

RASPOREDJIVANJE METODOM PROMENLJIVIH OKOLINA:
 EKSPERIMENTALNA ANALIZA

SCHEDULING BY VNS: EXPERIMENTAL ANALYSIS*

Tatjana Davidović
1Matematički institut SANU, Beograd, p.f. 367. email:tanjad@mi.sanu.ac.yu

Pierre Hansen
2GERAD and Ecole des Hautes Etudes Commerciales,3000 chemin de la Cote-Sainte-Catherine,

Montreal H3T 2A7, Canada email: pierreh@crt.umontreal.ca
Nenad Mladenović1,2

email: nenad@mi.sanu.ac.yu, nenad@crt.umontreal.ca

Rezime - U ranijim radovima razvijali smo i uporedjivali razne heuristike za rasporedjivanje zadataka u
prisustvu komunikacija i zaključili da metoda promenljivih okolina u proseku daje najbolje rezultate za sve tipove
slučajno generisanih grafova zadataka. Medjutim, pronašli smo klasu grafova sa poznatim optimalnim rešenjem
za koju se heuristička raspodela dobijena metodom promenljivih okolina (iako je još uvek bolja od drugih)
razlikuje od optimalne za više od 50%. U ovom radu opisaćemo analize koje smo izvršili sa ciljem razumevanja
dobijenog odstupanja heurističkih rešenja od optimalnog. Kao rezultat dobili smo odstupanje samo 6%.

KLJUČNE REČI: GRAF ZADATAKA, RASPOREDJIVANJE, KOMUNIKACIONO KAŠNJENJE, METODA PROMENLJIVIH OKOLINA.

Abstract - In our previous papers we developed and compared different scheduling heuristics and concluded that VNS
performs best in average for all types of random task graphs we generated. Yet, there is a class of task graphs with known
optimal solutions such that VNS obtained schedule (although still the best one) differs from the optimal one for more than
50%. In this paper we describe the analysis we performed in order to explain the deviation of the heuristic solution from
the optimal one. As a result, we are able to reduce the error to 6% above the optimal solution.

KEY WORDS: TASK GRAPH, SCHEDULING, COMMUNICATION DELAY, VARIABLE NEIGHBORHOOD SEARCH.

* This research has been supported in part by NSF Serbia. The first author has been supported by grant no. 04M02C. The third one by grant no. 04M03C.

1. INTRODUCTION

Metaheuristics such as Genetic Algorithms (GA),
Variable Neighborhood Search (VNS), Tabu Search
(TS) are very efficient and therefore very popular
methods in solving combinatorial optimization
problems.

Metaheuristics have already been applied to different
variants of scheduling problems. In [9] TS was applied
to problem of scheduling independent tasks. TS for
scheduling communicationg tasks with significant
communication delays onto heterogeneous multipro-
cessor architecture was developed in [7]. GA approach
was developed for scheduling dependent tasks with
neglected communication time in [1]. Even parallel
variants of TS [8] and GA [5] have appeared. Acording

to problem considered and/or solution representation it
is very hard to compare these existing metaheuristic
approaches. We developed VNS, TS [2] and GA [3] for
solving MSPCD based on same solution representation
and compared them onto random task graphs with given
density and sometimes with given optimal solutions. The
comparation was performed with CPU time stopping
condition: all the heuristics were allowed to run until 20
restarts of Mltistart Local Search (MLS). It appeared
that VNS performs best in average on all types of
random task graphs. Since we generated random task
graphs with known optimal solutions, we could discuss
the quality of obtained heuristic solutions for these
graphs. The disappointing fact was that for some of the
test instances the best solutions (usualy produced by the
use of VNS) were more than 50% worse than the
optimal one. In order to explaine this deviation, we

mailto:tanjad@mi.sanu.ac.yu
mailto:pierreh@crt.umontreal.ca
mailto:nenad@mi.sanu.ac.yu
mailto:nenad@crt.umontreal.ca

performed experimental analysis of MSPCD problem
varying the values of VNS parameters.

The paper is organized as follows. In the next section we
describe the implementation of Local Search (LS) to
MSPCD, solution representation, neighborhood struct-
ures and search parameters. The test instances that turn
out to be hard for scheduling are descused in section 3.
The section 4 contains analysis of the influence of
communication delays to solving MSPCD, the obtained
topology of local minimas, the efect of selected initial
solution and VNS parameters. Section 5 concludes this
paper.

2. IMPLEMENTATION DETAILS

In our implementation of heuristics based on LS
procedure (TS, VNS, MLS) we defined solution space to
be the set of all permutation of tasks. Feasible solutions
are feasible permutations, i.e. tasks orderings that obey
precedence relations between tasks defined by the task
graph. Starting from a permutation, the actual solution
(schedule, i.e. the index of processor and the starting
time instance for each task) can be determined by the use
of some scheduling rule. We choose Earliest Start (ES)
rule since it has been widely used in the literature. The
idea of ES rule is that a task has to start execution as
soon as posible, because then it will be finished earlier
and its succeeding tasks can begun their execution
earlier.

After the ES rule is applied, we can calculate the
objective function value, i.e. schedule length. Obviously,
we have implicit connection between solution
representation and the value of the objective function.
The advantage of representing solution as feasible
permutation is efficient neighborhood searh, since there
are a lot of neighborhood structures that can be applied.
The disadvantage of such representation is that several
different permutations may produce the same schedule
(after applying ES). The ilustration of these observation
is given on Fig. 1. We performed scheduling procedure
for all 1-Swap neighbors of known optimal solution. As
a result, we obtained 679 optimal schedules versus 437
nonoptimal ones. Then, we sorted the obtained
nonoptimal schedules in nondecreasing order and
reperesent them graphicaly on Fig. 1. As can be seen on
Fig. 1 the different permutations produce the same
nonoptimal schedule; also worst solution in 1-Swap
neighborhood has 90% error.

In LS procedures we have to obey precedence constraints
between tasks in order to assure correct execution of
paralellized task graph. We made experiments with
several neighborhood structures always using the

reduced versions. For example, reduced 1-Swap
neighborhood search is as follows: for each task in
current solution we perform all feasible changes of its
position in this solution in forward (or backward
direction). This means that task can not move to the
right from any of its successors (or to the left from its
predecesors). The search direction can be seen as a
parameter. We also experimented with best and first
improvement search strategies and conclude that first
improvement is faster and gives us better results in
average.

Fig. 1 % deviation from the optimal value in the 1-Swap
neighborhood of the optimal solution

Except 1-Swap neighborhood structure, we used
restricted versions of Or-opt, which is an ordered
combination of 3-Swap, 2-Swap and 1-Swap. The 3-
Swap neighborhood means that we take 3 succeeding
tasks and move them to all possible (feasible) positions
trying to minimize scheduling length. Similarily, the 2-
Swap neighborhood is obtained by all possible changings
of positions of 2 succeeding tasks. The order of
neighborhoods in Or-opt is defined by the change
significance and neighborhood sizes. This means that we
try to improve our objective function value by coarse
moves first, and then performe the fine moves. At the
same time, we search in the small neighborhoods first.

The last neighborhood we implemented in [2] is inter-
change, it is obtained by all possible (feasible) exchanges
of positions of any two tasks which is the special case of
4-Opt move.

The shaking procedure of the VNS [4,6] is realized in
two variants: 1) k-Swap, meaning that k times we pick
up a task and change its position in feasible permutation
and 2) k-interchange, which consists in k interchanges
performed on current incumbent solution. In our

pervious paper [2] we made experiments only with
single neighborhoods, single directions of search
procedures and unique stopping criterion (CPU time).
We selected the best obtained parameter combination for
our examples and made a conclusion that among VNS,
TS, MLS and even GA, VNS performes best in average.
Inspite this, the obtained schedules for tasks graphs
(generated as explained in next Section) were more than
50% worse than the known optimal solutions.

3. DESCRIPTION OF 'HARD' TEST INSTANCES

The task graphs with known optimal solutions were
generated in such a way that a load balance between
processors is achieved and no idle time intervals occure
in the optimal solution. The communication is suppossed
to be intensive between tasks executed on the same
processor. The generation algorithm is described in [5].

Dense task graphs (ρ=0.67) are not difficult for
scheduling since the data dependences force the
scheduling proces to minimize communication delays.
So, in these examples optimal solution is obtained as the
initial one (permutation defined by the CP method is
scheduled according to ES rule) or, at the worst, when
the 1-Swap LS is applied to the initial solution. Sparse
task graphs (ρ=0.33) are characterized by a large
number of feasible permutations and the initial one
(obtained by the CP method) gives the solution at
relatively poore quality (since there are a lot of
independent tasks that can be scheduled in an arbitrary
way). Acording to a large number of feasible
permutations (representing the solution space) it is
impossible to search the solution space efficiently.

4. EXPERIMENTAL ANALYSIS

In this section we investigate the influence of the task
graph structure and search parameters to the efficiency
of our scheduling procedures. Experiments are
performed on task graph containing n=200 tasks with
known optimal schedule length equal to 1200 computing
cycles obtained by scheduling feasible permutation
1,2,…,200 using the ES rule.

We restrict our attention to sparse graphs (ρ=0.33). The
best obtained schedule was 1501 computational cycles
which is 25% worse than the optimal one. This schedule
was obtained by the use of first improvement Or-opt LS
performed in forward direction, within CPU=10min and
kmax=10. We try to explain this deviation and to improve
the scheduling results by combining neighborhoods and
search directions. Let us first determine the influence of
communication delays to scheduling process.

4.1. Effect of communication delays
To investigate the influence of communication delays to
quality of heuristic schedule we performed the same
procedure as for composing Fig. 1. for the case with
neglected communication time.

Fig. 2. The schedule deviation without communications

We obtained only 237 optimal schedules and 879
nonoptimal ones with deviations of nonoptimal solutions
from the optimal one represented on Fig. 2. First, we
conclude that in the presence of communication delays
more optimal neighbors are found since the tasks were
forced to be scheduled in such a way as to avoid
expensive communications. Next, it can be seen that the
deviation of the nonoptimal schedules from the optimal
ones is much larger for the case with communication
delays. If communication is negligible, the tasks can be
packed with no delays.

4.2. Effects of neighborhood structures

In our VNS approach [2] we have use several
neighborhood structures: 1-Swap, Interchange and Or-
opt. Our first experiment consider one neighborhood
structure at a time and all results differ one from another
5% at most. Then we combined the neighborhoods, i.e.
we apply Variable Neighborhood Descent (VND)
approach within VNS. In that way we achieve
significant improvements. In Table 1 are given results
for different combination of neighborhood structures.
The last column contains the scheduling length obtained
when the neighborhoods are searched in both directions
(forward-backward), by the first improvement rule. In all
these examples we fixed kmax to 10 and tmax=10min.

Table 1: Objective values for n=200 in tmax=10min

 1 2 3 4
 1-Swap Or-opt Int.ch+2 FB+3
f 2009 1501 2131 2120

As can be seen from this table in first 10min the Or-opt
is the most efficient neighborhood structure.

4.3. Effects of tmax

To compare different heuristics in solving scheduling
problem, we choose given CPU time (tmax) to be the
stopping criterion. Since poor solutions were obtained
within tmax=10min, we decided to investigate the
influence of tmax as well. The experimental results are
shown in Table 2. Here, kmax=20.

Table 2: The influence of tmax for n=200

t 10min 1h 2h 3h
2 1501 1435 1435 1435
4 2120 1416 1317 1279

From the results given in this table we can conclude that
after initial improvements, Or-opt search stucks in poor
local minima. On the contrary the sequence of several
neighborhoods (VND as LS within VNS) allows us to
obtain the solution which is about 6% worse than the
optimal one within CPU time of 2.5 hours.

4.4. The influence of kmax

Table 3: The influence of kmax for n=200

kmax 5 10 15 20
F 1534 1312 1627 1279

The main parameter of VNS metaheuristic is maximal
number of neighborhoods used for shaking. In Table 3
we present the experiments with changing kmax in best
variant of VNS (i.e. VND with Interchange+Or-opt+FB)
The tmax= 3h.

4.5. Effects of other parameters

The investigation of initial solution, the neighborhood
structure for shaking, the kstep parameter, the plato
parameter gave no significant improvements in the
scheduling results, and thus we did not include them in
the final version.

5. CONCLUSION

In this paper we investigated reasons why VNS, the most
succesfull heuristic for solving MSPCD, give results
above optimal with average error larger than 50%. We
concluded that using better estimation of parameters
could reduce deviation to 6%. More specifically,
increasing the CPU time allowed in the search (tmax) and
increasing the number of neighborhood structures in
VND (k’max) influence the most performances of VNS.
Future work could consist of implementation of more
neighborhood structures in order to reduce the gap more.

REFERENCES

[1] I. Ahmad and M. K. Dhodhi. Multiprocessor
scheduling in a genetic paradigm. Parallel Computing,
22:395-406, 1996.

[2] T. Davidović, P. Hansen and N. Mladenović.
Variable neighborhood search for multiprocessor
scheduling problem with communication delays. IV Int.
Metaheuristics Conf. MIC 2001, July, 16-21. 2001.
(accepted).

[3] T. Davidović and N. Mladenović. Genetic algorithms
for multiprocessor scheduling problem with commun-
ication delays. In Proc. X Yug. Math. Congr.Jan. 21-24.
2001.

[4] P. Hansen and N. Mladenović. Variable neighbor-
hood search; Principles and applications. Europ. J.
Operational Research, 24(11):1097-1100, 1997.

[5] Y.-K. Kwok and I. Ahmad. Efficient scheduling of
arbitrary task graphs to multirocessors using a parallel
genetic algorithm. J. Parallel and Dist. Comp., 47:58-
77, 1997.

[6] N. Mladenović and P. Hansen. Variable neighbor-
hood search. Comp.Oper. Res. 24(11):1097-1100, 1997.

[7] S.C.S. Porto and C.C. Ribeiro. A tabu search
approach to task scheduling on heterogeneous processors
under precedence constraints. Int. J. High Speed
Computing, 7:45-71, 1995.

[8] S.C.S. Porto and C.C. Ribeiro. Parallel tabu search
message passing synchronous strategies for task
scheduling under precedence constraints. J. Heuristics,
1:207-223, 1995.

[9] A. Thesen. Design and evaluation of a tabu search
algorithm for multiprocessor scheduling. J. Heuristics,
4(2):141-160, 1998.

