we developed and compared different scheduling heuristics and concluded that VNS 
performs best in average for all types of random task graphs we generated. Yet, there is a class of task graphs with known 
optimal solutions such that VNS obtained schedule (although still the best one) differs from the optimal one for more than 
50%. In this paper we describe the analysis we performed in order to explain the deviation of the heuristic solution from 
the optimal one. As a result, we are able to reduce the error to 6% above the optimal solution.  
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1. INTRODUCTION 
 
Metaheuristics such as Genetic Algorithms (GA), 
Variable Neighborhood Search (VNS), Tabu Search 
(TS) are very efficient and therefore very popular 
methods in solving combinatorial optimization 
problems.  
 
Metaheuristics have already been applied to different 
variants of scheduling problems. In [9] TS was applied 
to problem of scheduling independent tasks. TS for 
scheduling communicationg tasks with significant 
communication delays onto heterogeneous multipro-
cessor architecture was developed in [7]. GA approach 
was developed for scheduling dependent tasks with 
neglected communication time in [1]. Even parallel 
variants of TS [8] and GA [5] have appeared. Acording 

to problem considered and/or solution representation it 
is very hard to compare these existing metaheuristic 
approaches. We developed VNS, TS [2] and GA [3] for 
solving MSPCD based on same solution representation 
and compared them onto random task graphs with given 
density and sometimes with given optimal solutions. The 
comparation was performed with CPU time stopping 
condition: all the heuristics were allowed to run until 20 
restarts of Mltistart Local Search (MLS). It appeared 
that VNS performs best in average on all types of 
random task graphs. Since we generated random task 
graphs with known optimal solutions, we could discuss 
the quality of obtained heuristic solutions for these 
graphs. The disappointing fact was that for some of the 
test instances the best solutions (usualy produced by the 
use of VNS) were more than 50% worse than the 
optimal one. In order to explaine this deviation, we 
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performed experimental analysis of MSPCD problem 
varying the values of VNS parameters.  
 
The paper is organized as follows. In the next section we 
describe the implementation of Local Search (LS) to 
MSPCD, solution representation, neighborhood struct-
ures and search parameters. The test instances that turn 
out to be hard for scheduling are descused in section 3. 
The section 4 contains analysis of the influence of 
communication delays to solving MSPCD, the obtained 
topology of local minimas, the efect of selected initial 
solution and VNS parameters. Section 5 concludes this 
paper. 
  
2. IMPLEMENTATION DETAILS 
 
In our implementation of  heuristics based on LS 
procedure (TS, VNS, MLS) we defined solution space to 
be the set of all permutation of tasks. Feasible solutions 
are feasible permutations, i.e. tasks orderings that obey 
precedence relations between tasks defined by the task 
graph. Starting from a permutation, the actual solution 
(schedule, i.e. the index of processor and the starting 
time instance for each task) can be determined by the use 
of some scheduling rule. We choose Earliest Start (ES) 
rule since it has been widely used in the literature. The 
idea of ES rule is that a task has to start execution as 
soon as posible, because then it will be finished earlier 
and its succeeding tasks can begun their execution 
earlier.  
 
After the ES rule is applied, we can calculate the 
objective function value, i.e. schedule length. Obviously, 
we have implicit connection between solution 
representation and the value of the objective function. 
The advantage of representing solution as feasible 
permutation is efficient neighborhood searh, since there 
are a lot of neighborhood structures that can be applied. 
The disadvantage of such representation is that several 
different permutations may produce the same schedule  
(after applying ES). The ilustration of these observation 
is given on Fig. 1. We performed scheduling procedure 
for all 1-Swap neighbors of known optimal solution. As 
a result, we obtained 679 optimal schedules versus 437 
nonoptimal ones. Then, we sorted the obtained 
nonoptimal schedules in nondecreasing order and  
reperesent them graphicaly on Fig. 1. As can be seen on 
Fig. 1 the different  permutations produce the same 
nonoptimal schedule; also worst solution in 1-Swap 
neighborhood has 90% error. 
  
In LS procedures we have to obey precedence constraints 
between tasks in order to assure correct execution of 
paralellized task graph. We made experiments with 
several neighborhood structures always using the 

reduced versions. For example, reduced 1-Swap 
neighborhood search is as follows: for each task in 
current solution we perform all feasible changes of  its 
position in this solution in forward (or backward 
direction). This means that task can not move to the 
right from any of its successors (or to the left  from its 
predecesors). The search direction can be seen as a 
parameter. We also experimented with best and first 
improvement search strategies and conclude that first 
improvement is faster and gives us better results in 
average.  
 

 
 
Fig. 1 % deviation from the optimal value in the 1-Swap 
neighborhood  of the optimal solution 
 
Except 1-Swap neighborhood structure, we used 
restricted versions of Or-opt, which is an ordered 
combination of 3-Swap, 2-Swap and 1-Swap. The 3-
Swap neighborhood means that we take 3 succeeding 
tasks and move them to all possible (feasible) positions 
trying to minimize scheduling length. Similarily, the 2-
Swap neighborhood is obtained by all possible changings 
of positions of 2 succeeding tasks. The order of 
neighborhoods in Or-opt is defined by the change 
significance and neighborhood sizes. This means that we 
try to improve our objective function value by coarse 
moves first, and then performe the fine moves. At the 
same time, we search in the small neighborhoods first. 
 
The last neighborhood we implemented in [2] is  inter-
change, it is obtained by all possible (feasible) exchanges 
of positions of any two tasks which is the special case of 
4-Opt move. 
 
The shaking procedure of the VNS [4,6] is realized in 
two variants: 1) k-Swap, meaning that k times we pick 
up a task and change its position in feasible permutation 
and 2)  k-interchange, which consists in k interchanges 
performed on current incumbent solution. In our 



pervious paper [2] we made experiments only with 
single neighborhoods, single directions of search 
procedures and unique stopping criterion (CPU time). 
We selected the best obtained parameter combination for 
our examples and made a conclusion that among VNS, 
TS, MLS and even GA, VNS performes best in average. 
Inspite this, the obtained schedules for tasks graphs 
(generated as explained in next Section) were more than 
50% worse than the known optimal solutions.  
 
3. DESCRIPTION OF 'HARD' TEST INSTANCES 
 
The task graphs with known optimal solutions were 
generated in such a way that a load balance between 
processors is achieved and no idle time intervals occure 
in the optimal solution. The communication is suppossed 
to be intensive between tasks executed on the same 
processor. The generation algorithm is described in [5].   
 
Dense task graphs (ρ=0.67) are not difficult for 
scheduling since the data dependences force the 
scheduling proces to minimize communication delays. 
So, in these examples optimal solution is obtained as the 
initial one (permutation defined by the CP method is 
scheduled according to ES rule) or, at the worst, when 
the 1-Swap LS is applied  to the initial solution. Sparse 
task graphs (ρ=0.33) are characterized by a large 
number of  feasible permutations and the initial one 
(obtained by the CP method) gives the solution at 
relatively poore quality (since there are a lot of 
independent tasks that can be scheduled in an arbitrary 
way).  Acording to a large number of feasible 
permutations (representing the solution space) it is 
impossible to search the solution space efficiently. 
 
4. EXPERIMENTAL ANALYSIS 
 
In this section we investigate the influence of the task 
graph structure and search parameters to the efficiency 
of our scheduling procedures. Experiments are 
performed on task graph containing  n=200 tasks with 
known optimal schedule length equal to 1200 computing 
cycles obtained by scheduling feasible permutation 
1,2,…,200 using the ES rule. 
 
We restrict our attention to sparse graphs (ρ=0.33). The 
best obtained schedule was 1501 computational cycles 
which is 25% worse than the optimal one. This schedule 
was obtained by the use of first improvement Or-opt LS 
performed in forward direction, within CPU=10min and 
kmax=10. We try to explain this deviation and to improve 
the scheduling results by combining neighborhoods and 
search directions. Let us first determine the influence of 
communication delays to scheduling process. 
 

 
 
4.1. Effect of communication delays 
To investigate the influence of communication delays to 
quality of heuristic schedule we performed the same 
procedure as for composing Fig. 1. for the case with 
neglected communication time. 

 
 
Fig. 2. The schedule deviation without communications 
 
We obtained only 237 optimal schedules and 879 
nonoptimal ones with deviations of nonoptimal solutions 
from the optimal one represented on Fig. 2. First, we 
conclude that in the presence of communication delays 
more optimal neighbors are found since the tasks were 
forced to be scheduled in such a way as to avoid 
expensive communications. Next, it can be seen that the 
deviation of the nonoptimal schedules from the optimal 
ones is much larger for the case with communication 
delays. If communication is negligible, the tasks can be 
packed with no delays. 
 
4.2. Effects of neighborhood structures 
 
In our VNS approach [2] we have use several 
neighborhood structures: 1-Swap, Interchange and Or-
opt. Our first experiment consider one neighborhood 
structure at a time and all results differ one from another 
5% at most. Then we combined the neighborhoods, i.e. 
we apply Variable Neighborhood Descent (VND) 
approach within VNS. In that way we achieve 
significant improvements. In Table 1 are given results 
for different combination of   neighborhood structures. 
The last column contains the scheduling length obtained 
when the neighborhoods are searched in both directions 
(forward-backward), by the first improvement rule. In all 
these examples we fixed kmax to 10 and tmax=10min. 
 
 



 
 

Table 1: Objective values for n=200 in tmax=10min 
 

 1 2 3 4 
 1-Swap Or-opt Int.ch+2 FB+3 
f 2009 1501 2131 2120 

 
As can be seen from this table in first 10min the Or-opt 
is the most efficient neighborhood structure. 
 
4.3. Effects of tmax  

 
To compare different heuristics in solving scheduling 
problem, we choose given CPU time (tmax) to be the 
stopping criterion. Since poor solutions were obtained 
within tmax=10min, we decided to investigate the 
influence of tmax as well. The experimental results are 
shown in Table 2. Here, kmax=20. 
 

Table 2: The influence  of tmax for n=200  
 

t 10min 1h 2h 3h 
2 1501 1435 1435 1435 
4 2120 1416 1317 1279 

 
From the results given in this table we can conclude that 
after initial improvements, Or-opt search stucks in poor 
local minima. On the contrary the sequence of several 
neighborhoods (VND as LS within VNS) allows us to 
obtain the solution which is about 6% worse than the 
optimal one within CPU time of 2.5 hours. 
 
4.4. The influence of kmax 
 

Table 3: The influence of kmax  for n=200 
 

kmax 5 10 15 20 
F 1534 1312 1627 1279 

 
The main parameter of VNS metaheuristic is maximal 
number of neighborhoods used for shaking. In Table 3 
we present the experiments with changing kmax in best 
variant of VNS (i.e. VND with Interchange+Or-opt+FB)   
The tmax= 3h.  
  
4.5. Effects of other parameters 
 
The investigation of initial solution, the neighborhood 
structure for shaking, the kstep parameter, the plato 
parameter gave no significant improvements in the 
scheduling results, and thus we did not include them in 
the final version. 
 

 
 
5. CONCLUSION 
 
In this paper we investigated reasons why VNS, the most 
succesfull heuristic for solving MSPCD, give results 
above optimal with average error larger than 50%. We 
concluded that using better estimation of parameters 
could reduce deviation to 6%. More specifically, 
increasing the CPU time allowed in the search (tmax) and 
increasing the number of neighborhood structures in 
VND (k’max) influence the most performances of VNS. 
Future work could consist of implementation of more 
neighborhood structures in order to reduce the gap more. 
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